
Noncoding RNAs in periodontitis: Progress and perspectives (Review)
- Authors:
- Yuanyi Feng
- Xiaolan Guo
- Yumeng Yang
- Wei Qiu
- Zhao Chen
- Fuchun Fang
-
Affiliations: Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China, Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China - Published online on: August 11, 2025 https://doi.org/10.3892/ijmm.2025.5607
- Article Number: 166
-
Copyright: © Feng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
GBD 2021 Oral Disorders Collaborators: Trends in the global, regional, and national burden of oral conditions from 1990 to 2021: A systematic analysis for the global burden of disease study 2021. Lancet. 405:897–910. 2025. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Zhang SQ, Zhao L, Ren ZH and Hu CY: Global, regional, and national burden of periodontitis from 1990 to 2019: Results from the global burden of disease study 2019. J Periodontol. 93:1445–1454. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Tian G, Li R, Shi Y, Zhou T and Yan Y: Epidemiological and sociodemographic transitions of severe periodontitis incidence, prevalence, and disability-adjusted life years for 21 world regions and globally from 1990 to 2019: An age-period-cohort analysis. J Periodontol. 94:193–203. 2023. View Article : Google Scholar | |
Valverde A, George A, Nares S and Naqvi AR: Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res. 60:101–120. 2025. View Article : Google Scholar : | |
Crick F: Central dogma of molecular biology. Nature. 227:561–563. 1970. View Article : Google Scholar : PubMed/NCBI | |
Fabbri M, Girnita L, Varani G and Calin GA: Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 29:1377–1388. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alghazali T, Ahmed AT, Hussein UAR, Sanghvi G, Uthirapathy S, Edan RT, Lal M, Shit D, Naidu KS and Al-Hamairy AK: Noncoding RNA (ncRNA)-mediated regulation of TLRs: Critical regulator of inflammation in tumor microenvironment. Med Oncol. 42:1442025. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Zhang K, Chen Z and Wu B: Noncoding RNAs: New insights into the odontogenic differentiation of dental tissue-derived mesenchymal stem cells. Stem Cell Res Ther. 10:2972019. View Article : Google Scholar : PubMed/NCBI | |
Kristensen L, Sandersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Meng X, Liao Q and Chen M: Versatile interactions and bioinformatics analysis of noncoding RNAs. Brief Bioinform. 20:1781–1794. 2019. View Article : Google Scholar | |
Micheel J, Safrastyan A and Wollny D: Advances in non-coding RNA sequencing. Noncoding RNA. 7:702021.PubMed/NCBI | |
Wolfien M, Brauer DL, Bagnacani A and Wolkenhauer O: Workflow development for the functional characterization of ncRNAs. Methods Mol Biol. 1912:111–132. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rinaldi S, Moroni E, Rozza R and Magistrato A: Frontiers and challenges of computing ncRNAs biogenesis, function and modulation. J Chem Theory Comput. 20:993–1018. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pekáčová A, Baloun J, Švec X and Šenolt L: Non-coding RNAs in diseases with a focus on osteoarthritis. Wiley Interdiscip Rev RNA. 14:e17562023. View Article : Google Scholar | |
Adamouli D, Marasli C and Bobetsis YA: The expression patterns of non-coding RNAs in periodontal disease. Dent J (Basel). 12:1592024. View Article : Google Scholar : PubMed/NCBI | |
Taheri M, Khoshbakht T, Hussen BM, Abdullah ST, Ghafouri-Fard S and Sayad A: Emerging role of miRNAs in the pathogenesis of periodontitis. Curr Stem Cell Res Ther. 19:427–448. 2024. View Article : Google Scholar | |
Ni H, Ge Y, Zhuge Y, Liu X, Chen H, Liu J, Li W, Wang X, Shen G, Wang Q, et al: LncRNA MIR181A1HG deficiency attenuates vascular inflammation and atherosclerosis. Circ Res. 136:862–883. 2025. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Song J, Weiner JM III, Chopra A, Dommisch H, Beule D and Schaefer AS: lncRNA CDKN2B-AS1 regulates collagen expression. Hum Genet. 143:907–919. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Li X, Huang C, Tang Y, Zhou Q and Chen W: LncRNAs and rheumatoid arthritis: From identifying mechanisms to clinical investigation. Front Immunol. 12:8077382022. View Article : Google Scholar : PubMed/NCBI | |
Carpenter S: Long noncoding RNA: Novel links between gene expression and innate immunity. Virus Res. 212:137–145. 2016. View Article : Google Scholar | |
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, et al: Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother. 177:1169542024. View Article : Google Scholar : PubMed/NCBI | |
Luo R, Yao Y, Chen Z and Sun X: An examination of the LPS-TLR4 immune response through the analysis of molecular structures and protein-protein interactions. Cell Commun Signal. 23:1422025. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zheng Y, Chen B, Ke T and Shi Z: LncRNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) regulates the proliferation of human periodontal ligament stem cells and toll-like receptor 4 (TLR4) expression to improve periodontitis. BMC Oral Health. 19:1082019. View Article : Google Scholar : PubMed/NCBI | |
Wangzhou K, Gong L, Liu C, Tan Y, Chen J, Li C, Lai Z and Hao C: LncRNA MAFG-AS1 regulates human periodontal ligament stem cell proliferation and Toll-like receptor 4 expression. Oral Dis. 26:1302–1307. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmad I, Naqvi RA, Valverde A and Naqvi AR: LncRNA MALAT1/microRNA-30b axis regulates macrophage polarization and function. Front Immunol. 14:12148102023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Lv H, Cui Y and Shi R: The role of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in chronic periodontitis progression. Bioengineered. 13:2336–2345. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ruan D, Wu C and Zhang Y and Zhang Y: LncRNA LOXL1-AS1 inhibits proliferation of PDLSCs and downregulates IL-1β in periodontitis patients. J Periodontal Res. 57:324–331. 2022. View Article : Google Scholar | |
Cheng L, Fan Y, Cheng J, Wang J, Liu Q and Feng Z: Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered. 13:12691–12705. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Huang Y, Yang Q, Jia L, Zheng Y and Li W: Long non-coding RNA SNHG5 mediates periodontal inflammation through the NF-κB signalling pathway. J Clin Periodontol. 49:1038–1051. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Qiao X, Zhang C, Hou J and Qi S: Long non-coding RNA LINC00616 promotes ferroptosis of periodontal ligament stem cells via the microRNA-370/transferrin receptor axis. Bioengineered. 13:13070–13081. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Hu H, Han Y, Li J, Zhang Y, Tang S, Yuan Y and Zhang X: Long non-coding RNA 01126 promotes periodontitis pathogenesis of human periodontal ligament cells via miR-518a-5p/HIF-1α/MAPK pathway. Cell Prolif. 54:e129572021. View Article : Google Scholar | |
Tang S, Zhong Y, Li J, Ji P and Zhang X: Long intergenic non-coding RNA 01126 activates IL-6/JAK2/STAT3 pathway to promote periodontitis pathogenesis. Oral Dis. 31:193–205. 2025. View Article : Google Scholar | |
Li L, Qin W, Ye T, Wang C, Qin Z, Ma Y, Mu Z, Jiao K, Tay FR, Niu W and Niu L: Bioactive Zn-V-Si-Ca glass nanoparticle hydrogel microneedles with antimicrobial and antioxidant properties for bone regeneration in diabetic periodontitis. ACS Nano. 19:7981–7995. 2025. View Article : Google Scholar : PubMed/NCBI | |
Sun R, Duan D and Li R: Transcriptome sequencing identifies abnormal lncRNAs and mRNAs and reveals potentially hub immune-related mRNA in osteoporosis with vertebral fracture. Clin Interv Aging. 19:203–217. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zheng F, Tao A, Wu T, Zhan X, Tang H, Cui X, Ma Z, Li C, Jiang J and Wang Y: LncRNA H19 promotes osteoclast differentiation by sponging miR-29c-3p to increase expression of cathepsin K. Bone. 192:1173402025. View Article : Google Scholar | |
Li Q, Zhou H, Wang C and Zhu Z: Long non-coding RNA Linc01133 promotes osteogenic differentiation of human periodontal ligament stem cells via microRNA-30c/bone gamma-carboxyglutamate protein axis. Bioengineered. 13:9602–9612. 2022.PubMed/NCBI | |
Dong Y, Feng S and Dong F: Maternally-expressed gene 3 (MEG3)/miR-143-3p regulates injury to periodontal ligament cells by mediating the AKT/inhibitory κB kinase (IKK) pathway. Med Sci Monit. 26:e9224862020. View Article : Google Scholar | |
Lai L, Wang Z, Ge Y, Qiu W, Wu B, Fang F, Xu H and Chen Z: Comprehensive analysis of the long noncoding RNA-associated competitive endogenous RNA network in the osteogenic differentiation of periodontal ligament stem cells. BMC Genomics. 23:12022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu C, Zhang A, Yin S, Wang T, Wang Y, Wang M, Liu Y, Ying Q, Sun J, et al: Down-regulation of long non-coding RNA MEG3 suppresses osteogenic differentiation of periodontal ligament stem cells (PDLSCs) through miR-27a-3p/IGF1 axis in periodontitis. Aging (Albany NY). 11:5334–5350. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bian M, Yu Y, Li Y, Zhou Z, Wu X, Ye X and Yu J: Upregulating the expression of LncRNA ANRIL promotes osteogenesis via the miR-7-5p/IGF-1R axis in the inflamed periodontal ligament stem cells. Front Cell Dev Biol. 9:6044002021. View Article : Google Scholar : PubMed/NCBI | |
Zhong X and Wang H: LncRNA JHDM1D-AS1 promotes osteogenic differentiation of periodontal ligament cells by targeting miR-532-5p to activate IGF1R signaling. J Periodontal Res. 59:220–230. 2024. View Article : Google Scholar | |
Wang X and Wang Y: LncRNA DCST1-AS1 inhibits PDLCs' proliferation in periodontitis and may bind with miR-21 precursor to upregulate PLAP-1. J Periodontal Res. 56:256–264. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu Y and Bai Y: LncRNA MALAT1 promotes osteogenic differentiation through the miR-93-5p/SMAD5 axis. Oral Dis. 30:2398–2409. 2024. View Article : Google Scholar | |
Guo J and Zheng M: The regulation mechanism of LINC00707 on the osteogenic differentiation of human periodontal ligament stem cells. J Mol Histol. 53:13–26. 2022. View Article : Google Scholar | |
Zhang X, Yan Q, Liu X, Gao J, Xu Y, Jin Z and Qin W: LncRNA00638 promotes the osteogenic differentiation of periodontal mesenchymal stem cells from periodontitis patients under static mechanical strain. Stem Cell Res Ther. 14:1772023. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang D, Guo S, Zhuo Q, Jiang D and Yu Z: Long noncoding RNA distal-less homeobox 2 antisense 1 restrains inflammatory response and apoptosis of periodontal ligament cells by binding with microRNA-330-3p to regulate Ro60, Y RNA binding protein. Arch Oral Biol. 133:1052982022. View Article : Google Scholar | |
Wang S and Duan Y: LncRNA OIP5-AS1 inhibits the lipopolysaccharide-induced inflammatory response and promotes osteogenic differentiation of human periodontal ligament cells by sponging miR-92a-3p. Bioengineered. 13:12055–12066. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yao S, Lu H, Zhou T, Jiang Q, Jiang C, Hu W, Li M, Tan CP, Feng Y, Du Q, et al: Sciadonic acid attenuates high-fat diet-induced bone metabolism disorders in mice. Food Funct. 15:4490–4502. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Zhan C, Li W, Luo W, Liu Y, He F, Tian Y, Lin Z and Song Z: Monocytic myeloid-derived suppressor cells contribute to the exacerbation of bone destruction in periodontitis. J Transl Med. 23:2172025. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhao Y, Zhao Z, Han X and Chen Y: Knockdown of DANCR reduces osteoclastogenesis and root resorption induced by compression force via Jagged1. Cell Cycle. 18:1759–1769. 2019. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Tan A, Li W and Zheng Y: Small nucleolar RNA host gene 5 plays a role in orthodontic tooth movement by inhibiting osteoclast differentiation. Orthod Craniofac Res. 27:775–784. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jin F, Li J, Zhang YB, Liu X, Cai M, Liu M, Li M, Ma C, Yue R, Zhu Y, et al: A functional motif of long noncoding RNA Nron against osteoporosis. Nat Commun. 12:33192021. View Article : Google Scholar : PubMed/NCBI | |
Li R, Huang Z and Chen M: Long non-coding RNA EPB41L4A-AS1 serves as a diagnostic marker for chronic periodontitis and regulates periodontal ligament injury and osteogenic differentiation by targeting miR-214-3p/YAP1. J Inflamm Res. 18:2483–2497. 2025. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Huang Y, Wang Y, Li S, Chu H and Rong M: MALAT1 overexpression promotes the proliferation of human periodontal ligament stem cells by upregulating fibroblast growth factor 2. Exp Ther Med. 18:1627–1632. 2019.PubMed/NCBI | |
Wang Y, Sun Y, Zheng P, Cai C, Jiang Y, Zhang H, Li Z and Cai Q: Long non-coding RNAs mortal obligate RNA transcript regulates the proliferation of human periodontal ligament stem cells and affects the recurrence of periodontitis. Arch Oral Biol. 105:1–4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Cao Z, Chen H, Ou Q, Huang X and Wang Y: Downregulation of Linc-RNA activator of myogenesis lncRNA participates in FGF2-mediated proliferation of human periodontal ligament stem cells. J Periodontol. 91:422–427. 2020. View Article : Google Scholar | |
Han Y, Wang F, Shao L, Huang P and Xu Y: LncRNA TUG1 mediates lipopolysaccharide-induced proliferative inhibition and apoptosis of human periodontal ligament cells by sponging miR-132. Acta Biochim Biophys Sin (Shanghai). 51:1208–1215. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Gu Q, Wu D, Zhang W, Li G, Lin L, Lowe JM, Hu S, Li TW, Zhou Z, et al: Identification of potentially functional circRNAs and prediction of circRNA-miRNA-mRNA regulatory network in periodontitis: Bridging the gap between bioinformatics and clinical needs. J Periodontal Res. 57:594–614. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J and Xie R: Circular RNA expression profile in gingival tissues identifies circ_0062491 and circ_0095812 as potential treatment targets. J Cell Biochem. 120:14867–14874. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li Y, Hong F and Ning H: Circ_0062491 alleviates LPS-induced apoptosis and inflammation in periodontitis by regulating miR-498/SOCS6 axis. Innate Immun. 28:174–184. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Yu J, Liu Y, Shi Y, Hou Y and Liu X: CircPVT1 promotes periodontitis progression by regulating miR-24-3p/HIF1AN pathway. J Stomatol Oral Maxillofac Surg. 126:1021982025. View Article : Google Scholar : PubMed/NCBI | |
Zhao XQ, Ao CB and Yan YT: The circular RNA circ_0099630/miR-940/receptor-associated factor 6 regulation cascade modulates the pathogenesis of periodontitis. J Dent Sci. 17:1566–1576. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhang Z, Li Y and Wang Z: Abnormal hsa_circ_0003948 expression affects chronic periodontitis development by regulating miR-144-3p/NR2F2/PTEN signaling. J Periodontal Res. 57:316–323. 2022. View Article : Google Scholar | |
Pan J, Zhao L, Liu J and Wang G: Inhibition of circular RNA circ_0138959 alleviates pyroptosis of human gingival fibroblasts via the microRNA-527/caspase-5 axis. Bioengineered. 13:1908–1920. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gu X, Li M, Jin Y, Liu D and Wei F: Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet. 18:1002017. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Lin C, Zhao C and Wu Y: Circ_0003072 mediates the pro-osteogenic differentiation effect of betulinic acid on human periodontal ligament stem cells. Int Dent J. 75:1390–1399. 2025. View Article : Google Scholar : | |
Xiao T, Shi Y, Ye Y, Wang J, Wang W, Yu H, Yan M and Yu J: Circ-SPATA13 regulates the osteogenic differentiation of human periodontal ligament stem cells through the miR-485-5p_R + 1/BMP7 axis. Cell Signal. 127:1115612025. View Article : Google Scholar | |
Ye Y, Ke Y, Liu L, Xiao T and Yu J: CircRNA FAT1 regulates osteoblastic differentiation of periodontal ligament stem cells via miR-4781-3p/SMAD5 pathway. Stem Cells Int. 2021:51774882021. View Article : Google Scholar | |
Wang C, Gong J, Li D and Xing X: circ_0062491 alleviates periodontitis via the miR-142-5p/IGF1 axis. Open Med (Wars). 17:638–647. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu R, Wang H, Zhang Z, Wang J and Wei F: CircPRKD3/miR-6783-3p responds to mechanical force to facilitate the osteogenesis of stretched periodontal ligament stem cells. J Orthop Surg Res. 19:2572024. View Article : Google Scholar : PubMed/NCBI | |
Li M, Du M, Wang Y, Zhu J, Pan J, Cao Z and He H: CircRNA Lrp6 promotes cementoblast differentiation via miR-145a-5p/Zeb2 axis. J Periodontal Res. 56:1200–1212. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Zhu X, He Y, Hou S, Liu T, Zhi K, Hou T and Gao L: CircCDK8 regulates osteogenic differentiation and apoptosis of PDLSCs by inducing ER stress/autophagy during hypoxia. Ann N Y Acad Sci. 1485:56–70. 2021. View Article : Google Scholar | |
Xie L, Ren X, Yang Z, Zhou T, Zhang M, An W and Guan Z: Exosomal circ_0000722 derived from periodontal ligament stem cells undergoing osteogenic differentiation promotes osteoclastogenesis. Int Immunopharmacol. 128:1115202024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang Z, Huang M, Zhang Y and Xu L: Circ_0099630 participates in SPRY1-mediated repression in periodontitis. Int Dent J. 73:136–143. 2023. View Article : Google Scholar : | |
Yu B, Hu J, Li Q and Wang F: CircMAP3K11 contributes to proliferation, apoptosis and migration of human periodontal ligament stem cells in inflammatory microenvironment by regulating TLR4 via miR-511 sponging. Front Pharmacol. 12:6333532021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Gao S and Dissanayaka WL: Circ_0003764 regulates the osteogenic differentiation of periodontal ligament stem cells. Int Dent J. 74:1110–1119. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Chen X, Han Y, Xi S and Wu G: circRNA CDR1as regulated the proliferation of human periodontal ligament stem cells under a lipopolysaccharide-induced inflammatory condition. Mediators Inflamm. 2019:16253812019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zheng Y, Zheng Y, Huang Y, Zhang Y, Jia L and Li W: Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther. 9:2322018. View Article : Google Scholar : PubMed/NCBI | |
Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D and Wei F: CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 25:4501–4515. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Gu R, Wang X, He S, Bai J, Zhang L, Zhang J, Li Q, Qu L, Xin W, et al: circRNA CDR1as promotes pulmonary artery smooth muscle cell calcification by upregulating CAMK2D and CNN3 via sponging miR-7-5p. Mol Ther Nucleic Acids. 22:530–541. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Chen T and Jiang N: CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells. Exp Ther Med. 19:3760–3766. 2020.PubMed/NCBI | |
Yang W, Yang X, Wang X, Gu J, Zhou D, Wang Y, Yin B, Guo J and Zhou M: Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR-7 sponge to down-regulate REGγ. J Cell Mol Med. 23:4921–4932. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Gong X, Sun L, Zhou Q, Lu B and Zhu L: The circular RNA Cdr1as Act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One. 11:e01583472016. View Article : Google Scholar : PubMed/NCBI | |
Kwon EJ, Kim HJ, Woo BH, Joo JY, Kim YH and Park HR: Profiling of plasma-derived exosomal RNA expression in patients with periodontitis: A pilot study. Oral Dis. 29:1726–1737. 2023. View Article : Google Scholar | |
Duran-Pinedo AE, Yost S and Frias-Lopez J: Small RNA transcriptome of the oral microbiome during periodontitis progression. Appl Environ Microbiol. 81:6688–6699. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiao J, Deng Y, Xie J, Liu H, Yang Q, Zhang Y, Huang X and Cao Z: Apoptotic vesicles from macrophages exacerbate periodontal bone resorption in periodontitis via delivering miR-143-3p targeting Igfbp5. J Nanobiotechnology. 22:6582024. View Article : Google Scholar : PubMed/NCBI | |
Wang XW, Liu CX, Chen LL and Zhang QC: RNA structure probing uncovers RNA structure-dependent biological functions. Nat Chem Biol. 17:755–766. 2021. View Article : Google Scholar : PubMed/NCBI | |
Martens L, Rühle F, Witten A, Meder B, Katus HA, Arbustini E, Hasenfuß G, Sinner MF, Kääb S, Pankuweit S, et al: A genetic variant alters the secondary structure of the lncRNA H19 and is associated with dilated cardiomyopathy. RNA Biol. 18(Suppl 1): S409–S415. 2021. View Article : Google Scholar | |
Zhou H, Hao X, Zhang P and He S: Noncoding RNA mutations in cancer. Wiley Interdiscip Rev RNA. 14:e18122023. View Article : Google Scholar : PubMed/NCBI | |
Bose E, Xiong S and Jones AN: Probing RNA structure and dynamics using nanopore and next generation sequencing. J Biol Chem. 300:1073172024. View Article : Google Scholar : PubMed/NCBI | |
Takizawa N: RNA structure determination by high-throughput structural analysis. Methods Mol Biol. 2586:217–231. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Sun Z, Lei Z and Zhang HT: RNA-binding proteins and cancer metastasis. Semin Cancer Biol. 86:748–768. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Gan D, Zhang XY, He XT, Wu RX, Yin Y, Jin R, Li L, Tan YJ, Chen FM, et al: SLC30A4-AS1 mediates the senescence of periodontal ligament stem cells in inflammatory environments via the alternative splicing of TP53BP1. Cell Prolif. 58:e137782025. View Article : Google Scholar | |
Hu A, Xiao F, Wu W, Xu H and Su J: LincRNA-EPS inhibits caspase-11 and NLRP3 inflammasomes in gingival fibroblasts to alleviate periodontal inflammation. Cell Prolif. 57:e135392024. View Article : Google Scholar | |
Xu K, Li YD, Ren LY, Song HL, Yang QY and Xu DL: Long non-coding RNA X-inactive specific transcript (XIST) interacting with USF2 promotes osteogenic differentiation of periodontal ligament stem cells through regulation of WDR72 transcription. J Periodontal Res. 58:1235–1247. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Tian BM, Deng DK, Liu F, Zhou H, Kong DQ, Qu HL, Sun LJ, He XT and Chen FM: LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment. Bone Res. 10:292022. View Article : Google Scholar : PubMed/NCBI | |
Long L, Zhang C, He Z, Liu O, Yang H and Fan Z: LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. Stem Cells Transl Med. 14:szae0882025. View Article : Google Scholar : | |
Lu Y, Ruan X, Xiao G, Dai Y, Li G, Cai G, Zheng L, Guan Z, Sun W and Wang H: Lockd enhances mandibular mesenchymal stem cell proliferation while inhibiting osteogenic capability via binding with SUZ12 in the inflammatory microenvironment. J Clin Periodontol. 52:171–185. 2025. View Article : Google Scholar | |
Yan H and Bu P: Non-coding RNA in cancer. Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu S, Meng N, He Y, Lu R and Yan GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther. 27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X, Wu Z, Oyang L, Luo X, Lin J, et al: Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential. J Hematol Oncol. 18:202025. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Wang Y, Li L and Zhang K: Coding circular RNA in human cancer. Genes Dis. 12:1013472024. View Article : Google Scholar | |
Zhang Y: LncRNA-encoded peptides in cancer. J Hematol Oncol. 17:662024. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Guo G, Chen Y, Lu L, Li H, Zhou Z, Guo J, Gan X, Hu Y, Li Q, et al: HCP5 derived novel microprotein triggers progression of gastric cancer through regulating ferroptosis. Adv Sci (Weinh). 11:e24070122024. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Wang M, Liu S, Chen H, Li Y, Yuan F, Yang L, Qiu S, Wang H, Xie Z and Xiang M: A lncRNA-encoded mitochondrial micropeptide exacerbates microglia-mediated neuroinflammation in retinal ischemia/reperfusion injury. Cell Death Dis. 14:1262023. View Article : Google Scholar : PubMed/NCBI | |
Xu N, Jiang J, Jiang F, Dong G, Meng L, Wang M, Chen J, Li C, Shi Y, He S and Li R: CircCDC42-encoded CDC42-165aa regulates macrophage pyroptosis in Klebsiella pneumoniae infection through Pyrin inflammasome activation. Nat Commun. 15:57302024. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Lv D, Liu K, Yang L, Shu H, Wen L, Lv C, Sun Q, Yin J, Liu H, et al: MicroProteinDB: A database to provide knowledge on sequences, structures and function of ncRNA-derived microproteins. Comput Biol Med. 177:1086602024. View Article : Google Scholar : PubMed/NCBI | |
He S, Yang S, Zhang Y, Li X, Gao D, Zhong Y, Cao L, Ma H, Liu Y, Li G, et al: LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death Dis. 10:9472019. View Article : Google Scholar : PubMed/NCBI | |
Pang Y, Liu Z, Han H, Wang B, Li W, Mao C and Liu S: Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. J Hepatol. 73:1155–1169. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Tang M, Yu X, Qian W, Xu Y, Li J, Wu G and Zhang S: A microprotein encoded by LINC00263 promotes breast cancer osteolytic bone metastasis by inducing osteoclastogenesis and inhibiting osteoclast ferroptosis. Oncogene. 44:2201–2216. 2025. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Fernandez J, Zaragozano S, Monteagudo-Sánchez A, Simon C and Vilella F: Single-cell technology: The key to an improved understanding of the human endometrium in health and disease. Am J Obstet Gynecol. 232(Suppl 4): S43–S53. 2025. View Article : Google Scholar : PubMed/NCBI | |
Gulati GS, D'Silva JP, Liu Y, Wang L and Newman AM: Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol. 26:11–31. 2025. View Article : Google Scholar | |
Zhu ZX, Liu Y, Wang J, Xie Y, Li RY, Ma Q, Tu Q, Melhem NA, Couldwell S, El-Araby RE, et al: A novel lncRNA-mediated epigenetic regulatory mechanism in periodontitis. Int J Biol Sci. 19:5187–5203. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Wang M, Xu J, Yu D, Li Y, Chen Y and Zhang X, Zhang J, Gu J and Zhang X: LINC02159 promotes non-small cell lung cancer progression via ALYREF/YAP1 signaling. Mol Cancer. 22:1222023. View Article : Google Scholar : PubMed/NCBI | |
Sur S, Pal JK, Shekhar S, Bafna P and Bhattacharyya R: Emerging role and clinical applications of circular RNAs in human diseases. Funct Integr Genomics. 25:772025. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu Z, Wang H and Wang L: Discovery of lncRNA-based ProsRISK score in serum as potential biomarkers for improved accuracy of prostate cancer detection. J Cell Mol Med. 29:e705552025. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Li J, Li L, Zhang Q, Feng Q and Bai L: LncRNA CYP1B1-AS1 as a clinical biomarker exacerbates sepsis inflammatory response via targeting miR-18a-5p. BMC Immunol. 26:322025. View Article : Google Scholar | |
Xu J, Tian Z, Huang L and Yu Y: LINC01094 as a diagnostic marker of osteoporotic fractures is involved in fracture healing. J Endocrinol. 265:e2500082025. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Xu P, Shao S, Wang F, Zheng Z, Li S, Liu W and Li G: The value of urinary exosomal lncRNA SNHG16 as a diagnostic biomarker for bladder cancer. Mol Biol Rep. 50:8297–8304. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sharma D, Singh A, Wilson C, Swaroop P, Kumar S, Yadav DK, Jain V, Agarwala S, Husain M and Sharawat SK: Exosomal long non-coding RNA MALAT1: A candidate of liquid biopsy in monitoring of Wilms' tumor. Pediatr Surg Int. 40:572024. View Article : Google Scholar : PubMed/NCBI | |
Tang C, He X, Jia L and Zhang X: Circular RNAs in glioma: Molecular functions and pathological implications. Noncoding RNA Res. 9:105–115. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao RJ, Zhang WY and Fan XX: Circular RNAs: Potential biomarkers and therapeutic targets for autoimmune diseases. Heliyon. 10:e236942023. View Article : Google Scholar | |
Zhang X, Wan M, Min X, Chu G, Luo Y, Han Z, Li W, Xu R, Luo J, Li W, et al: Circular RNA as biomarkers for acute ischemic stroke: A systematic review and meta-analysis. CNS Neurosci Ther. 29:2086–2100. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yılmaz B and Emingil G: Validating proteomic biomarkers in saliva: Distinguishing between health and periodontal diseases. Expert Rev Proteomics. 21:417–429. 2024. View Article : Google Scholar | |
Schmalz G, Li S, Burkhardt R, Rinke S, Krause F, Haak R and Ziebolz D: MicroRNAs as salivary markers for periodontal diseases: A new diagnostic approach? Biomed Res Int. 2016:10275252016. View Article : Google Scholar : PubMed/NCBI | |
Nappi F: Non-coding RNA-targeted therapy: A state-of-the-art review. Int J Mol Sci. 25:36302024. View Article : Google Scholar : PubMed/NCBI | |
Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar | |
Kim M, Jeong M, Hur S, Cho Y, Park J, Jung H, Seo Y, Woo HA, Nam KT, Lee K and Lee H: Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci Adv. 7:eabf43982021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang X, Li J, Luo H, Huang Q, Yang W, Lei T, Lui S, Gong Q, Li H, et al: A nasally administrated reactive oxygen species-responsive carrier-free gene delivery nanosystem for Alzheimer's disease combination therapy. J Control Release. 381:1136042025. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Jiang R, Xia Z, Guo M, Fu Y, Wang X and Xie J: Engineered neutrophil membrane-camouflaged nanocomplexes for targeted siRNA delivery against myocardial ischemia reperfusion injury. J Nanobiotechnology. 23:1342025. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ma Z, Jiang L, Bojan N, Sha Y, Huang B, Ming L, Shen J and Pang W: Specific muscle targeted delivery of miR-130a loaded lipid nanoparticles: A novel approach to inhibit lipid accumulation in skeletal muscle and obesity. J Nanobiotechnology. 23:1592025. View Article : Google Scholar : PubMed/NCBI | |
Tong H, Ma Z, Yu J, Li D, Zhu Q, Shi H, Wu Y, Yang H, Zheng Y, Sun D, et al: Optimizing peptide-conjugated lipid nanoparticles for efficient siRNA delivery across the blood-brain barrier and treatment of glioblastoma multiforme. ACS Chem Biol. 20:942–952. 2025. View Article : Google Scholar : PubMed/NCBI | |
Westemeier-Rice ES, Winters MT, Rawson TW, Patel KJ, McHugh O, Ward S, McLaughlin S, Stewart A, Misra B, Dziadowicz S, et al: Lnc-RAINY regulates genes involved in radiation susceptibility through DNA:DNA:RNA triplex-forming interactions and has tumor therapeutic potential in lung cancers. Noncoding RNA Res. 12:152–166. 2024. View Article : Google Scholar | |
Jia Y, Xu L, Leng S, Sun Y, Huang X, Wang Y, Ren H, Li G, Bai Y, Zhang Z, et al: Nose-to-brain delivery of circular RNA SCMH1-loaded lipid nanoparticles for ischemic stroke therapy. Adv Mater. 37:e25005982025. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR and van der Meel R: The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 16:630–643. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Jin F, Cai M, Lin T, Wang X and Sun Y: LncRNA nron inhibits bone resorption in periodontitis. J Dent Res. 101:187–195. 2022. View Article : Google Scholar |