1
|
Petrick JL and McGlynn KA: The changing
epidemiology of primary liver cancer. Curr Epidemiol Rep.
6:104–111. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Vitale A, Trevisani F, Farinati F and
Cillo U: Treatment of hepatocellular carcinoma in the precision
medicine era: From treatment stage migration to therapeutic
hierarchy. Hepatology. 72:2206–2218. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lurje I, Czigany Z, Bednarsch J, Roderburg
C, Isfort P, Neumann UP and Lurje G: Treatment strategies for
hepatocellular carcinoma-a multidisciplinary approach. Int J Mol
Sci. 20:14652019. View Article : Google Scholar
|
5
|
Llovet JM, Castet F, Heikenwalder M, Maini
MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX and Finn RS:
Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol.
19:151–172. 2022. View Article : Google Scholar
|
6
|
Yang JD and Heimbach JK: New advances in
the diagnosis and management of hepatocellular carcinoma. BMJ.
371:m35442020. View Article : Google Scholar : PubMed/NCBI
|
7
|
ENCODE Project Consortium; Birney E,
Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH,
Weng Z, Snyder M, Dermitzakis ET, et al: Identification and
analysis of functional elements in 1% of the human genome by the
ENCODE pilot project. Nature. 447:799–816. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bushati N and Cohen SM: microRNA
functions. Annu Rev Cell Dev Biol. 23:175–205. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ma N, Tan J, Chen Y, Yang L, Li M and He
Y: MicroRNAs in metabolic dysfunction-associated diseases:
Pathogenesis and therapeutic opportunities. FASEB J. 38:e700382024.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Mansour RM, Abdel Mageed SS, Abulsoud AI,
Sayed GA, Lutfy RH, Awad FA, Sadek MM, Shaker AAS, Mohammed OA,
Abdel-Reheim MA, et al: From fatty liver to fibrosis: The impact of
miRNAs on NAFLD and NASH. Funct Integr Genomics. 25:302025.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Rahdan F, Saberi A, Saraygord-Afshari N,
Hadizadeh M, Fayeghi T, Ghanbari E, Dianat-Moghadam H and Alizadeh
E: Deciphering the multifaceted role of microRNAs in hepatocellular
carcinoma: Integrating literature review and bioinformatics
analysis for therapeutic insights. Heliyon. 10:e394892024.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Rupaimoole R and Slack FJ: MicroRNA
therapeutics: Towards a new era for the management of cancer and
other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Diener C, Keller A and Meese E: Emerging
concepts of miRNA therapeutics: From cells to clinic. Trends Genet.
38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem
S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A,
Zhou Y, et al: Treatment of HCV infection by targeting microRNA. N
Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hong DS, Kang YK, Borad M, Sachdev J,
Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1
study of MRX34, a liposomal miR-34a mimic, in patients with
advanced solid tumours. Br J Cancer. 122:1630–1637. 2020.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Di Martino MT, Tagliaferri P and Tassone
P: MicroRNA in cancer therapy: Breakthroughs and challenges in
early clinical applications. J Exp Clin Cancer Res. 44:1262025.
View Article : Google Scholar
|
17
|
Sareen G, Mohan M, Mannan A, Dua K and
Singh TG: A new era of cancer immunotherapy: Vaccines and miRNAs.
Cancer Immunol Immunother. 74:1632025. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang F, Zuroske T and Watts JK: RNA
therapeutics on the rise. Nat Rev Drug Discov. 19:441–442. 2020.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Damase TR, Sukhovershin R, Boada C,
Taraballi F, Pettigrew RI and Cooke JP: The limitless future of RNA
therapeutics. Front Bioeng Biotechnol. 9:6281372021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kingston RE, Chen CA and Rose JK: Calcium
phosphate transfection. Curr Protoc Mol Biol. 63:9.1.1–9.1.11.
2003. View Article : Google Scholar
|
21
|
Anastasov N, Höfig I, Mall S, Krackhardt
AM and Thirion C: Optimized lentiviral transduction protocols by
use of a poloxamer enhancer spinoculation, and scFv-antibody
fusions to VSV-G. Lentiviral Vectors and Exosomes as Gene and
Protein Delivery Tools. Federico M: Springer New York; New York,
NY: pp. 49–61. 2016, View Article : Google Scholar
|
22
|
Mei Q, Li X, Meng Y, Wu Z, Guo M, Zhao Y,
Fu X and Han W: A facile and specific assay for quantifying
microRNA by an optimized RT-qPCR approach. PLoS One. 7:e468902012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
24
|
Xu F, Wang Y, Ling Y, Zhou C, Wang H,
Teschendorff AE, Zhao Y, Zhao H, He Y, Zhang G and Yang Z: dbDEMC
3.0: Functional exploration of differentially expressed miRNAs in
cancers of human and model organisms. Genomics Proteomics
Bioinformatics. 20:446–454. 2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li D, Liu X, Lin L, Hou J, Li N, Wang C,
Wang P, Zhang Q, Zhang P, Zhou W, et al: MicroRNA-99a inhibits
hepatocellular carcinoma growth and correlates with prognosis of
patients with hepatocellular carcinoma. J Biol Chem.
286:36677–36685. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin CJF, Gong HY, Tseng HC, Wang WL and Wu
JL: miR-122 targets an anti-apoptotic gene, Bcl-w, in human
hepatocellular carcinoma cell lines. Biochem Biophys Res Commun.
375:315–320. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nakao K, Miyaaki H and Ichikawa T:
Antitumor function of microRNA-122 against hepatocellular
carcinoma. J Gastroenterol. 49:589–593. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang J, Jin H, Liu H, Lv S, Wang B, Wang
R, Liu H, Ding M, Yang Y, Li L, et al: MiRNA-99a directly regulates
AGO2 through translational repression in hepatocellular carcinoma.
Oncogenesis. 3:e972014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang K, Jiang X, Jiang Y, Liu J, Du Y,
Zhang Z, Li Y, Zhao X, Li J and Zhang R: EZH2-H3K27me3-mediated
silencing of mir-139-5p inhibits cellular senescence in
hepatocellular carcinoma by activating TOP2A. J Exp Clin Cancer
Res. 42:3202023. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nurse P, Masui Y and Hartwell L:
Understanding the cell cycle. Nat Med. 4:1103–1106. 1998.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kastan MB and Bartek J: Cell-cycle
checkpoints and cancer. Nature. 432:316–323. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yu J, Wang Z and Wang Y: BrdU
incorporation assay to analyze the entry into S phase. Cell-Cycle
Synchronization: Methods and Protocols. Wang Z: Springer US; New
York, NY: pp. 209–226. 2022, View Article : Google Scholar
|
33
|
Yu F, Wang Z, Wang X, Wang S, Li X, Huang
Q and Lin JH: MicroRNA-885-5p promotes osteosarcoma proliferation
and migration by downregulation of cell division cycle protein 73
homolog expression. Oncol Lett. 17:1565–1572. 2019.PubMed/NCBI
|
34
|
Zu Y, Wang Q and Wang H: Identification of
miR-885-5p as a tumor biomarker: Regulation of cellular function in
cervical cancer. Gynecol Obstet Invest. 86:525–532. 2021.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang K: Serum miR-885-5p can be used as a
marker for efficacy prediction and prognosis of advanced liver
cancer. Cell Mol Biol (Noisy-le-grand). 66:135–141. 2020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu S, Deng X and Zhang J: Identification
of dysregulated serum miR-508-3p and miR-885-5p as potential
diagnostic biomarkers of clear cell renal carcinoma. Mol Med Rep.
20:5075–5083. 2019.PubMed/NCBI
|
37
|
Lam CSC, Ng L, Chow AKM, Wan TMH, Yau S,
Cheng NSM, Wong SKM, Man JHW, Lo OSH, Foo DCC, et al:
Identification of microRNA 885-5p as a novel regulator of tumor
metastasis by targeting CPEB2 in colorectal cancer. Oncotarget.
8:26858–26870. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li S, Sun MY and Su X: MiR-885-5p promotes
gastric cancer proliferation and invasion through regulating YPEL1.
Eur Rev Med Pharmacol Sci. 23:7913–799. 2019.PubMed/NCBI
|
39
|
Liu Y, Bao Z, Tian W and Huang G:
miR-885-5p suppresses osteosarcoma proliferation, migration and
invasion through regulation of β-catenin. Oncol Lett. 17:1996–2004.
2019.PubMed/NCBI
|
40
|
Lixin S, Wei S, Haibin S, Qingfu L and
Tiemin P: miR-885-5p inhibits proliferation and metastasis by
targeting IGF2BP1 and GALNT3 in human intrahepatic
cholangiocarcinoma. Mol Carcinog. 59:1371–1381. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Suzuki HI, Katsura A, Matsuyama H and
Miyazono K: MicroRNA regulons in tumor microenvironment. Oncogene.
34:3085–3094. 2015. View Article : Google Scholar
|
42
|
Marusyk A, Almendro V and Polyak K:
Intra-tumour heterogeneity: A looking glass for cancer? Nat Rev
Cancer. 12:323–334. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang Z, Yin J, Yang J, Shen W, Zhang C,
Mou W, Luo J, Yan H, Sun P, Luo Y, et al: miR-885-5p suppresses
hepatocellular carcinoma metastasis and inhibits Wnt/β-catenin
signaling pathway. Oncotarget. 7:75038–75051. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zou S, Rao Y and Chen W: miR-885-5p plays
an accomplice role in liver cancer by instigating TIGAR expression
via targeting its promoter. Biotechnol Appl Biochem. 66:763–771.
2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Xu F, Yan JJ, Gan Y, Chang Y, Wang HL, He
XX and Zhao Q: miR-885-5p negatively regulates warburg effect by
silencing hexokinase 2 in liver cancer. Mol Ther Nucleic Acids.
18:308–319. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Knowles BB, Howe CC and Aden DP: Human
hepatocellular carcinoma cell lines secrete the major plasma
proteins and hepatitis B surface antigen. Science. 209:497–499.
1980. View Article : Google Scholar : PubMed/NCBI
|
47
|
López-Terrada D, Cheung SW, Finegold MJ
and Knowles BB: Hep G2 is a hepatoblastoma-derived cell line. Hum
Pathol. 40:1512–1515. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bollard J, Miguela V, Ruiz de Galarreta M,
Venkatesh A, Bian CB, Roberto MP, Tovar V, Sia D, Molina-Sánchez P,
Nguyen CB, et al: Palbociclib (PD-0332991), a selective CDK4/6
inhibitor, restricts tumour growth in preclinical models of
hepatocellular carcinoma. Gut. 66:1286–1296. 2017. View Article : Google Scholar
|
49
|
Zhang QF, Li J, Jiang K, Wang R, Ge JL,
Yang H, Liu SJ, Jia LT, Wang L and Chen BL: CDK4/6 inhibition
promotes immune infiltration in ovarian cancer and synergizes with
PD-1 blockade in a B cell-dependent manner. Theranostics.
10:10619–10633. 2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Naz S, Sowers A, Choudhuri R, Wissler M,
Gamson J, Mathias A, Cook JA and Mitchell JB: Abemaciclib, a
selective CDK4/6 inhibitor, enhances the radiosensitivity of
non-small cell lung cancer in vitro and in vivo. Clin Cancer Res.
24:3994–4005. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Huang J, Zheng L, Sun Z and Li J: CDK4/6
inhibitor resistance mechanisms and treatment strategies (review).
Int J Mol Med. 50:1282022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Cornell L, Wander SA, Visal T, Wagle N and
Shapiro GI: MicroRNA-mediated suppression of the TGF-β pathway
confers transmissible and reversible CDK4/6 inhibitor resistance.
Cell Rep. 26:2667–2680.e7. 2019. View Article : Google Scholar
|
53
|
Yang C, Li Z, Bhatt T, Dickler M, Giri D,
Scaltriti M, Baselga J, Rosen N and Chandarlapaty S: Acquired CDK6
amplification promotes breast cancer resistance to CDK4/6
inhibitors and loss of ER signaling and dependence. Oncogene.
36:2255–2264. 2017. View Article : Google Scholar :
|
54
|
Wu X, Yang X, Xiong Y, Li R, Ito T, Ahmed
TA, Karoulia Z, Adamopoulos C, Wang H, Wang L, et al: Distinct CDK6
complexes determine tumor cell response to CDK4/6 inhibitors and
degraders. Nat Cancer. 2:429–443. 2021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Dai X and Tan C: Combination of microRNA
therapeutics with small-molecule anticancer drugs: Mechanism of
action and co-delivery nanocarriers. Adv Drug Deliv Rev.
81:184–197. 2015. View Article : Google Scholar
|
56
|
Si W, Shen J, Du C, Chen D, Gu X, Li C,
Yao M, Pan J, Cheng J, Jiang D, et al: A miR-20a/MAPK1/c-Myc
regulatory feedback loop regulates breast carcinogenesis and
chemoresistance. Cell Death Differ. 25:406–420. 2018. View Article : Google Scholar :
|
57
|
Lu C, Shan Z, Li C and Yang L: MiR-129
regulates cisplatin-resistance in human gastric cancer cells by
targeting P-gp. Biomed Pharmacother. 86:450–456. 2017. View Article : Google Scholar
|
58
|
Chen Z, Ma T, Huang C, Zhang L, Lv X, Xu
T, Hu T and Li J: MiR-27a modulates the MDR1/P-glycoprotein
expression by inhibiting FZD7/β-catenin pathway in hepatocellular
carcinoma cells. Cell Signal. 25:2693–2701. 2013. View Article : Google Scholar : PubMed/NCBI
|