
Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review)
- Authors:
- Jinzhou Xu
- Zhiyu Xia
- Shaogang Wang
- Qidong Xia
-
Affiliations: Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China - Published online on: August 21, 2025 https://doi.org/10.3892/ijmm.2025.5612
- Article Number: 171
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025.PubMed/NCBI | |
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, et al: Trial watch-oncolytic viruses and cancer therapy. Oncoimmunology. 5:e11177402016. View Article : Google Scholar : PubMed/NCBI | |
Dagogo-Jack I and Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 15:81–94. 2018. View Article : Google Scholar | |
Ma R, Li Z, Chiocca EA, Caligiuri MA and Yu J: The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer. 9:122–139. 2023. View Article : Google Scholar : | |
Nandi SS, Gohil T, Sawant SA, Lambe UP, Ghosh S and Jana S: CD155: A key receptor playing diversified roles. Curr Mol Med. 22:594–607. 2022. View Article : Google Scholar | |
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O and Jonjić S: Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol. 16:40–52. 2019. View Article : Google Scholar | |
Yang M, Yang CS, Guo W, Tang J, Huang Q, Feng S, Jiang A, Xu X, Jiang G and Liu YQ: A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol Ther. 18:833–840. 2017. View Article : Google Scholar : PubMed/NCBI | |
Phung AT, Shah JR, Dong T, Reid T, Larson C, Sanchez AB, Oronsky B, Trogler WC, Kummel AC, Aisagbonhi O and Blair SL: CAR expression in invasive breast carcinoma and its effect on adenovirus transduction efficiency. Breast Cancer Res. 26:1312024. View Article : Google Scholar : PubMed/NCBI | |
Scheicher NV, Berchtold S, Beil J, Smirnow I, Schenk A and Lauer UM: In vitro sensitivity of neuroendocrine neoplasms to an armed oncolytic measles vaccine virus. Cancers (Basel). 16:4882024. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Tian J, Li C, Gao Y, Liu X, Lu J, Wang Y, Wang Z, Svatek RS and Rodriguez R: A novel bladder cancer-specific oncolytic adenovirus by CD46 and its effect combined with cisplatin against cancer cells of CAR negative expression. Virol J. 14:1492017. View Article : Google Scholar | |
Lipatova AV, Le TH, Sosnovtseva AO, Babaeva FE, Kochetkov DV and Chumakov PM: Relationship between cell receptors and tumor cell sensitivity to oncolytic enteroviruses. Bull Exp Biol Med. 166:58–62. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schäfer TE, Knol LI, Haas FV, Hartley A, Pernickel SCS, Jády A, Finkbeiner MSC, Achberger J, Arelaki S, Modic Ž, et al: Biomarker screen for efficacy of oncolytic virotherapy in patient-derived pancreatic cancer cultures. EBioMedicine. 105:1052192024. View Article : Google Scholar : PubMed/NCBI | |
Felt SA, Droby GN and Grdzelishvili VZ: Ruxolitinib and polycation combination treatment overcomes multiple mechanisms of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. J Virol. 91:e00461–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yaiw KC, Miest TS, Frenzke M, Timm M, Johnston PB and Cattaneo R: CD20-targeted measles virus shows high oncolytic specificity in clinical samples from lymphoma patients independent of prior rituximab therapy. Gene Ther. 18:313–317. 2011. View Article : Google Scholar | |
Ingusci S, Hall BL, Cohen JB and Glorioso JC: Oncolytic herpes simplex viruses designed for targeted treatment of EGFR-bearing tumors. Mol Ther Oncol. 32:2007612024. View Article : Google Scholar : PubMed/NCBI | |
Leoni V, Vannini A, Gatta V, Rambaldi J, Sanapo M, Barboni C, Zaghini A, Nanni P, Lollini PL, Casiraghi C and Campadelli-Fiume G: A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog. 14:e10072092018. View Article : Google Scholar : PubMed/NCBI | |
Shiao SL, Gouin KH III, Ing N, Ho A, Basho R, Shah A, Mebane RH, Zitser D, Martinez A, Mevises NY, et al: Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell. 42:70–84.e8. 2024. View Article : Google Scholar : PubMed/NCBI | |
MacLeod DT, Nakatsuji T, Yamasaki K, Kobzik L and Gallo RL: HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection. Nat Commun. 4:19632013. View Article : Google Scholar : PubMed/NCBI | |
MacLeod DT, Nakatsuji T, Wang Z, di Nardo A and Gallo RL: Vaccinia virus binds to the scavenger receptor MARCO on the surface of keratinocytes. J Invest Dermatol. 135:142–150. 2015. View Article : Google Scholar | |
Stichling N, Suomalainen M, Flatt JW, Schmid M, Pacesa M, Hemmi S, Jungraithmayr W, Maler MD, Freudenberg MA, Plückthun A, et al: Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor. PLoS Pathog. 14:e10069142018. View Article : Google Scholar : PubMed/NCBI | |
Ghosh S, Gregory D, Smith A and Kobzik L: MARCO regulates early inflammatory responses against influenza: A useful macrophage function with adverse outcome. Am J Respir Cell Mol Biol. 45:1036–1044. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carpentier KS, Sheridan RM, Lucas CJ, Davenport BJ, Li FS, Lucas ED, McCarthy MK, Reynoso GV, May NA, Tamburini BAJ, et al: MARCO(+) lymphatic endothelial cells sequester arthritogenic alphaviruses to limit viremia and viral dissemination. EMBO J. 40:e1089662021. View Article : Google Scholar : PubMed/NCBI | |
High M, Cho HY, Marzec J, Wiltshire T, Verhein KC, Caballero MT, Caballero MT, Acosta PL, Ciencewicki J, McCaw ZR, et al: Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants. EBioMedicine. 11:73–84. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ayala-Breton C, Barber GN, Russell SJ and Peng KW: Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins. Hum Gene Ther. 23:484–491. 2012. View Article : Google Scholar : | |
Dan J, Cai J, Zhong Y, Wang C, Huang S, Zeng Y, Fan Z, Xu C, Hu L, Zhang J, et al: Oncolytic virus M1 functions as a bifunctional checkpoint inhibitor to enhance the antitumor activity of DC vaccine. Cell Rep Med. 4:1012292023. View Article : Google Scholar : PubMed/NCBI | |
Dong B, Tang N, Guan Y, Qu G, Miao L, Han W and Shen Z: Type and abundance of sialic acid receptors on host cell membrane affect infectivity and viral titer of different strains of Newcastle disease virus. J Virol Methods. 302:1144882022. View Article : Google Scholar : PubMed/NCBI | |
Haisma HJ, Grill J, Curiel DT, Hoogeland S, van Beusechem VW, Pinedo HM and Gerritsen WR: Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Ther. 7:901–904. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hall BL, Leronni D, Miyagawa Y, Goins WF, Glorioso JC and Cohen JB: Generation of an oncolytic herpes simplex viral vector completely retargeted to the GDNF receptor GFRα1 for specific infection of breast cancer cells. Int J Mol Sci. 21:88152020. View Article : Google Scholar | |
Menotti L, Avitabile E, Gatta V, Malatesta P, Petrovic B and Campadelli-Fiume G: HSV as a platform for the generation of retargeted, armed, and reporter-expressing oncolytic viruses. Viruses. 10:3522018. View Article : Google Scholar : PubMed/NCBI | |
Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD and Gromeier M: Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 6:208–217. 2004. View Article : Google Scholar : PubMed/NCBI | |
O'Bryan SM and Mathis JM: CXCL12 retargeting of an oncolytic adenovirus vector to the chemokine CXCR4 and CXCR7 receptors in breast cancer. J Cancer Ther. 12:311–336. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shibata T, Uchida H, Shiroyama T, Okubo Y, Suzuki T, Ikeda H, Yamaguchi M, Miyagawa Y, Fukuhara T, Cohen JB, et al: Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther. 23:479–488. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Xu B, Chen Y, Li Z, Wang J, Zhang J, Ma R, Cao S, Hu W, Chiocca EA, et al: Specific targeting of glioblastoma with an oncolytic virus expressing a cetuximab-CCL5 fusion protein via innate and adaptive immunity. Nat Cancer. 3:1318–1335. 2022. View Article : Google Scholar : PubMed/NCBI | |
Choi AH, O'Leary MP, Lu J, Kim SI, Fong Y and Chen NG: Endogenous akt activity promotes virus entry and predicts efficacy of novel chimeric orthopoxvirus in triple-negative breast cancer. Mol Ther Oncolytics. 9:22–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yi KH and Lauring J: Recurrent AKT mutations in human cancers: Functional consequences and effects on drug sensitivity. Oncotarget. 7:4241–4251. 2016. View Article : Google Scholar : | |
Pelin A, Boulton S, Tamming LA, Bell JC and Singaravelu R: Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opin Biol Ther. 20:1083–1097. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng M, Zhang W, Li Y and Yu L: Harnessing adenovirus in cancer immunotherapy: Evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res. 12:362024. View Article : Google Scholar : PubMed/NCBI | |
Garber K: China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 98:298–300. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cheng PH, Wechman SL, McMasters KM and Zhou HS: Oncolytic replication of E1b-deleted adenoviruses. Viruses. 7:5767–5779. 2015. View Article : Google Scholar : PubMed/NCBI | |
Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, Mortezaee K, Negahdari B and Arashkia A: Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol. 234:8636–8646. 2019. View Article : Google Scholar | |
Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R and Chu X: Oncolytic Adenovirus-A nova for gene-targeted oncolytic viral therapy in HCC. Front Oncol. 9:11822019. View Article : Google Scholar : PubMed/NCBI | |
Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C, Huang Y, Kaloss M, Marinov A, Phipps S, et al: An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 63:1490–1499. 2003.PubMed/NCBI | |
Ortega S, Malumbres M and Barbacid M: Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta. 1602:73–87. 2002.PubMed/NCBI | |
Bracken AP, Ciro M, Cocito A and Helin K: E2F target genes: Unraveling the biology. Trends Biochem Sci. 29:409–417. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kent LN and G: The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer. 19:326–338. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shay JW: Role of telomeres and telomerase in aging and cancer. Cancer Discov. 6:584–593. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boccardi V and Marano L: Aging, cancer, and inflammation: The telomerase connection. Int J Mol Sci. 25:85422024. View Article : Google Scholar : PubMed/NCBI | |
Alfano A, Cafferata EGA, Gangemi M, Nicola Candia A, Malnero CM, Bermudez I, Lopez MV, Ríos GD, Rotondaro C, Cuneo N, et al: In vitro and in vivo efficacy of a stroma-targeted, tumor microenviron ment responsive oncolytic adenovirus in different preclinical models of cancer. Int J Mol Sci. 24:99922023. View Article : Google Scholar | |
Oh E, Hong J, Kwon OJ and Yun CO: A hypoxia- and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Sci Rep. 8:14202018. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Sun Y, Wang Y, Yan Y, Shi Z, Chen L, Lin H, Lü S, Zhu M, Su C and Li Z: CEA promoter-regulated oncolytic adenovirus-mediated Hsp70 expression in immune gene therapy for pancreatic cancer. Cancer Lett. 319:154–163. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chouljenko DV, Murad YM, Lee IF, Delwar Z, Ding J, Liu G, Liu X, Bu X, Sun Y, Samudio I and Jia WW: Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics. 28:334–348. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cho WK, Choi DH, Park HC, Park W, Yu JI, Park YS, Park JO, Lim HY, Kang WK, Kim HC, et al: Elevated CEA is associated with worse survival in recurrent rectal cancer. Oncotarget. 8:105936–105941. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saretzki G: The telomerase connection of the brain and its implications for neurod egenerative diseases. Stem Cells. 41:233–241. 2023. View Article : Google Scholar | |
Aquino A, Formica V, Prete SP, Correale PP, Massara MC, Turriziani M, De Vecchis L and Bonmassar E: Drug-induced increase of carcinoembryonic antigen expression in cancer cells. Pharmacol Res. 49:383–396. 2004. View Article : Google Scholar : PubMed/NCBI | |
DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R, et al: A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61:7464–7472. 2001.PubMed/NCBI | |
Robert S, Roman Ortiz NI, LaRocca CJ, Ostrander JH and Davydova J: Oncolytic adenovirus for the targeting of paclitaxel-resistant breast cancer stem cells. Viruses. 16:5672024. View Article : Google Scholar : PubMed/NCBI | |
Denkert C, Winzer KJ, Müller BM, Weichert W, Pest S, Köbel M, Kristiansen G, Reles A, Siegert A, Guski H and Hauptmann S: Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer. 97:2978–2987. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hugosson J, Godtman RA, Wallstrom J, Axcrona U, Bergh A, Egevad L, Geterud K, Khatami A, Socratous A, Spyratou V, et al: Results after four years of screening for prostate cancer with PSA and MRI. N Engl J Med. 391:1083–1095. 2024. View Article : Google Scholar : PubMed/NCBI | |
Del Papa J, Petryk J, Bell JC and Parks RJ: An oncolytic adenovirus vector expressing p14 FAST protein induces widespread syncytium formation and reduces tumor growth rate in vivo. Mol Ther Oncolytics. 14:107–120. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Shen Y and Liang T: Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct Target Ther. 8:1562023. View Article : Google Scholar : PubMed/NCBI | |
Weibel S, Raab V, Yu YA, Worschech A, Wang E, Marincola FM and Szalay AA: Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer. 11:682011. View Article : Google Scholar : PubMed/NCBI | |
Li W, Turaga RC, Li X, Sharma M, Enadi Z, Dunham Tompkins SN, Hardy KC, Mishra F, Tsao J, Liu ZR, et al: Overexpression of Smac by an armed vesicular stomatitis virus overcomes tumor resistance. Mol Ther Oncolytics. 14:188–195. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dobson CC, Naing T, Beug ST, Faye MD, Chabot J, St-Jean M, Walker DE, LaCasse EC, Stojdl DF, Korneluk RG and Holcik M: Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget. 8:3495–3508. 2017. View Article : Google Scholar : | |
Zhou H, Zhang Y, Wang J, Yan Y, Liu Y, Shi X, Zhang Q and Xu X: The CREB and AP-1-dependent cell communication network factor 1 regulates porcine epidemic diarrhea virus-induced cell apoptosis inhibiting virus replication through the p53 pathway. Front Microbiol. 13:8318522022. View Article : Google Scholar : PubMed/NCBI | |
Mansour M, Palese P and Zamarin D: Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J Virol. 85:6015–6023. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stanziale SF, Petrowsky H, Adusumilli PS, Ben-Porat L, Gonen M and Fong Y: Infection with oncolytic herpes simplex virus-1 induces apoptosis in neighboring human cancer cells: A potential target to increase anticancer activity. Clin Cancer Res. 10:3225–3232. 2004. View Article : Google Scholar : PubMed/NCBI | |
Grootjans S, Vanden Berghe T and Vandenabeele P: Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ. 24:1184–1195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suzuki T and Uchida H: Induction of necroptosis in multinucleated giant cells induced by conditionally replicating syncytial oHSV in co-cultures of cancer cells and non-cancerous cells. Mol Ther Oncol. 32:2008032024. View Article : Google Scholar : PubMed/NCBI | |
Okamura K, Inoue H, Tanaka K, Ikematsu Y, Furukawa R, Ota K, Yoneshima Y, Iwama E and Okamoto I: Immunostimulatory oncolytic activity of coxsackievirus A11 in human malignant pleural mesothelioma. Cancer Sci. 114:1095–1107. 2023. View Article : Google Scholar : | |
Zhang J, Liu Y, Tan J, Zhang Y, Wong CW, Lin Z, Liu X, Sander M, Yang X, Liang L, et al: Necroptotic virotherapy of oncolytic alphavirus M1 cooperated with Doxorubicin displays promising therapeutic efficacy in TNBC. Oncogene. 40:4783–4795. 2021. View Article : Google Scholar : PubMed/NCBI | |
Van Hoecke L, Riederer S, Saelens X, Sutter G and Rojas JJ: Recombinant viruses delivering the necroptosis mediator MLKL induce a potent antitumor immunity in mice. Oncoimmunology. 9:18029682020. View Article : Google Scholar : PubMed/NCBI | |
Wen C, Yu Y, Gao C, Qi X, Cardona CJ and Xing Z: RIPK3-dependent necroptosis Is induced and restricts viral replication in human astrocytes infected with zika virus. Front Cell Infect Microbiol. 11:6377102021. View Article : Google Scholar : PubMed/NCBI | |
Gou H, Bian Z, Cai R, Chu P, Song S, Li Y, Jiang Z, Zhang K, Yang D and Li C: RIPK3-dependent necroptosis limits PRV replication in PK-15 cells. Front Microbiol. 12:6643532021. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Deng X, Lv Y, Liu C, Chen J, Song J and Zhang Y: Coxsackievirus-A10 induced RIPK3-driven necroptosis to promote the formation of inflammatory response and enhance virus production via being recognized by TLR3. Mol Immunol. 178:107–116. 2025. View Article : Google Scholar : PubMed/NCBI | |
Petrie EJ, Sandow JJ, Lehmann WIL, Liang LY, Coursier D, Young SN, Kersten WJA, Fitzgibbon C, Samson AL, Jacobsen AV, et al: Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3. Cell Rep. 28:3309–3319.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Águeda-Pinto A and Brune W: No time to die: How cytomegaloviruses suppress apoptosis, necroptosis, and pyroptosis. Viruses. 16:12722024. View Article : Google Scholar : PubMed/NCBI | |
van den Wollenberg DJM, Kemp V, Rabelink MJWE and Hoeben RC: Reovirus type 3 dearing variants do not induce necroptosis in RIPK3-expressing human tumor cell lines. Int J Mol Sci. 24:23202023. View Article : Google Scholar : PubMed/NCBI | |
Panganiban RA, Nadeau KC and Lu Q: Pyroptosis, gasdermins and allergic diseases. Allergy. 79:2380–2395. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Sun S, Zhao K, Gao F, Wang R, Li Q, Zhou Y, Zhang J, Li Y, Wang X, et al: Oncolytic parapoxvirus induces gasdermin E-mediated pyroptosis and activates antitumor immunity. Nat Commun. 14:2242023. View Article : Google Scholar : PubMed/NCBI | |
Wu A, Li Z, Wang Y, Chen Y, Peng J, Zhu M, Li Y, Song H, Zhou D, Zhang C, et al: Recombinant measles virus vaccine rMV-Hu191 exerts an oncolytic effect on esophageal squamous cell carcinoma via caspase-3/GSDME-mediated pyroptosis. Cell Death Discov. 9:1712023. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Li Y, Zhu Y, Li N, Li W, Shang C, Song G, Li S, Cong J, Li T, et al: Apoptin induces pyroptosis of colorectal cancer cells via the GSDME-dependent pathway. Int J Biol Sci. 18:717–730. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen XY, Liu Y, Zhu WB, Li SH, Wei S, Cai J, Lin Y, Liang JK, Yan GM, Guo L and Hu C: Arming oncolytic M1 virus with gasdermin E enhances antitumor efficacy in breast cancer. iScience. 27:1111482024. View Article : Google Scholar : PubMed/NCBI | |
Wang YY, Wang J, Wang S, Yang QC, Song A, Zhang MJ, Wang WD, Liu YT, Zhang J, Wang WM, et al: Dual-responsive epigenetic inhibitor nanoprodrug combined with oncolytic virus synergistically boost cancer immunotherapy by igniting gasdermin E-mediated pyroptosis. ACS Nano. Jul 22–2024.Epub ahead of print. | |
Deng Y, Ostermann E and Brune W: A cytomegalovirus inflammasome inhibitor reduces proinflammatory cytokine release and pyroptosis. Nat Commun. 15:7862024. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Ma D, Huang H, Lu Y, Liao Y, Liu L, Liu X and Fang F: Interaction between HCMV pUL83 and human AIM2 disrupts the activation of the AIM2 inflammasome. Virol J. 14:342017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Qin Y, Wang T, Chen Y, Lang X, Zheng J, Gao S, Chen S, Zhong X, Mu Y, et al: Pyroptosis induced by enterovirus 71 and coxsackievirus B3 infection affects viral replication and host response. Sci Rep. 8:28872018. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Zhao W, Lv Y, Li H, Li J, Zhong M, Pu D, Jian F, Song J and Zhang Y: NLRP3-dependent pyroptosis exacerbates coxsackievirus A16 and coxsackievirus A10-induced inflammatory response and viral replication in SH-SY5Y cells. Virus Res. 345:1993862024. View Article : Google Scholar : PubMed/NCBI | |
Jiang R, Chen D, Zhang Y, Zhou L, Ge X, Han J, Guo X and Yang H: PRRSV infection inhibits CSFV C-strain replication via GSDMD-mediated pyroptosis. Vet Microbiol. 298:1102432024. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Shen W, He Y, Liu J, Ouyang J, Zhang C and Hu K: Overexpression of NLRP12 enhances antiviral immunity and alleviates herpes simplex keratitis via pyroptosis/IL-18/IFN-γ signaling. Int Immunopharmacol. 137:1124282024. View Article : Google Scholar | |
Zhang Z, Zhang Y and Lieberman J: Lighting a fire: Can we harness pyroptosis to ignite antitumor immunity? Cancer Immunol Res. 9:2–7. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo ZS, Liu Z and Bartlett DL: Oncolytic immunotherapy: Dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. 4:742014. View Article : Google Scholar : PubMed/NCBI | |
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lei W, Wang S, Xu N, Chen Y, Wu G, Zhang A, Chen X, Tong Y and Qian W: Enhancing therapeutic efficacy of oncolytic vaccinia virus armed with Beclin-1, an autophagic Gene in leukemia and myeloma. Biomed Pharmacother. 125:1100302020. View Article : Google Scholar : PubMed/NCBI | |
Li K, Hu C, Xing F, Gao M, Liang J, Xiao X, Cai J, Tan Y, Hu J, Zhu W, et al: Deficiency of the IRE1α-autophagy axis enhances the antitumor effects of the oncolytic virus M1. J Virol. 92:e01331–17. 2018. View Article : Google Scholar : | |
Xu Y, Chu L, Yuan S, Yang Y, Yang Y, Xu B, Zhang K, Liu XY, Wang R, Fang L, et al: RGD-modified oncolytic adenovirus-harboring shPKM2 exhibits a potent cytotoxic effect in pancreatic cancer via autophagy inhibition and apoptosis promotion. Cell Death Dis. 8:e28352017. View Article : Google Scholar : PubMed/NCBI | |
Botta G, Passaro C, Libertini S, Abagnale A, Barbato S, Maione AS, Hallden G, Beguinot F, Formisano P and Portella G: Inhibition of autophagy enhances the effects of E1A-defective oncolytic adenovirus dl922-947 against glioma cells in vitro and in vivo. Hum Gene Ther. 23:623–634. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Lang L, Yang J, Yang F, Tang S, Fu Z, Saba NF, Luo M and Teng Y: SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis. Biomark Res. 13:82025. View Article : Google Scholar : PubMed/NCBI | |
Chen WY, Chen YL, Lin HW, Chang CF, Huang BS, Sun WZ and Cheng WF: Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-tumor effect by triggering tumor cell necroptosis and DAMPs. Cancer Lett. 523:149–161. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cui B, Song L, Wang Q, Li K, He Q, Wu X, Gao F, Liu M, An C, Gao Q, et al: Non-small cell lung cancers (NSCLCs) oncolysis using coxsackievirus B5 and synergistic DNA-damage response inhibitors. Signal Transduct Target Ther. 8:3662023. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Su R, Yang R, Xu J, Liu X, Yao T, Li S, Wang C, Zhang H, Yue Q, et al: Enhancing the antitumor efficacy of oncolytic adenovirus through sonodynamic therapy-augmented virus replication. ACS Nano. 18:18282–18298. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kan X, Yin Y, Song C, Tan L, Qiu X, Liao Y, Liu W, Meng S, Sun Y and Ding C: Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells. iScience. 24:1028372021. View Article : Google Scholar : PubMed/NCBI | |
Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, De Vleeschouwer S, Agostinis P, Graf N and Van Gool SW: Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer. 136:E313–E325. 2015. View Article : Google Scholar | |
Li W, Ji T, Ye J, Xiong S, Si Y, Sun X, Li F and Dai Z: Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer. Cancer Gene Ther. 32:403–417. 2025. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Chen H, Zhu Z, Liu Z, Ma C, Lee YJ, Bartlett DL and Guo ZS: Ferroptosis inducer improves the efficacy of oncolytic virus-mediated cancer immunotherapy. Biomedicines. 10:14252022. View Article : Google Scholar : PubMed/NCBI | |
Rozilah MI, Yusoff K, Chia SL and Ismail S: Autophagy inhibition suppresses Newcastle disease virus-induced cell death by inhibiting viral replication in human breast cancer cells. Virology. 590:1099572024. View Article : Google Scholar | |
Su W, Qiu W, Li SJ, Wang S, Xie J, Yang QC, Xu J, Zhang J, Xu Z and Sun ZJ: A dual-responsive STAT3 inhibitor nanoprodrug combined with oncolytic virus elicits synergistic antitumor immune responses by igniting pyroptosis. Adv Mater. 35:e22093792023. View Article : Google Scholar | |
Sun Y, Tang L, Kan X, Tan L, Song C, Qiu X, Liao Y, Nair V, Ding C, Liu X and Sun Y: Oncolytic Newcastle disease virus induced degradation of YAP through E3 ubiquitin ligase PRKN to exacerbate ferroptosis in tumor cells. J Virol. 98:e01897232024. View Article : Google Scholar : PubMed/NCBI | |
Tamura S, Tazawa H, Hori N, Li Y, Yamada M, Kikuchi S, Kuroda S, Urata Y, Kagawa S and Fujiwara T: p53-armed oncolytic adenovirus induces autophagy and apoptosis in KRAS and BRAF-mutant colorectal cancer cells. PLoS One. 18:e02944912023. View Article : Google Scholar : PubMed/NCBI | |
Wang ZM, Li MK, Yang QL, Duan SX, Lou XY, Yang XY, Liu Y, Zhong YW, Qiao Y, Wang ZS, et al: Recombinant human adenovirus type 5 promotes anti-tumor immunity via inducing pyroptosis in tumor endothelial cells. Acta Pharmacol Sin. 45:2646–2656. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang CD, Wang YL, Zhou DM, Zhu MY, Lv Y, Hao XQ, Qu CF, Chen Y, Gu WZ, Wu BQ, et al: A recombinant Chinese measles virus vaccine strain rMV-Hu191 inhibits human colorectal cancer growth through inducing autophagy and apoptosis regulating by PI3K/AKT pathway. Transl Oncol. 14:1010912021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xu T, Tian H, Wu J, Yu X, Zeng L, Liu F, Liu Q and Huang X: Coxsackievirus group B3 has oncolytic activity against colon cancer through gasdermin E-mediated pyroptosis. Cancers (Basel). 14:62062022. View Article : Google Scholar : PubMed/NCBI | |
Crow YJ and Casanova JL: Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol. 9:eadm81852024. View Article : Google Scholar : PubMed/NCBI | |
Mesev EV, LeDesma RA and Ploss A: Decoding type I and III interferon signalling during viral infection. Nat Microbiol. 4:914–924. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo YY, Gao Y, Zhao YL, Xie C, Gan H, Cheng X, Yang LP, Hu J, Shu HB, Zhong B, et al: Viral infection and spread are inhibited by the polyubiquitination and downregulation of TRPV2 channel by the interferon-stimulated gene TRIM21. Cell Rep. 43:1140952024. View Article : Google Scholar : PubMed/NCBI | |
Guo YY, Gao Y, Hu YR, Zhao Y, Jiang D, Wang Y, Zhang Y, Gan H, Xie C, Liu Z, et al: The transient receptor potential vanilloid 2 (TRPV2) channel facilitates virus infection through the Ca(2+) -LRMDA axis in myeloid cells. Adv Sci (Weinh). 9:e22028572022. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi S, Ghorbani E, Khazaei M, Avan A, Ryzhikov M, Azadmanesh K and Hassanian SM: Interferon-mediated tumor resistance to oncolytic virotherapy. J Cell Biochem. 118:1994–1999. 2017. View Article : Google Scholar : PubMed/NCBI | |
Michalska A, Blaszczyk K, Wesoly J and Bluyssen HAR: A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and II IFN responses. Front Immunol. 9:11352018. View Article : Google Scholar | |
Sobol PT, Hummel JL, Rodrigues RM and Mossman KL: PML has a predictive role in tumor cell permissiveness to interferon-sensitive oncolytic viruses. Gene Ther. 16:1077–1087. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun B, Sundström KB, Chew JJ, Bist P, Gan ES, Tan HC, Goh KC, Chawla T, Tang CK and Ooi EE: Dengue virus activates cGAS through the release of mitochondrial DNA. Sci Rep. 7:35942017. View Article : Google Scholar : PubMed/NCBI | |
Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J, Lamothe F, Fredericks AC, Tripathi S, Zhu T, Pintado-Silva J, et al: Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol. 2:170372017. View Article : Google Scholar : PubMed/NCBI | |
Liikanen I, Monsurrò V, Ahtiainen L, Raki M, Hakkarainen T, Diaconu I, Escutenaire S, Hemminki O, Dias JD, Cerullo V, et al: Induction of interferon pathways mediates in vivo resistance to oncolytic adenovirus. Mol Ther. 19:1858–1866. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhu M, Pan R, Fang T, Cao YY, Chen S, Zhao X, Lei CQ, Guo L, Chen Y, et al: The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat Immunol. 17:241–249. 2016. View Article : Google Scholar | |
Pikor LA, Bell JC and Diallo JS: Oncolytic viruses: Exploiting cancer's deal with the devil. Trends Cancer. 1:266–277. 2015. View Article : Google Scholar : PubMed/NCBI | |
Delaunay T, Achard C, Boisgerault N, Grard M, Petithomme T, Chatelain C, Dutoit S, Blanquart C, Royer PJ, Minvielle S, et al: Frequent homozygous deletions of type I interferon genes in pleural mesothelioma confer sensitivity to oncolytic measles virus. J Thorac Oncol. 15:827–842. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lipatova AV, Soboleva AV, Gorshkov VA, Bubis JA, Solovyeva EM, Krasnov GS, Kochetkov DV, Vorobyev PO, Ilina IY, Moshkovskii SA, et al: Multi-omics analysis of glioblastoma cells' sensitivity to oncolytic viruses. Cancers (Basel). 13:52682021. View Article : Google Scholar : PubMed/NCBI | |
Speer SD, Li Z, Buta S, Payelle-Brogard B, Qian L, Vigant F, Rubino E, Gardner TJ, Wedeking T, Hermann M, et al: ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. 7:114962016. View Article : Google Scholar : PubMed/NCBI | |
Friedman GK, Bernstock JD, Chen D, Nan L, Moore BP, Kelly VM, Youngblood SL, Langford CP, Han X, Ring EK, et al: Enhanced sensitivity of patient-derived pediatric high-grade brain tumor xenografts to oncolytic HSV-1 virotherapy correlates with nectin-1 expression. Sci Rep. 8:139302018. View Article : Google Scholar : PubMed/NCBI | |
Song D, Jia X, Liu X, Hu L, Lin K, Xiao T, Qiao Y, Zhang J, Dan J, Wong C, et al: Identification of the receptor of oncolytic virus M1 as a therapeutic predictor for multiple solid tumors. Signal Transduct Target Ther. 7:1002022. View Article : Google Scholar : PubMed/NCBI | |
Höti N, Johnson TJ, Chowdhury WH and Rodriguez R: Loss of cyclin-dependent kinase inhibitor alters oncolytic adenovirus replication and promotes more efficient virus production. Cancers (Basel). 10:2022018. View Article : Google Scholar : PubMed/NCBI | |
Matveeva OV and Chumakov PM: Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev Med Virol. 28:e20082018. View Article : Google Scholar : PubMed/NCBI | |
Kedarinath K, Fox CR, Crowgey E, Mazar J, Phelan P, Westmoreland TJ, Alexander KA and Parks GD: CD24 Expression dampens the basal antiviral state in human neuroblastoma cells and enhances permissivity to zika virus infection. Viruses. 14:17352022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Liu J, Li Y, Zeng Y, Wang F, Cheng Z, Duan H, Pan G, Yang S, Chen Y, et al: IDH1 mutation impairs antiviral response and potentiates oncolytic virotherapy in glioma. Nat Commun. 14:67812023. View Article : Google Scholar : PubMed/NCBI | |
Stavrakaki E, Dirven CMF and Lamfers MLM: Personalizing oncolytic virotherapy for glioblastoma: In search of biomarkers for response. Cancers (Basel). 13:6142021. View Article : Google Scholar : PubMed/NCBI | |
Vasilevska J, De Souza GA, Stensland M, Skrastina D, Zhulenvovs D, Paplausks R, Kurena B, Kozlovska T and Zajakina A: Comparative protein profiling of B16 mouse melanoma cells susceptible and non-susceptible to alphavirus infection: Effect of the tumor microenvironment. Cancer Biol Ther. 17:1035–1050. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qian ZY, Pan YQ, Li XX, Chen YX, Wu HX, Liu ZX, Kosar M, Bartek J, Wang ZX and Xu RH: Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy. Sci Bull (Beijing). 69:803–822. 2024. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Bu D, Zhang Q, Sun R, Lyle S, Zhao G, Dong L, Li H, Zhao Y, Yu J and Hao X: Genomic and transcriptomic profiling indicates the prognosis significance of mutational signature for TMB-high subtype in Chinese patients with gastric cancer. J Adv Res. 51:121–134. 2023. View Article : Google Scholar : | |
Wilbur HC, Le DT and Agarwal P: Immunotherapy of MSI cancer: Facts and hopes. Clin Cancer Res. 30:1438–1447. 2024. View Article : Google Scholar | |
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Köhler-Vargas N, Lage H, Gansbacher B and Holm PS: Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: Histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520. Hum Gene Ther. 17:55–70. 2009. View Article : Google Scholar | |
Kitazono M, Goldsmith ME, Aikou T, Bates S and Fojo T: Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res. 61:6328–6330. 2001.PubMed/NCBI | |
Chang HG, Choi YH, Hong J, Choi JW, Yoon AR and Yun CO: GM101 in combination with histone deacetylase inhibitor enhances anti-tumor effects in desmoplastic microenvironment. Cells. 10:28112021. View Article : Google Scholar : PubMed/NCBI | |
Jaime-Ramirez AC, Yu JG, Caserta E, Yoo JY, Zhang J, Lee TJ, Hofmeister C, Lee JH, Kumar B, Pan Q, et al: Reolysin and histone deacetylase inhibition in the treatment of head and neck squamous cell carcinoma. Mol Ther Oncolytics. 5:87–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Zhu W, Huang X, You L, Han X, Yang C and Qian W: PI3K inhibitor LY294002 inhibits activation of the Akt/mTOR pathway induced by an oncolytic adenovirus expressing TRAIL and sensitizes multiple myeloma cells to the oncolytic virus. Oncol Rep. 31:1581–1588. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Ning J, Wakimoto H, Wu S, Wu CL, Humphrey MR, Rabkin SD and Martuza RL: Oncolytic herpes simplex virus and PI3K inhibitor BKM120 synergize to promote killing of prostate cancer stem-like cells. Mol Ther Oncolytics. 13:58–66. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hsu WH, LaBella KA, Lin Y, Xu P, Lee R, Hsieh CE, Yang L, Zhou A, Blecher JM, Wu CJ, et al: Oncogenic KRAS drives lipofibrogenesis to promote angiogenesis and colon cancer progression. Cancer Discov. 13:2652–2673. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mahller YY, Vaikunth SS, Currier MA, Miller SJ, Ripberger MC, Hsu YH, Mehrian-Shai R, Collins MH, Crombleholme TM, Ratner N and Cripe TP: Oncolytic HSV and erlotinib inhibit tumor growth and angiogenesis in a novel malignant peripheral nerve sheath tumor xenograft model. Mol Ther. 15:279–286. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Ichinose T, Naoe Y, Matsumura S, Villalobos IB, Eissa IR, Yamada S, Miyajima N, Morimoto D, Mukoyama N, et al: Combination of cetuximab and oncolytic virus canerpaturev synergistically inhibits human colorectal cancer growth. Mol Ther Oncolytics. 13:107–115. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yamamura K, Kasuya H, Sahin TT, Tan G, Hotta Y, Tsurumaru N, Fukuda S, Kanda M, Kobayashi D, Tanaka C, et al: Combination treatment of human pancreatic cancer xenograft models with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib and oncolytic herpes simplex virus HF10. Ann Surg Oncol. 21:691–698. 2014. View Article : Google Scholar | |
Jha BK, Dong B, Nguyen CT, Polyakova I and Silverman RH: Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol Ther. 21:1749–1757. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coffey MC, Strong JE, Forsyth PA and Lee PW: Reovirus therapy of tumors with activated Ras pathway. Science. 282:1332–1334. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gong J and Mita MM: Activated ras signaling pathways and reovirus oncolysis: An update on the mechanism of preferential reovirus replication in cancer cells. Front Oncol. 4:1672014. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Lin K, Cai W, Lin Y, Liu X, Guo L, Zhang J, Xu W, Lin Z, Wong CW, et al: Tumors driven by RAS signaling harbor a natural vulnerability to oncolytic virus M1. Mol Oncol. 14:3153–3168. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P and Guo ZS: Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer. 21:1962022. View Article : Google Scholar : PubMed/NCBI | |
Hingorani SR: Epithelial and stromal co-evolution and complicity in pancreatic cancer. Nat Rev Cancer. 23:57–77. 2023. View Article : Google Scholar : | |
Dalin S, Sullivan MR, Lau AN, Grauman-Boss B, Mueller HS, Kreidl E, Fenoglio S, Luengo A, Lees JA, Vander Heiden MG, et al: Deoxycytidine release from pancreatic stellate cells promotes gemcitabine resistance. Cancer Res. 79:5723–5733. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fischer A and Alsina-Sanchis E: Disturbed endothelial cell signaling in tumor progression and therapy resistance. Curr Opin Cell Biol. 86:1022872024. View Article : Google Scholar | |
Sun Y: Tumor microenvironment and cancer therapy resistance. Cancer Lett. 380:205–215. 2016. View Article : Google Scholar | |
Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q and Zhou JL: Prostate cancer microenvironment: Multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer. 23:2292024. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Zhou R, Cai J, Yang N, Wen Z, Zhang Z, Sun H, Huang G, Guan Y, Huang N, et al: Matrix stiffness triggers lipid metabolic cross-talk between tumor and stromal cells to mediate bevacizumab resistance in colorectal cancer liver metastases. Cancer Res. 83:3577–3592. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cescon M, Rampazzo E, Bresolin S, Da Ros F, Manfreda L, Cani A, Della Puppa A, Braghetta P, Bonaldo P and Persano L: Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma. Cell Mol Life Sci. 80:2332023. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Ma J, Huang M, Deng H and Shi G: Emerging delivery strategy for oncolytic virotherapy. Mol Ther Oncol. 32:2008092024. View Article : Google Scholar : PubMed/NCBI | |
Guelfi S, Hodivala-Dilke K and Bergers G: Targeting the tumour vasculature: From vessel destruction to promotion. Nat Rev Cancer. 24:655–675. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wan PK, Ryan AJ and Seymour LW: Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther. 29:1668–1682. 2021. View Article : Google Scholar : PubMed/NCBI | |
Miller A, Nace R, Ayala-Breton CC, Steele M, Bailey K, Peng KW and Russell SJ: Perfusion pressure is a critical determinant of the intratumoral extravasation of oncolytic viruses. Mol Ther. 24:306–317. 2016. View Article : Google Scholar : | |
Hong B, Muili K, Bolyard C, Russell L, Lee TJ, Banasavadi-Siddegowda Y, Yoo JY, Yan Y, Ballester LY, Bockhorst KH and Kaur B: Suppression of HMGB1 released in the glioblastoma tumor microenvironment reduces tumoral edema. Mol Ther Oncolytics. 12:93–102. 2018. View Article : Google Scholar | |
Tseng JC, Granot T, DiGiacomo V, Levin B and Meruelo D: Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther. 17:244–255. 2010. View Article : Google Scholar : | |
Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G, Hochberg FH, Weissleder R, Carson W, Chiocca EA and Kaur B: Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst. 99:1768–1781. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI | |
Yousaf I, Kaeppler J, Frost S, Seymour LW and Jacobus EJ: Attenuation of the Hypoxia inducible factor pathway after oncolytic adenovirus infection coincides with decreased vessel perfusion. Cancers (Basel). 12:8512020. View Article : Google Scholar : PubMed/NCBI | |
Breitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, Sun YY, Roy DG, Rintoul JL, Daneshmand M, et al: Targeting tumor vasculature with an oncolytic virus. Mol Ther. 19:886–894. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Nitschké M, Sennino B, Murer P, Schriver BJ, Bell A, Subramanian A, McDonald CE, Wang J, Cha H, et al: Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms. Cancer Res. 78:922–937. 2018. View Article : Google Scholar | |
Hou W, Chen H, Rojas J, Sampath P and Thorne SH: Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer. 135:1238–1246. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rizzo R, D'Accolti M, Bortolotti D, Caccuri F, Caruso A, Di Luca D and Caselli E: Human Herpesvirus 6A and 6B inhibit in vitro angiogenesis by induction of Human Leukocyte Antigen G. Sci Rep. 8:176832018. View Article : Google Scholar : PubMed/NCBI | |
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA and Chekhonin VP: Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? Mol Ther Oncolytics. 24:663–682. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nair M, Khosla M, Otani Y, Yeh M, Park F, Shimizu T, Kang JM, Bolyard C, Yu JG, Kumar Banasavadi-Siddegowda Y, et al: Enhancing antitumor efficacy of heavily vascularized tumors by RAMBO virus through decreased tumor endothelial cell activation. Cancers (Basel). 12:10402020. View Article : Google Scholar : PubMed/NCBI | |
Aghi M, Rabkin SD and Martuza RL: Angiogenic response caused by oncolytic herpes simplex virus-induced reduced thrombospondin expression can be prevented by specific viral mutations or by administering a thrombospondin-derived peptide. Cancer Res. 67:440–444. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A, Chiocca EA and Kaur B: Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther. 16:1382–1391. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hassan M, Selimovic D, El-Khattouti A, Soell M, Ghozlan H, Haikel Y, Abdelkader O and Megahed M: Hepatitis C virus-mediated angiogenesis: Molecular mechanisms and therapeutic strategies. World J Gastroenterol. 20:15467–15475. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wigner-Jeziorska P, Janik-Karpińska E, Niwald M, Saluk J and Miller E: Effect of SARS-CoV-2 infection and BNT162b2 vaccination on the mRNA expression of genes associated with angiogenesis. Int J Mol Sci. 24:160942023. View Article : Google Scholar : PubMed/NCBI | |
Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, Burgess E, Falls TJ, De Silva N, Tsang J, et al: VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell. 28:210–224. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cords L, Engler S, Haberecker M, Rüschoff JH, Moch H, de Souza N and Bodenmiller B: Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell. 42:396–412.e5. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Xu J, Dong B, Yang G, Yang B, et al: Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell. 41:1345–1362.e9. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E, Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023. View Article : Google Scholar : PubMed/NCBI | |
Vähä-Koskela MJ, Kallio JP, Jansson LC, Heikkilä JE, Zakhartchenko VA, Kallajoki MA, Kähäri VM and Hinkkanen AE: Oncolytic capacity of attenuated replicative semliki forest virus in human melanoma xenografts in severe combined immunodeficient mice. Cancer Res. 66:7185–7194. 2066. View Article : Google Scholar | |
Arwert EN, Milford EL, Rullan A, Derzsi S, Hooper S, Kato T, Mansfield D, Melcher A, Harrington KJ and Sahai E: STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy. Nat Cell Biol. 22:758–766. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yasui T, Ohuchida K, Zhao M, Onimaru M, Egami T, Fujita H, Ohtsuka T, Mizumoto K and Tanaka M: Tumor-stroma interactions reduce the efficacy of adenoviral therapy through the HGF-MET pathway. Cancer Sci. 102:484–491. 2011. View Article : Google Scholar | |
van Asten SD, Raaben M, Nota B and Spaapen RM: Secretome screening reveals fibroblast growth factors as novel inhibitors of viral replication. J Virol. 92:e00260–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hiller BE, Yin Y, Perng YC, de Araujo Castro Í, Fox LE, Locke MC, Monte KJ, López CB, Ornitz DM and Lenschow DJ: Fibroblast growth factor-9 expression in airway epithelial cells amplifies the type I interferon response and alters influenza A virus pathogenesis. PLoS Pathog. 18:e10102282022. View Article : Google Scholar : PubMed/NCBI | |
Maddaluno L, Urwyler C, Rauschendorfer T, Meyer M, Stefanova D, Spörri R, Wietecha M, Ferrarese L, Stoycheva D, Bender D, et al: Antagonism of interferon signaling by fibroblast growth factors promotes viral replication. EMBO Mol Med. 12:e117932020. View Article : Google Scholar : PubMed/NCBI | |
Puig-Saus C, Gros A, Alemany R and Cascalló M: Adenovirus i-leader truncation bioselected against cancer-associated fibroblasts to overcome tumor stromal barriers. Mol Ther. 20:54–62. 2012. View Article : Google Scholar : | |
Kurisu N, Kaminade T, Eguchi M, Ishigami I, Mizuguchi H and Sakurai F: Oncolytic reovirus-mediated killing of mouse cancer-associated fibroblasts. Int J Pharm. 610:1212692021. View Article : Google Scholar : PubMed/NCBI | |
de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M and Alemany R: Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer. 7:192019. View Article : Google Scholar : PubMed/NCBI | |
Harryvan TJ, Golo M, Dam N, Schoonderwoerd MJA, Farshadi EA, Hornsveld M, Hoeben RC, Hawinkels LJAC and Kemp V: Gastrointestinal cancer-associated fibroblasts expressing Junctional Adhesion Molecule-A are amenable to infection by oncolytic reovirus. Cancer Gene Ther. 29:1918–1929. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X and Merchan JR: Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol Cancer Res. 15:1410–1420. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shahvali S, Rahiman N, Jaafari MR and Arabi L: Targeting fibroblast activation protein (FAP): Advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res. 13:2041–2056. 2023. View Article : Google Scholar : PubMed/NCBI | |
Al-Obaidi I, Sandhu C, Qureshi B and Seymour LW: The implications of oncolytic viruses targeting fibroblasts in enhancing the antitumoural immune response. Heliyon. 10:e392042024. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar | |
Long F, Zhong W, Zhao F, Xu Y, Hu X, Jia G, Huang L, Yi K, Wang N, Si H, et al: DAB2 (+) macrophages support FAP (+) fibroblasts in shaping tumor barrier and inducing poor clinical outcomes in liver cancer. Theranostics. 14:4822–4843. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yashaswini CN, Qin T, Bhattacharya D, Amor C, Lowe S, Lujambio A, Wang S and Friedman SL: Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J Hepatol. 81:207–217. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Zhai J, Hu D, Yang R, Wang G, Li Y and Liang G: 'Targeting Design' of nanoparticles in tumor therapy. Pharmaceutics. 14:19192022. View Article : Google Scholar | |
Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M and Alemany R: Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 18:1275–1283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Kong SS, Zhong LK, Wang CM, Liu YJ, Ding HY, Sun J, Zhang YW, Li FZ and Huang P: Asiatic acid enhances intratumor delivery and the antitumor effect of pegylated liposomal doxorubicin by reducing tumor-stroma collagen. Acta Pharmacol Sin. 40:539–545. 2019. View Article : Google Scholar : | |
Haseley A, Boone S, Wojton J, Yu L, Yoo JY, Yu J, Kurozumi K, Glorioso JC, Caligiuri MA and Kaur B: Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma. Cancer Res. 72:1353–1362. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maillard L, Ziol M, Tahlil O, Le Feuvre C, Feldman LJ, Branellec D, Bruneval P and Steg P: Pre-treatment with elastase improves the efficiency of percutaneous adenovirus-mediated gene transfer to the arterial media. Gene Ther. 5:1023–1030. 1998. View Article : Google Scholar | |
Kuriyama N, Kuriyama H, Julin CM, Lamborn KR and Israel MA: Protease pretreatment increases the efficacy of adenovirus-mediated gene therapy for the treatment of an experimental glioblastoma model. Cancer Res. 61:1805–1809. 2001.PubMed/NCBI | |
Kuriyama N, Kuriyama H, Julin CM, Lamborn K and Israel MA: Pretreatment with protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy. Hum Gene Ther. 11:2219–2230. 2000. View Article : Google Scholar : PubMed/NCBI | |
McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP, Bawendi MG, Boucher Y, Breakefield XO and Jain RK: Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 66:2509–2513. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharyya M, Jariyal H and Srivastava A: Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer. Carbohydr Polym. 317:1210812023. View Article : Google Scholar : PubMed/NCBI | |
Ganesh S, Gonzalez-Edick M, Gibbons D, Van Roey M and Jooss K: Intratumoral coadministration of hyaluronidase enzyme and oncolytic adenoviruses enhances virus potency in metastatic tumor models. Clin Cancer Res. 14:3933–3941. 2008. View Article : Google Scholar : PubMed/NCBI | |
Samuel CS, Hewitson TD, Unemori EN and Tang ML: Drugs of the future: the hormone relaxin. Cell Mol Life Sci. 64:1539–1557. 2007. View Article : Google Scholar : PubMed/NCBI | |
Perentes JY, McKee TD, Ley CD, Mathiew H, Dawson M, Padera TP, Munn LL, Jain RK and Boucher Y: In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat Methods. 6:143–145. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Lee YS, Kim H, Huang JH, Yoon AR and Yun CO: Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst. 98:1482–1493. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Lee HG, Dmitrieva N, Kim J, Kaur B and Friedman A: Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti tumor efficacy: A mathematical model. PLoS One. 9:e1024992014. View Article : Google Scholar : PubMed/NCBI | |
Mok W, Boucher Y and Jain RK: Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 67:10664–10668. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hong CS, Fellows W, Niranjan A, Alber S, Watkins S, Cohen JB, Glorioso JC and Grandi P: Ectopic matrix metalloproteinase-9 expression in human brain tumor cells enhances oncolytic HSV vector infection. Gene Ther. 17:1200–1205. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yumul R, Richter M, Lu ZZ, Saydaminova K, Wang H, Wang CH, Carter D and Lieber A: Epithelial junction opener improves oncolytic adenovirus therapy in mouse tumor models. Hum Gene Ther. 27:325–337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Binder C, Simon A, Binder L, Hagemann T, Schulz M, Emons G, Trümper L and Einspanier A: Elevated concentrations of serum relaxin are associated with metastatic disease in breast cancer patients. Breast Cancer Res Treat. 87:157–166. 2004. View Article : Google Scholar : PubMed/NCBI | |
Daginakatte GC and Gutmann DH: Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet. 16:1098–1112. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dmitrieva N, Yu L, Viapiano M, Cripe TP, Chiocca EA, Glorioso JC and Kaur B: Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res. 17:1362–1372. 2011. View Article : Google Scholar | |
Kanzaki A, Kasuya H, Yamamura K, Sahin TT, Nomura N, Shikano T, Shirota T, Tan G, Fukuda S, Misawa M, et al: Antitumor efficacy of oncolytic herpes simplex virus adsorbed onto antigen-specific lymphocytes. Cancer Gene Ther. 19:292–298. 2012. View Article : Google Scholar : PubMed/NCBI | |
Netti PA, Berk DA, Swartz MA, Grodzinsky AJ and Jain RK: Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–2503. 2000.PubMed/NCBI | |
Yokoda R, Nagalo BM, Vernon B, Oklu R, Albadawi H, DeLeon TT, Zhou Y, Egan JB, Duda DG and Borad MJ: Oncolytic virus delivery: From nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother. 6:39–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kwan A, Winder N and Muthana M: Oncolytic virotherapy treatment of breast cancer: Barriers and recent advances. Viruses. 13:11282021. View Article : Google Scholar : PubMed/NCBI | |
Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V and Seymour LW: Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8:341–348. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Guo C, Wang XY and Yang H: 'Double-punch' strategy for delivery of viral immunotherapy with prolonged tumor retention and enhanced transfection efficacy. J Control Release. 329:328–336. 2021. View Article : Google Scholar | |
Thambi T, Hong J, Yoon AR and Yun CO: Challenges and progress toward tumor-targeted therapy by systemic delivery of polymer-complexed oncolytic adenoviruses. Cancer Gene Ther. 29:1321–1331. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kim PH, Kim SW and Yun CO: Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials. 33:1838–1850. 2012. View Article : Google Scholar | |
Howard F and Muthana M: Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine (Lond). 15:93–110. 2020. View Article : Google Scholar | |
Almstätter I, Mykhaylyk O, Settles M, Altomonte J, Aichler M, Walch A, Rummeny EJ, Ebert O, Plank C and Braren R: Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics. 5:667–685. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L and Rodriguez-Padilla C: Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 8:12010. View Article : Google Scholar : PubMed/NCBI | |
Ran L, Tan X, Li Y, Zhang H, Ma R, Ji T, Dong W, Tong T, Liu Y, Chen D, et al: Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomaterials. 89:56–66. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hong Y, Kim YK, Kim GB, Nam GH, Kim SA, Park Y, Yang Y and Kim IS: Degradation of tumour stromal hyaluronan by small extracellular vesicle-PH20 stimulates CD103(+) dendritic cells and in combination with PD-L1 blockade boosts anti-tumour immunity. J Extracell Vesicles. 8:16708932019. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H and Xu Q: Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater. 44:283–318. 2024.PubMed/NCBI | |
Jung BK, Ko HY, Kang H, Hong J, Ahn HM, Na Y, Kim H, Kim JS and Yun CO: Relaxin-expressing oncolytic adenovirus induces remodeling of physical and immunological aspects of cold tumor to potentiate PD-1 blockade. J Immunother Cancer. 8:e0007632020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li Y, Xu C, Dong J and Wei J: An oncolytic vaccinia virus encoding hyaluronidase reshapes the extracellular matrix to enhance cancer chemotherapy and immunotherapy. J Immunother Cancer. 12:e0084312024. View Article : Google Scholar : PubMed/NCBI | |
Farrera-Sal M, Moreno R, Mato-Berciano A, Maliandi MV, Bazan-Peregrino M and Alemany R: Hyaluronidase expression within tumors increases virotherapy efficacy and T cell accumulation. Mol Ther Oncolytics. 22:27–35. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schäfer S, Weibel S, Donat U, Zhang Q, Aguilar RJ, Chen NG and Szalay AA: Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer. 12:3662012. View Article : Google Scholar : PubMed/NCBI | |
Swanner J, Shim JS, Rivera-Caraballo KA, Vázquez-Arreguín K, Hong B, Bueso-Perez AJ, Lee TJ, Banasavadi-Siddegowda YK, Kaur B and Yoo JY: esRAGE-expressing oHSV enhances anti-tumor efficacy by inhibition of endothelial cell activation. Mol Ther Oncolytics. 28:171–181. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jeong SN and Yoo SY: Novel oncolytic virus armed with cancer suicide gene and normal vasculogenic gene for improved anti-tumor activity. Cancers (Basel). 12:10702020. View Article : Google Scholar : PubMed/NCBI | |
Al-Zaher AA, Moreno R, Fajardo CA, Arias-Badia M, Farrera M, de Sostoa J, Rojas LA and Alemany R: Evidence of anti-tumoral efficacy in an immune competent setting with an iRGD-Modified hyaluronidase-armed oncolytic adenovirus. Mol Ther Oncolytics. 8:62–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
Puig-Saus C, Rojas LA, Laborda E, Figueras A, Alba R, Fillat C and Alemany R: iRGD tumor-penetrating peptide-modified oncolytic adenovirus shows enhanced tumor transduction, intratumoral dissemination and antitumor efficacy. Gene Ther. 21:767–774. 2014. View Article : Google Scholar : PubMed/NCBI | |
Everts A, Bergeman M, McFadden G and Kemp V: Simultaneous tumor and stroma targeting by oncolytic viruses. Biomedicines. 8:4742020. View Article : Google Scholar : PubMed/NCBI | |
Lavilla-Alonso S, Bauer MM, Abo-Ramadan U, Ristimäki A, Halavaara J, Desmond RA, Wang D, Escutenaire S, Ahtiainen L, Saksela K, et al: Macrophage metalloelastase (MME) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Ther. 19:126–134. 2012. View Article : Google Scholar | |
Hu J, Chen C, Lu R, Zhang Y, Wang Y, Hu Q, Li W, Wang S, Jing O, Yi H, et al: β-adrenergic receptor inhibitor and oncolytic herpesvirus combination therapy shows enhanced antitumoral and antiangiogenic effects on colorectal cancer. Front Pharmacol. 12:7352782021. View Article : Google Scholar | |
Thaci B, Ulasov IV, Ahmed AU, Ferguson SD, Han Y and Lesniak MS: Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation. Gene Ther. 20:318–327. 2013. View Article : Google Scholar | |
Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkelstein D, Harsh GR IV, Louis DN, Bartus RT, Hochberg FH and Chiocca EA: Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med. 5:881–887. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ikeda K, Wakimoto H, Ichikawa T, Jhung S, Hochberg FH, Louis DN and Chiocca EA: Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol. 74:4765–4775. 2000. View Article : Google Scholar : PubMed/NCBI | |
Carlisle R, Choi J, Bazan-Peregrino M, Laga R, Subr V, Kostka L, Ulbrich K, Coussios CC and Seymour LW: Enhanced tumor uptake and penetration of virotherapy using polymer stealthing and focused ultrasound. J Natl Cancer Inst. 105:1701–1710. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bazan-Peregrino M, Arvanitis CD, Rifai B, Seymour LW and Coussios CC: Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. J Control Release. 157:235–242. 2012. View Article : Google Scholar | |
Sun S, Liu Y, He C, Hu W, Liu W, Huang X, Wu J, Xie F, Chen C, Wang J, et al: Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer. Cancer Lett. 502:9–24. 2021. View Article : Google Scholar : PubMed/NCBI | |
Otani Y, Yoo JY, Shimizu T, Kurozumi K, Date I and Kaur B: Implications of immune cells in oncolytic herpes simplex virotherapy for glioma. Brain Tumor Pathol. 39:57–64. 2022. View Article : Google Scholar : PubMed/NCBI | |
Donat U, Weibel S, Hess M, Stritzker J, Härtl B, Sturm JB, Chen NG, Gentschev I and Szalay AA: Preferential colonization of metastases by oncolytic vaccinia virus strain GLV-1h68 in a human PC-3 prostate cancer model in nude mice. PLoS One. 7:e459422012. View Article : Google Scholar : PubMed/NCBI | |
Lynch C, Pitroda SP and Weichselbaum RR: Radiotherapy, immunity, and immune checkpoint inhibitors. Lancet Oncol. 25:e352–e362. 2024. View Article : Google Scholar : PubMed/NCBI | |
Munir AZ, Gutierrez A, Qin J, Lichtman AH and Moslehi JJ: Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart. Nat Rev Cancer. 24:540–553. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kwan A, Winder N, Atkinson E, Al-Janabi H, Allen RJ, Hughes R, Moamin M, Louie R, Evans D, Hutchinson M, et al: Macrophages Mediate the Antitumor Effects of the Oncolytic Virus HSV1716 in Mammary Tumors. Mol Cancer Ther. 20:589–601. 2021. View Article : Google Scholar | |
Bommareddy PK, Aspromonte S, Zloza A, Rabkin SD and Kaufman HL: MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med. 10:eaau04172018. View Article : Google Scholar : PubMed/NCBI | |
Mostafa AA, Meyers DE, Thirukkumaran CM, Liu PJ, Gratton K, Spurrell J, Shi Q, Thakur S and Morris DG: Oncolytic reovirus and immune checkpoint inhibition as a novel immunotherapeutic strategy for breast cancer. Cancers (Basel). 10:2052018. View Article : Google Scholar : PubMed/NCBI | |
Burke S, Shergold A, Elder MJ, Whitworth J, Cheng X, Jin H, Wilkinson RW, Harper J and Carroll DK: Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol Immunother. 69:1015–1027. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chon HJ, Lee WS, Yang H, Kong SJ, Lee NK, Moon ES, Choi J, Han EC, Kim JH, Ahn JB, et al: Tumor microenvironment remodeling by intratumoral oncolytic vaccinia virus enhances the efficacy of immune-checkpoint blockade. Clin Cancer Res. 25:1612–1623. 2019. View Article : Google Scholar | |
Lovatt C and Parker AL: Oncolytic viruses and immune checkpoint inhibitors: The 'Hot' new power couple. Cancers (Basel). 15:41782023. View Article : Google Scholar | |
Bernstock JD, Vicario N, Rong L, Valdes PA, Choi BD, Chen JA, DiToro D, Osorio DS, Kachurak K, Gessler F, et al: A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition. Oncoimmunology. 8:e16789212019. View Article : Google Scholar : PubMed/NCBI | |
Annels NE, Mansfield D, Arif M, Ballesteros-Merino C, Simpson GR, Denyer M, Sandhu SS, Melcher AA, Harrington KJ, Davies B, et al: Phase I Trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin Cancer Res. 25:5818–5831. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Huang J, Tang J, Hu S, Luo S, Luo Z, Zhou F, Tan S, Ying J, Chang Q, et al: Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: A multicenter, phase I/II clinical trial. J Immunother Cancer. 9:e0022242021. View Article : Google Scholar : PubMed/NCBI | |
Saha D, Martuza RL and Rabkin SD: Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 32:253–267.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Wang B, Chen Q, Fu X, Jiang C, Lin Z, Zhuang Q, Zeng Y, Liu X and Zhang D: Systemic delivery of glycosylated-PEG-masked oncolytic virus enhances targeting of antitumor immuno-virotherapy and modulates T and NK cell infiltration. Theranostics. 13:5452–5468. 2023. View Article : Google Scholar : PubMed/NCBI | |
Patel MR, Dash A, Jacobson BA, Ji Y, Baumann D, Ismail K and Kratzke RA: JAK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther. 26:411–418. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TT, Ramsay L, Ahanfeshar-Adams M, Lajoie M, Schadendorf D, Alain T and Watson IR: Mutations in the IFNγ-JAK-STAT pathway causing resistance to immune checkpoint inhibitors in melanoma increase sensitivity to oncolytic virus treatment. Clin Cancer Res. 27:3432–3442. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lecoultre M, Walker PR and El Helali A: Oncolytic virus and tumor-associated macrophage interactions in cancer immunotherapy. Clin Exp Med. 24:2022024. View Article : Google Scholar : PubMed/NCBI | |
Fujikura Y, Kudlackova P, Vokurka M, Krijt J and Melkova Z: The effect of nitric oxide on vaccinia virus-encoded ribonucleotide reductase. Nitric Oxide. 20:114–121. 2009. View Article : Google Scholar | |
Pittet MJ, Michielin O and Migliorini D: Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 19:402–421. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meisen WH, Wohleb ES, Jaime-Ramirez AC, Bolyard C, Yoo JY, Russell L, Hardcastle J, Dubin S, Muili K, Yu J, et al: The impact of macrophage- and microglia-secreted TNFα on Oncolytic HSV-1 therapy in the glioblastoma tumor microenvironment. Clin Cancer Res. 21:3274–3285. 2015. View Article : Google Scholar : PubMed/NCBI | |
van den Bossche WBL, Kleijn A, Teunissen CE, Voerman JSA, Teodosio C, Noske DP, van Dongen JJM, Dirven CMF and Lamfers MLM: Oncolytic virotherapy in glioblastoma patients induces a tumor macrophage phenotypic shift leading to an altered glioblastoma microenvironment. Neuro Oncol. 20:1494–1504. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kober C, Rohn S, Weibel S, Geissinger U, Chen NG and Szalay AA: Microglia and astrocytes attenuate the replication of the oncolytic vaccinia virus LIVP 1.1.1 in murine GL261 gliomas by acting as vaccinia virus traps. J Transl Med. 13:2162015. View Article : Google Scholar : PubMed/NCBI | |
Liu YP, Suksanpaisan L, Steele MB, Russell SJ and Peng KW: Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Sci Rep. 3:23752013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q and Liu F: Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis. 11:4852020. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Liu X, Fan G, Na J, Liu Q, Lin F, Zhang Z and Zhong L: Improving the therapeutic efficacy of oncolytic viruses for cancer: Targeting macrophages. J Transl Med. 21:8422023. View Article : Google Scholar : PubMed/NCBI | |
Blitz SE, Kappel AD, Gessler FA, Klinger NV, Arnaout O, Lu Y, Peruzzi PP, Smith TR, Chiocca EA, Friedman GK and Bernstock JD: Tumor-associated macrophages/microglia in glioblastoma oncolytic virotherapy: A double-edged sword. Int J Mol Sci. 23:18082022. View Article : Google Scholar : PubMed/NCBI | |
Ferguson MS, Chard Dunmall LS, Gangeswaran R, Marelli G, Tysome JR, Burns E, Whitehead MA, Aksoy E, Alusi G, Hiley C, et al: Transient inhibition of PI3Kδ enhances the therapeutic effect of intravenous delivery of oncolytic vaccinia virus. Mol Ther. 28:1263–1275. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee TJ, Nair M, Banasavadi-Siddegowda Y, Liu J, Nallanagulagari T, Jaime-Ramirez AC, Guo JY, Quadri H, Zhang J, Bockhorst KH, et al: Enhancing therapeutic efficacy of oncolytic herpes simplex virus-1 with integrin β1 blocking antibody OS2966. Mol Cancer Ther. 18:1127–1136. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thorne AH, Meisen WH, Russell L, Yoo JY, Bolyard CM, Lathia JD, Rich J, Puduvalli VK, Mao H, Yu J, et al: Role of cysteine-rich 61 protein (CCN1) in macrophage-mediated oncolytic herpes simplex virus clearance. Mol Ther. 22:1678–1687. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang KL, Li RP, Zhang BP, Gao ST, Li B, Huang CJ, Cao R, Cheng JY, Xie XD, Yu ZH and Feng XY: Efficacy of a new oncolytic adenovirus armed with IL-13 against oral carcinoma models. Onco Targets Ther. 12:6515–6523. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hedrick CC and Malanchi I: Neutrophils in cancer: Heterogeneous and multifaceted. Nat Rev Immunol. 22:173–187. 2022. View Article : Google Scholar | |
Ng MSF, Kwok I, Tan L, Shi C, Cerezo-Wallis D, Tan Y, Leong K, Calvo GF, Yang K, Zhang Y, et al: Deterministic reprogramming of neutrophils within tumors. Science. 383:eadf64932024. View Article : Google Scholar : PubMed/NCBI | |
Andzinski L, Kasnitz N, Stahnke S, Wu CF, Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S and Jablonska J: Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer. 138:1982–1993. 2016. View Article : Google Scholar | |
Naumenko V, Turk M, Jenne CN and Kim SJ: Neutrophils in viral infection. Cell Tissue Res. 371:505–516. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taifour T, Attalla SS, Zuo D, Gu Y, Sanguin-Gendreau V, Proud H, Solymoss E, Bui T, Kuasne H, Papavasiliou V, et al: The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer. Immunity. 56:2755–2772.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
He XY, Gao Y, Ng D, Michalopoulou E, George S, Adrover JM, Sun L, Albrengues J, Daßler-Plenker J, Han X, et al: Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell. 42:474–486.e12. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Zhang C, Sun J and Yuan M: Neutrophils in oncolytic virus immunotherapy. Front Immunol. 15:14904142024. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Tian R, Yu L, Bian S, Chen Y, Yin B, Luan Y, Chen S, Fan Z, Yan R, et al: Overcoming therapeutic resistance in oncolytic herpes virotherapy by targeting IGF2BP3-induced NETosis in malignant glioma. Nat Commun. 15:1312024. View Article : Google Scholar : PubMed/NCBI | |
Price PJ, Luckow B, Torres-Domínguez LE, Brandmüller C, Zorn J, Kirschning CJ, Sutter G and Lehmann MH: Chemokine (C-C Motif) receptor 1 is required for efficient recruitment of neutrophils during respiratory infection with modified vaccinia virus Ankara. J Virol. 88:10840–10850. 2014. View Article : Google Scholar : PubMed/NCBI | |
West BC, Escheté ML, Cox ME and King JW: Neutrophil uptake of vaccinia virus in vitro. J Infect Dis. 156:597–606. 1987. View Article : Google Scholar : PubMed/NCBI | |
Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, Stojdl DF, Daneshmand M, Speth K, Kirn D, et al: Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 15:1686–1693. 2007. View Article : Google Scholar : PubMed/NCBI | |
Taipale K, Liikanen I, Koski A, Heiskanen R, Kanerva A, Hemminki O, Oksanen M, Grönberg-Vähä-Koskela S, Hemminki K, Joensuu T and Hemminki A: Predictive and prognostic clinical variables in cancer patients treated with adenoviral oncolytic immunotherapy. Mol Ther. 24:1323–1332. 2016. View Article : Google Scholar : PubMed/NCBI | |
He CB and Lin XJ: Inflammation scores predict the survival of patients with hepatocellular carcinoma who were treated with transarterial chemoembolization and recombinant human type-5 adenovirus H101. PLoS One. 12:e01747692017. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Xu W, Ding X, Guo H, Wang J, Zhao G, Zhang C, Zhang Z, Wang Z, Wang P, et al: Transient inhibition of neutrophil functions enhances the antitumor effect of intravenously delivered oncolytic vaccinia virus. Cancer Sci. 115:1129–1140. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Tao L, Rivera A, Xu H and Zhang X: Virotherapy induces massive infiltration of neutrophils in a subset of tumors defined by a strong endogenous interferon response activity. Cancer Gene Ther. 18:785–794. 2011. View Article : Google Scholar : PubMed/NCBI | |
Minott JA, van Vloten JP, Chan L, Mehrani Y, Bridle BW and Karimi K: The role of neutrophils in oncolytic orf virus-mediated cancer immunotherapy. Cells. 11:28582018. View Article : Google Scholar | |
Liu Y, Xu C, Xiao X, Chen Y, Wang X, Liu W, Tan Y, Zhu W, Hu J, Liang J, et al: Overcoming resistance to oncolytic virus M1 by targeting PI3K-γ in tumor-associated myeloid cells. Mol Ther. 30:3677–3693. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bulstrode H, Girdler GC, Gracia T, Aivazidis A, Moutsopoulos I, Young AMH, Hancock J, He X, Ridley K, Xu Z, et al: Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron. 110:3936–3951.e10. 2022. View Article : Google Scholar : PubMed/NCBI | |
Noh MH, Kang JM, Miller AA, Nguyen G, Huang M, Shim JS, Bueso-Perez AJ, Murphy SA, Rivera-Caraballo KA, Otani Y, et al: Targeting IGF2 to reprogram the tumor microenvironment for enhanced viro-immunotherapy. Neuro Oncol. 26:1602–1616. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bald T, Krummel MF, Smyth MJ and Barry KC: The NK cell-cancer cycle: Advances and new challenges in NK cell-based immunotherapies. Nat Immunol. 21:835–847. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Breckenridge CA, Yu J, Price R, Wojton J, Pradarelli J, Mao H, Wei M, Wang Y, He S, Hardcastle J, et al: NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med. 18:1827–1834. 2012. View Article : Google Scholar : PubMed/NCBI | |
Reale A, Gatta A, Shaik AKB, Shallak M, Chiaravalli AM, Cerati M, Zaccaria M, La Rosa S, Calistri A, Accolla RS and Forlani G: An oncolytic HSV-1 vector induces a therapeutic adaptive immune response against glioblastoma. J Transl Med. 22:8622024. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Yoo JY, Lee TJ, Liu J, Yu J, Caligiuri MA, Kaur B and Friedman A: Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc Natl Acad Sci USA. 115:4927–4932. 2018. View Article : Google Scholar : PubMed/NCBI | |
Varudkar N, Oyer JL, Copik A and Parks GD: Oncolytic parainfluenza virus combines with NK cells to mediate killing of infected and non-infected lung cancer cells within 3D spheroids: role of type I and type III interferon signaling. J Immunother Cancer. 9:e0023732021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Jin J, Li Y, Zhou Q, Yao R, Wu Z, Hu H, Fang Z, Dong S, Cai Q, et al: NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors. Transl Res. 240:64–86. 2022. View Article : Google Scholar | |
Yan Y, Li S, Jia T, Du X, Xu Y, Zhao Y, Li L, Liang K, Liang W, Sun H and Li R: Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity. Tumour Biol. 36:4535–4543. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Breckenridge CA, Yu J, Price R, Wei M, Wang Y, Nowicki MO, Ha YP, Bergin S, Hwang C, Fernandez SA, et al: The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol. 86:4566–4577. 2012. View Article : Google Scholar : PubMed/NCBI | |
Altomonte J, Wu L, Meseck M, Chen L, Ebert O, Garcia-Sastre A, Fallon J, Mandeli J and Woo SL: Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther. 16:266–278. 2009. View Article : Google Scholar | |
Han J, Chen X, Chu J, Xu B, Meisen WH, Chen L, Zhang L, Zhang J, He X, Wang QE, et al: TGFβ treatment enhances glioblastoma virotherapy by inhibiting the innate immune response. Cancer Res. 75:5273–5282. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kurmasheva N, Said A, Wong B, Kinderman P, Han X, Rahimic AHF, Kress A, Carter-Timofte ME, Holm E, van der Horst D, et al: Octyl itaconate enhances VSVdelta51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways. Nat Commun. 15:40962024. View Article : Google Scholar | |
Taverner WK, Jacobus EJ, Christianson J, Champion B, Paton AW, Paton JC, Su W, Cawood R, Seymour LW and Lei-Rossmann J: Calcium influx caused by ER stress inducers enhances oncolytic adenovirus enadenotucirev replication and killing through PKCα activation. Mol Ther Oncolytics. 15:117–130. 2019. View Article : Google Scholar : | |
Bhatt DK, Janzen T, Daemen T and Weissing FJ: Modelling the spatial dynamics of oncolytic virotherapy in the presence of virus-resistant tumour cells. PLoS Comput Biol. 18:e10100762022. View Article : Google Scholar : PubMed/NCBI | |
Kloker LD, Yurttas C and Lauer UM: Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virother. 7:79–93. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brachtlova T, Li J, van der Meulen-Muileman IH, Sluiter F, von Meijenfeldt W, Witte I, Massaar S, van den Oever R, de Vrij J and van Beusechem VW: Quantitative virus-associated RNA detection to monitor oncolytic adenovirus replication. Int J Mol Sci. 25:65512024. View Article : Google Scholar : PubMed/NCBI | |
Karnik I, Her Z, Neo SH, Liu WN and Chen Q: Emerging preclinical applications of humanized mouse models in the discovery and validation of novel immunotherapeutics and their mechanisms of action for improved cancer treatment. Pharmaceutics. 15:16002023. View Article : Google Scholar : PubMed/NCBI | |
Ambegoda P, Wei HC and Jang SR: The role of immune cells in resistance to oncolytic viral therapy. Math Biosci Eng. 21:5900–5946. 2024. View Article : Google Scholar : PubMed/NCBI | |
West J, Robertson-Tessi M and Anderson ARA: Agent-based methods facilitate integrative science in cancer. Trends Cell Biol. 33:300–311. 2023. View Article : Google Scholar | |
Sachak-Patwa R, Lafferty EI, Schmit CJ, Thompson RN and Byrne HM: A target-cell limited model can reproduce influenza infection dynamics in hosts with differing immune responses. J Theor Biol. 567:1114912023. View Article : Google Scholar : PubMed/NCBI |