
New advances of nanozymes for the diagnosis and treatment of digestive system diseases (Review)
- Authors:
- Daihan Xie
- Lixin Xie
- Chao Fang
- Zhefei Du
- Zhenyu Cao
- Chunxia Su
- Yu Huo
-
Affiliations: Department of Comprehensive Oncology Center, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, P.R. China, Department of Comprehensive Oncology Center, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, P.R. China, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, P.R. China - Published online on: August 28, 2025 https://doi.org/10.3892/ijmm.2025.5617
- Article Number: 176
-
Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Wang Y, Huang Y, Chase RC, Li T, Ramai D, Li S, Huang X, Antwi SO, Keaveny AP and Pang M: Global burden of digestive diseases: A systematic analysis of the global burden of diseases study, 1990 to 2019. Gastroenterology. 165:773–783.e15. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee M and Chang EB: Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues. Gastroenterology. 160:524–537. 2021. View Article : Google Scholar | |
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM and Sahin-Tóth M: Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology. 156:1951–1968.e1. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou WC, Zhang QB and Qiao L: Pathogenesis of liver cirrhosis. World J Gastroenterol. 20:7312–7324. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gordon-Weeks AN, Lim SY, Yuzhalin AE, Jones K and Muschel R: Macrophage migration inhibitory factor: A key cytokine and therapeutic target in colon cancer. Cytokine Growth Factor Rev. 26:451–461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ku G, Tan IB, Yau T, Boku N, Laohavinij S, Cheng AL, Kang YK and de Lima Lopes G Jr: Management of colon cancer: Resource-stratified guidelines from the Asian Oncology Summit 2012. Lancet Oncol. 13:e470–e481. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lauriola M, Tomai M, Palma R, La Spina G, Foglia A, Panetta C, Raniolo M and Pontone S: Intolerance of uncertainty and anxiety-related dispositions predict pain during upper endoscopy. Front Psychol. 10:11122019. View Article : Google Scholar : PubMed/NCBI | |
Eisenberg E, Konopniki M, Veitsman E, Kramskay R, Gaitini D and Baruch Y: Prevalence and characteristics of pain induced by percutaneous liver biopsy. Anesth Analg. 96:1392–1396. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zedan AH, Hansen TF, Fex Svenningsen A and Vilholm OJ: Oxaliplatin-induced neuropathy in colorectal cancer: Many questions with few answers. Clin Colorectal Cancer. 13:73–80. 2014. | |
Click B and Regueiro M: A practical guide to the safety and monitoring of new IBD therapies. Inflamm Bowel Dis. 25:831–842. 2019. View Article : Google Scholar : | |
Cosnes J, Bourrier A, Laharie D, Nahon S, Bouhnik Y, Carbonnel F, Allez M, Dupas JL, Reimund JM, Savoye G, et al: Early administration of azathioprine vs conventional management of Crohn's Disease: A randomized controlled trial. Gastroenterology. 145:758–765.e52; quiz e14-e55. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M and Yan X: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol. 7:459–464. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gazouli M, Bouziotis P, Lyberopoulou A, Ikonomopoulos J, Papalois A, Anagnou NP and Efstathopoulos EP: Quantum dots-bevacizumab complexes for in vivo imaging of tumors. In Vivo. 28:1091–1095. 2014.PubMed/NCBI | |
Zhong Y, Ma Z, Wang F, Wang X, Yang Y, Liu Y, Zhao X, Li J, Du H, Zhang M, et al: In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat Biotechnol. 37:1322–1331. 2019. View Article : Google Scholar : PubMed/NCBI | |
Idris AO, Mabuba N and Arotiba OA: An exfoliated graphite-based electrochemical immunosensor on a dendrimer/carbon nanodot platform for the detection of carcinoembryonic antigen cancer biomarker. Biosensors (Basel). 9:392019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Huang Z, Li Z, Li C, Liu R and Lv Y: Mass spectrometric multiplex detection of MicroRNA and protein biomarkers for liver cancer. Anal Chem. 94:17248–17254. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Yu Z, Sun D, Zou Y, Liu Y and Huang L: Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Mol Cancer. 20:102021. View Article : Google Scholar : PubMed/NCBI | |
Song W, Tiruthani K, Wang Y, Shen L, Hu M, Dorosheva O, Qiu K, Kinghorn KA, Liu R and Huang L: Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv Mater. 30:e18050072018. View Article : Google Scholar : PubMed/NCBI | |
Manea F, Houillon FB, Pasquato L and Scrimin P: Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew Chem Int Ed Engl. 43:6165–6169. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wei H and Wang E: Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem Soc Rev. 42:6060–6093. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB and Shiddiky MJA: Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst. 145:4398–4420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Shao N, Zhang AC, Chen CF, Wang D, Luo LP and Xiao ZY: Smart biomimetic nanozymes for precise molecular imaging: Application and challenges. Pharmaceuticals (Basel). 16:2492023. View Article : Google Scholar : PubMed/NCBI | |
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN and Parra-Saldívar R: Enzyme (Single and Multiple) and nanozyme biosensors: Recent developments and their novel applications in the water-food-health nexus. Biosensors (Basel). 11:4102021. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L and Wei H: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 48:1004–1076. 2019. View Article : Google Scholar | |
Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X and Cai W: Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 48:3683–3704. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Ren J and Qu X: Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 119:4357–4412. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Ren J and Qu X: Nano-gold as artificial enzymes: Hidden talents. Adv Mater. 26:4200–4217. 2014. View Article : Google Scholar : PubMed/NCBI | |
Comotti M, Della Pina C, Matarrese R and Rossi M: The catalytic activity of 'naked' gold particles. Angew Chem Int Ed Engl. 43:5812–5815. 2004. View Article : Google Scholar : PubMed/NCBI | |
Comotti M, Della Pina C, Falletta E and Rossi M: Aerobic oxidation of glucose with gold catalyst: Hydrogen peroxide as intermediate and reagent. Adv Synth Catal. 348:313–316. 2006. View Article : Google Scholar | |
Sengupta P, Pramanik K, Datta P and Sarkar P: Chemically modified carbon nitride-chitin-acetic acid hybrid as a metal-free bifunctional nanozyme cascade of glucose oxidase-peroxidase for 'click off' colorimetric detection of peroxide and glucose. Biosens Bioelectron. 154:1120722020. View Article : Google Scholar | |
Zhang K, Zhuo Z, Fan G, Wang Z, Chen S, Xu L, Wen Y and Wang P: Nano-ZnS decorated hierarchically porous carbon electrocatalyst with multiple enzyme-like activities as a nanozyme sensing platform for simultaneous detection of dopamine, uric acid, guanine, and adenine. Nanoscale. 13:20078–20090. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu R, Sun M, Liu X, Qin F, Zhang X, Qian Z, Huang J, Li Y, Tan T, Chen W and Chen Z: Oxidase-like ZnCoFe three-atom nanozyme as a colorimetric platform for ascorbic acid sensing. Anal Chem. 94:14308–14316. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ragg R, Natalio F, Tahir MN, Janssen H, Kashyap A, Strand D, Strand S and Tremel W: Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano. 8:5182–5189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mu Q, Sun Y, Guo A, Xu X, Qin B and Cai A: A bifunctionalized NiCo2O4-Au composite: Intrinsic peroxidase and oxidase catalytic activities for killing bacteria and disinfecting wound. J Hazard Mater. 402:1239392021. View Article : Google Scholar | |
Lei L and Wang K: Synergistic combination of an intelligent nanozyme and radiotherapy for treating renal cancer. Int J Nanomedicine. 19:699–707. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Xing S, Lei Y, Chen Q, Zou Z, Quan K, Qing Z, Liu J and Yang R: A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew Chem Int Ed Engl. 60:23534–23539. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S and Yan X: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2:577–583. 2007. View Article : Google Scholar | |
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M and Wang Q: Detection of glucose based on noble metal nanozymes: Mechanism, activity regulation, and enantioselective recognition. Small. 19:e22059242023. View Article : Google Scholar | |
Li P, Feng Y, Cheng D and Wei J: Self-template synthesis of mesoporous vanadium oxide nanospheres with intrinsic peroxidase-like activity and high antibacterial performance. J Colloid Interface Sci. 625:435–445. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang QY, Wan CQ, Wang YX, Shen XF and Pang YH: Bismuth-based metal-organic framework peroxidase-mimic nanozyme: Preparation and mechanism for colorimetric-converted ultra-trace electrochemical sensing of chromium ion. J Hazard Mater. 451:1311482023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H and Zhang M: Peroxidase-like activity of smart nanomaterials and their advanced application in colorimetric glucose biosensors. Small. 15:e19001332019. View Article : Google Scholar : PubMed/NCBI | |
Wan K, Jiang B, Tan T, Wang H and Liang M: Surface-mediated production of complexed •oh radicals and Fe•O species as a mechanism for iron oxide peroxidase-like nanozymes. Small. 18:e22043722022. View Article : Google Scholar | |
Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S and Wei H: ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci. 9:2927–2933. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tong L, Wu L, Zai Y, Zhang Y, Su E and Gu N: Paper-based colorimetric glucose sensor using Prussian blue nanoparticles as mimic peroxidase. Biosens Bioelectron. 219:1147872023. View Article : Google Scholar | |
Wu F, Du Y, Yang J, Shao B, Mi Z, Yao Y, Cui Y, He F, Zhang Y and Yang P: Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano. 16:3647–3663. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo JJ, Wang Y and Zhao M: Target-directed functionalized ferrous phosphate-carbon dots fluorescent nanostructures as peroxidase mimetics for cancer cell detection and ROS-mediated therapy. Sens Actuat B-Chem. 297:1267392019. View Article : Google Scholar | |
Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D'Silva P and Mugesh G: An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun. 5:53012014. View Article : Google Scholar : PubMed/NCBI | |
Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC and Touyz RM: Oxidative stress and hypertension. Circ Res. 128:993–1020. 2021. View Article : Google Scholar : PubMed/NCBI | |
Eftekharpour E and Fernyhough P: Oxidative stress and mitochondrial dysfunction associated with peripheral neuropathy in type 1 diabetes. Antioxid Redox Signal. 37:578–596. 2022. View Article : Google Scholar | |
Zhao H, Zhang R, Yan X and Fan K: Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J Mater Chem B. 9:6939–6957. 2021. View Article : Google Scholar : PubMed/NCBI | |
Muzykantov VR: Targeting of superoxide dismutase and catalase to vascular endothelium. J Control Release. 71:1–21. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zelko IN, Mariani TJ and Folz RJ: Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 33:337–349. 2002. View Article : Google Scholar : PubMed/NCBI | |
Miller AF: Superoxide dismutases: Ancient enzymes and new insights. FEBS Lett. 586:585–595. 2012. View Article : Google Scholar | |
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K and Valko M: Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen BH and Stephen Inbaraj B: Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol. 38:1003–1024. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Patil S, Seal S and McGinnis JF: Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 1:142–150. 2006. View Article : Google Scholar | |
Celardo I, Pedersen JZ, Traversa E and Ghibelli L: Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 3:1411–1420. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu C and Qu X: Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6:e902014. View Article : Google Scholar | |
Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK, Luh TY, Choi DW and Lin TS: Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA. 94:9434–9439. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ and Dugan LL: A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med. 37:1191–1202. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ali SS, Hardt JI and Dugan LL: SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: A structure-activity study. Nanomedicine. 4:283–294. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xue B, Ge M, Fan K, Huang X, Yan X, Jiang W, Jiang B and Yang Z: Mitochondria-targeted nanozymes eliminate oxidative damage in retinal neovascularization disease. J Control Release. 350:271–283. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song C, Sheng L and Zhang X: Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl Microbiol Biotechnol. 96:123–132. 2012. View Article : Google Scholar : PubMed/NCBI | |
Korschelt K, Ragg R, Metzger CS, Kluenker M, Oster M, Barton B, Panthöfer M, Strand D, Kolb U, Mondeshki M, et al: Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale. 9:3952–3960. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N and Miyamoto Y: Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res. 41:615–626. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhao Y, Huang H, Zhang C, Liu H, Wang Z, Yi M, Xie N, Shen Y, Ren X, et al: A Nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv Healthc Mater. 11:e22015242022. View Article : Google Scholar : PubMed/NCBI | |
Lin A, Sun Z, Xu X, Zhao S, Li J, Sun H, Wang Q, Jiang Q, Wei H and Shi D: Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 22:508–516. 2022. View Article : Google Scholar | |
Cai G, Li R, Chai X, Cai X, Zheng K, Wang Y, Fan K, Guo Z, Guo J and Jiang W: Catalase-templated nanozyme-loaded microneedles integrated with polymyxin B for immunoregulation and antibacterial activity in diabetic wounds. J Colloid Interface Sci. 667:529–542. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li Y, Yang W, Zhou L and Wei S: Nanozyme with robust catalase activity by multiple mechanisms and its application for hypoxic tumor treatment. Adv Healthc Mater. 10:e21006012021. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Wu L, Yao H and Zhao L: Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small. 18:e22034002022. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Tang Y, Wang H, Huang Y, Xu F, Yang Y, Huang Y, Rong W and Lin Y: ZIF-90 with biomimetic Zn-N coordination structures as an effective nanozyme to mimic natural hydrolase. Nanoscale. 14:7985–7990. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Zhang Z, Xiang Y, Cao M and Yu D: Amino acid-mediated synthesis of the ZIF-8 nanozyme that reproduces both the zinc-coordinated active center and hydrophobic pocket of natural carbonic anhydrase. Langmuir. 38:1621–1630. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Zhang T, Jie J, Hou Y, Hu Z, Jiao Z and Su H: TiO2 as a nanozyme mimicking photolyase to repair DNA damage. J Phys Chem Lett. 13:10929–10935. 2022. View Article : Google Scholar : PubMed/NCBI | |
O'Hara AM and Shanahan F: The gut flora as a forgotten organ. EMBO Rep. 7:688–693. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S and Wang B: Microrobots for targeted delivery and therapy in digestive system. ACS Nano. 17:27–50. 2023. View Article : Google Scholar | |
Janowitz HD: Digestive system. Annu Rev Physiol. 23:153–182. 1961. View Article : Google Scholar : PubMed/NCBI | |
Feng K, Wang G, Wang S, Ma J, Wu H, Ma M and Zhang Y: Breaking the pH limitation of nanozymes: Mechanisms, methods, and applications. Adv Mater. 36:e24016192024. View Article : Google Scholar : PubMed/NCBI | |
Hua S, Dong X, Peng Q, Zhang K, Zhang X and Yang J: Single-atom nanozymes shines diagnostics of gastrointestinal diseases. J Nanobiotechnology. 22:2862024. View Article : Google Scholar : PubMed/NCBI | |
Kelly RJ: Emerging multimodality approaches to treat localized esophageal cancer. J Natl Compr Canc Netw. 17:1009–1014. 2019. View Article : Google Scholar : PubMed/NCBI | |
Barker HE, Paget JT, Khan AA and Harrington KJ: The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. 15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Gong L, Zhu S, Yong Y, Gu Z and Zhao Y: Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv Mater. 31:e18022442019. View Article : Google Scholar | |
Petroni G, Cantley LC, Santambrogio L, Formenti SC and Galluzzi L: Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol. 19:114–131. 2022. View Article : Google Scholar : | |
Worrell SG, Goodman KA, Altorki NK, Ashman JB, Crabtree TD, Dorth J, Firestone S, Harpole DH, Hofstetter WL, Hong TS, et al: The society of thoracic surgeons/american society for radiation oncology updated clinical practice guidelines on multimodality therapy for locally advanced cancer of the esophagus or gastroesophageal junction. Ann Thorac Surg. 117:15–32. 2024. View Article : Google Scholar | |
Zhou LL, Guan Q, Zhou W, Kan JL, Teng K, Hu M and Dong YB: A multifunctional covalent organic framework nanozyme for promoting ferroptotic radiotherapy against esophageal cancer. ACS Nano. 17:20445–20461. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, You M, Wang F, Wang Z, Gao X, Jing C, Liu J, Guo M, Li J, Luo A, et al: Multifunctional graphdiyne-cerium oxide nanozymes facilitate MicroRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv Mater. 33:e21005562021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Gao J, Zhang A, Guo Y, Fan S, He Y, Yang K, Wang J, Cui D and Cheng Y: Carbon nanocage-based nanozyme as an endogenous H2O2-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale. 12:21674–21686. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Song M, Xin Z, Zhang X, Zhang Y, Wang C, Li S and Gu N: Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology. 22:2257032011. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Wang T, Hong J, Yan X and Liang M: Nanozymes: A new disease imaging strategy. Front Bioeng Biotechnol. 8:152020. View Article : Google Scholar : PubMed/NCBI | |
Krause J, Brokmann F, Rosenbaum C and Weitschies W: The challenges of drug delivery to the esophagus and how to overcome them. Expert Opin Drug Deliv. 19:119–131. 2022. View Article : Google Scholar : PubMed/NCBI | |
Senchukova MA: Helicobacter pylori and gastric cancer progression. Curr Microbiol. 79:3832022. View Article : Google Scholar : PubMed/NCBI | |
Marshall BJ and Warren JR: Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1:1311–1315. 1984. View Article : Google Scholar : PubMed/NCBI | |
Ansari S and Yamaoka Y: Helicobacter pylori infection, its laboratory diagnosis, and antimicrobial resistance: A perspective of clinical relevance. Clin Microbiol Rev. 35:e00258212022. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Zhu Y and Lu NH: The management of Helicobacter pylori infection and prevention and control of gastric cancer in China. Front Cell Infect Microbiol. 12:10492792022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang L, Deng H, Li H, Tang W, Guan L, Qiu Y, Donovan MJ, Chen Z and Tan W: In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nat Commun. 12:20022021. View Article : Google Scholar : PubMed/NCBI | |
Efentakis M and Dressman JB: Gastric juice as a dissolution medium: Surface tension and pH. Eur J Drug Metab Pharmacokinet. 23:97–102. 1998. View Article : Google Scholar : PubMed/NCBI | |
Yan LX, Wang BB, Zhao X, Chen LJ and Yan XP: A pH-Responsive persistent luminescence nanozyme for selective imaging and killing of helicobacter pylori and common resistant bacteria. ACS Appl Mater Interfaces. 13:60955–60965. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Zhu AT, Fang RH and Zhang L: Recent developments in nanoparticle-based photo-immunotherapy for cancer treatment. Small Methods. 7:e23002522023. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Pan S, Zhang Y, Chang J, Cheng J, Huang Z, Li T, Zhang C, de la Fuentea JM, Zhang Q and Cui D: Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 9:3443–3458. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li Y, Li J, Mu F, Wang J, Shen C, Wang H, Huang F, Chen B, Luo Z and Wang L: DNA-Templated Ag@ Pd nanoclusters for NIR-II photoacoustic imaging-guided photothermal-augmented nanocatalytic therapy. Adv Healthc Mater. 12:e23002672023. View Article : Google Scholar | |
Ma J, Yao Q, Lv S, Yi J, Zhu D, Zhu C, Wang L and Su S: Integrated triple signal amplification strategy for ultrasensitive electrochemical detection of gastric cancer-related microRNA utilizing MoS2-based nanozyme, hybridization chain reaction, and horseradish peroxidase. J Nanobiotechnology. 22:5962024. View Article : Google Scholar : | |
Yao QH, Zeng MH, Zhang C, Zheng F, Jin JW, Ye TX, Wang YT, Chen XM, Guo ZY and Chen X: Polyphenol briged bimetallic-heterostructure inducing chiral peroxidase nanozyme activity for enantiomers identification in gastric cancer. Biosens Bioelectron. 282:1174492025. View Article : Google Scholar : PubMed/NCBI | |
Zhuang Y, Yin H, Huang Y, Jiang F, Li L, Wu Z, Yang Y, Cao X and Wei W: Catalytic hairpin assembly-powered nanozyme-SERS dual-function sensing system for ultrasensitive detection of gastric precancerous lesions. Biosens Bioelectron. 283:1175362025. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Wu J, Jiang ZW, Liu W, Gong X, Cao Y, Zhang P and Wang Y: Detection of d-Amino acids in saliva for gastric cancer diagnosis using Pt/MXene plasmonic nanozymes. Anal Chem. 97:10289–10298. 2025. View Article : Google Scholar : PubMed/NCBI | |
Asrani SK, Devarbhavi H, Eaton J and Kamath PS: Burden of liver diseases in the world. J Hepatol. 70:151–171. 2019. View Article : Google Scholar | |
Hassan A and Fontana RJ: The diagnosis and management of idiosyncratic drug-induced liver injury. Liver Int. 39:31–41. 2019. View Article : Google Scholar | |
Coccolini F, Coimbra R, Ordonez C, Kluger Y, Vega F, Moore EE, Biffl W, Peitzman A, Horer T, Abu-Zidan FM, et al: Liver trauma: WSES 2020 guidelines. World J Emerg Surg. 15:242020. View Article : Google Scholar : PubMed/NCBI | |
Yan M, Huo Y, Yin S and Hu H: Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 17:274–283. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Zhang L, Xu Z, Sun T, Gong M, Liu Y and Zhang D: Self-propelled ultrasmall AuNPs-tannic acid hybrid nanozyme with ROS-scavenging and anti-inflammatory activity for drug-induced liver injury alleviation. Small. 19:e22064082023. View Article : Google Scholar : PubMed/NCBI | |
Bai H, Kong F, Feng K, Zhang X, Dong H, Liu D, Ma M, Liu F, Gu N and Zhang Y: Prussian blue nanozymes prevent anthracycline-induced liver injury by attenuating oxidative stress and regulating inflammation. ACS Appl Mater Interfaces. 13:42382–42395. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xia F, Hu X, Zhang B, Wang X, Guan Y, Lin P, Ma Z, Sheng J, Ling D and Li F: Ultrasmall ruthenium nanoparticles with boosted antioxidant activity upregulate regulatory T cells for highly efficient liver injury therapy. Small. 18:e22015582022. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Xia F, Zhang L, Fang C, Lee J, Gong L, Gao J, Ling D and Li F: A ROS-Sensitive nanozyme-augmented photoacoustic nanoprobe for early diagnosis and therapy of acute liver failure. Adv Mater. 34:e21083482022. View Article : Google Scholar | |
Marroni CA, Fleck AM Jr, Fernandes SA, Galant LH, Mucenic M, de Mattos Meine MH, Mariante-Neto G and Brandão ABM: Liver transplantation and alcoholic liver disease: History, controversies, and considerations. World J Gastroenterol. 24:2785–2805. 2018. View Article : Google Scholar : PubMed/NCBI | |
Geng X, Du X, Wang W, Zhang C, Liu X, Qu Y, Zhao M, Li W, Zhang M, Tu K and Li YQ: Confined cascade metabolic reprogramming nanoreactor for targeted alcohol detoxification and alcoholic liver injury management. ACS Nano. 17:7443–7455. 2023. View Article : Google Scholar : PubMed/NCBI | |
Friedman SL and Pinzani M: Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology. 75:473–488. 2022. View Article : Google Scholar | |
Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M and Moshage H: Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech Ageing Dev. 199:1115722021. View Article : Google Scholar : PubMed/NCBI | |
Carloni V, Luong TV and Rombouts K: Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: More complicated than ever. Liver Int. 34:834–843. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ezhilarasan D, Sokal E and Najimi M: Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat Dis Int. 17:192–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang S, Yang Z, Wang Z, Tian X and Zhou R: Self-cascade MoS(2) nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy. Nanoscale. 13:12613–12622. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Zhou Y, Xu M, Liang X, Jing H, Wang X and Li N: Sequential delivery for hepatic fibrosis treatment based on carvedilol loaded star-like nanozyme. J Control Release. 341:247–260. 2022. View Article : Google Scholar | |
Tang Z, Liu Y, He M and Bu W: Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed Engl. 58:946–956. 2019. View Article : Google Scholar | |
Tarangelo A and Dixon SJ: Nanomedicine: An iron age for cancer therapy. Nat Nanotechnol. 11:921–922. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhao X, Huang J, Li J, Upputuri PK, Sun H, Han X, Pramanik M, Miao Y, Duan H, et al: Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat Commun. 11:18572020. View Article : Google Scholar : PubMed/NCBI | |
Dong C, Dai X, Wang X, Lu Q, Chen L, Song X, Ding L, Huang H, Feng W, Chen Y and Chang M: A Calcium fluoride nanozyme for ultrasound-amplified and Ca2+ -overload-enhanced catalytic tumor nanotherapy. Adv Mater. 34:e22056802022. View Article : Google Scholar | |
Kang S, Gil Y, Yim G, Min D and Jang H: Osmium-tellurium nanozymes for pentamodal combinatorial cancer therapy. ACS Appl Mater Interfaces. 13:44124–44135. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Yan L, Zhang J, Zhou M, Shi G, Tian X, Fan K, Hao C and Yan X: Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl Mater Interfaces. 11:9747–9755. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Mei X, Yang J and Li Y: Hydrogel-involved colorimetric platforms based on layered double oxide nanozymes for point-of-care detection of liver-related biomarkers. ACS Appl Mater Interfaces. 14:6985–6993. 2022. View Article : Google Scholar : PubMed/NCBI | |
He C, Ke Z, Liu K, Peng J, Yang Q, Wang L, Feng G and Fang J: Nanozyme-based dual-signal sensing system for colorimetric and photothermal detection of AChE activity in the blood of liver-injured mice. Anal Bioanal Chem. 415:2655–2664. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Shi X, Qu Y and Wang G: Functionalized ZnMnFe2O4-PEG-FA nanoenzymes integrating diagnosis and therapy for targeting hepatic carcinoma guided by multi-modality imaging. Nanoscale. 15:11013–11025. 2023. View Article : Google Scholar : PubMed/NCBI | |
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS and Yousefi G: Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res. 13:189–221. 2023. View Article : Google Scholar | |
Mederos MA, Reber HA and Girgis MD: Acute pancreatitis: A review. JAMA. 325:382–390. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan JH, Cao RC, Zhou L, Zhou ZT, Chen HJ, Xu J, Chen XM, Jin YC, Lin JY, Zeng JL, et al: ATF6 aggravates acinar cell apoptosis and injury by regulating p53/AIFM2 transcription in severe acute pancreatitis. Theranostics. 10:8298–8314. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sah RP, Garg P and Saluja AK: Pathogenic mechanisms of acute pancreatitis. Curr Opin Gastroenterol. 28:507–515. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P and Chevali L: Pathophysiology of acute pancreatitis. Pancreatology. 5:132–144. 2005. View Article : Google Scholar : PubMed/NCBI | |
Escobar J, Pereda J, López-Rodas G and Sastre J: Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med. 52:819–837. 2012. View Article : Google Scholar | |
Pasari LP, Khurana A, Anchi P, Aslam Saifi M, Annaldas S and Godugu C: Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomed Pharmacother. 112:1086292019. View Article : Google Scholar | |
Pérez S, Pereda J, Sabater L and Sastre J: Redox signaling in acute pancreatitis. Redox Biol. 5:1–14. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yao Q, Jiang X, Zhai YY, Luo LZ, Xu HL, Xiao J, Kou L and Zhao YZ: Protective effects and mechanisms of bilirubin nanomedicine against acute pancreatitis. J Control Release. 322:312–325. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Nageshwar Reddy D and Talukdar R: NF-κB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology. 16:477–488. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rakonczay Z Jr, Hegyi P, Takács T, McCarroll J and Saluja AK: The role of NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut. 57:259–267. 2008. View Article : Google Scholar | |
Xie X, Zhao J, Gao W, Chen J, Hu B, Cai X and Zheng Y: Prussian blue nanozyme-mediated nanoscavenger ameliorates acute pancreatitis via inhibiting TLRs/NF-κB signaling pathway. Theranostics. 11:3213–3228. 2021. View Article : Google Scholar : | |
Yang L, Ye F, Liu J, Klionsky DJ, Tang D and Kang R: Extracellular SQSTM1 exacerbates acute pancreatitis by activating autophagy-dependent ferroptosis. Autophagy. 19:1733–1744. 2023. View Article : Google Scholar : | |
Li H, Lin Y, Zhang L, Zhao J and Li P: Ferroptosis and its emerging roles in acute pancreatitis. Chin Med J (Engl). 135:2026–2034. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fan R, Sui J, Dong X, Jing B and Gao Z: Wedelolactone alleviates acute pancreatitis and associated lung injury via GPX4 mediated suppression of pyroptosis and ferroptosis. Free Radic Biol Med. 173:29–40. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Cai R, Chen K, Zhang Y, Chen X, Sun B, Jiang Y, Tan C, Peng C, Song Y, et al: Ca/Fe-Based nanozymes relieve severe acute pancreatitis by ferroptosis regulation and reactive oxygen species scavenging. ACS Appl. Nano Mater. 14:12968–12979. 2023. View Article : Google Scholar | |
Xie P, Zhang L, Shen H, Wu H, Zhao J, Wang S and Hu L: Biodegradable MoSe2-polyvinylpyrrolidone nanoparticles with multi-enzyme activity for ameliorating acute pancreatitis. J Nanobiotechnology. 20:1132022. View Article : Google Scholar : | |
Sarvepalli D, Rashid MU, Rahman AU, Ullah W, Hussain I, Hasan B, Jehanzeb S, Khan AK, Jain AG, Khetpal N and Ahmad S: Gemcitabine: A review of chemoresistance in pancreatic cancer. Crit Rev Oncog. 24:199–212. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Gil YG, Min DH and Jang H: Nonrecurring circuit nanozymatic enhancement of hypoxic pancreatic cancer phototherapy using speckled Ru-Te hollow nanorods. ACS Nano. 14:4383–4394. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Qiu Y, Ding D, Lin H, Sun W, Wang GD, Huang W, Zhang W, Lee D, Liu G, et al: Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic therapy. Adv Mater. Jul 23–2018.Epub ahead of print. View Article : Google Scholar | |
Li S, Shang L, Xu B, Wang S, Gu K, Wu Q, Sun Y, Zhang Q, Yang H, Zhang F, et al: A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem Int Ed Engl. 58:12624–12631. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Bao Y, Song Y, Zhang C, Qiu F, Sun Y, Xin L, Cao J, Jiang Y, Luo J, et al: Hypoxia-alleviated nanoplatform to enhance chemosensitivity and sonodynamic effect in pancreatic cancer. Cancer Lett. 520:100–108. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Li N, Qi Y, Zhao Q, Zhan J and Yu D: Synergistic ferroptosis-gemcitabine chemotherapy of the gemcitabine loaded carbonaceous nanozymes to enhance the treatment and magnetic resonance imaging monitoring of pancreatic cancer. Acta Biomater. 142:284–297. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ramos GP and Papadakis KA: Mechanisms of disease: Inflammatory bowel diseases. Mayo Clin Proc. 94:155–165. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xavier RJ and Podolsky DK: Unravelling the pathogenesis of inflammatory bowel disease. Nature. 448:427–434. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Li Y, Wang R, Ren F and Wang X: Oxidative stress and antioxidant nanotherapeutic approaches for inflammatory bowel disease. Biomedicines. 10:852021. View Article : Google Scholar | |
Weiss GA and Hennet T: Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 74:2959–2977. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eliakim R and Magro F: Imaging techniques in IBD and their role in follow-up and surveillance. Nat Rev Gastroenterol Hepatol. 11:722–736. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Cheng K, Yang M, Deng Z, Ma Y, Yan X, Zhang Y, Jia Z, Wang J, Tu K, et al: Orally administration of cerium oxide nanozyme for computed tomography imaging and anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease. J Nanobiotechnology. 21:212023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Cao L, Li J, Li Z, Ma H, Cheng S, Xu H and Zhao Y: Orally Administrated Inulin-Modified Nanozymes for CT-Guided IBD Theranostics. Int J Nanomedicine. 20:2119–2131. 2025. View Article : Google Scholar : PubMed/NCBI | |
He Y, Jin Z, Wang Y, Wu C, He X, Weng W, Cai X and Cheng K: Multifunctional double-loaded oral nanoplatform for computed tomography imaging-guided and integrated treatment of inflammatory bowel disease. ACS Nano. 19:14893–14913. 2025. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Ma W, Ding C, Wei C, Gao B, Zhu M, Zhang Y, Wu F and Zhang M, Li R and Zhang M: Metal polyphenol network/cerium oxide artificial enzymes therapeutic nanoplatform for MRI/CT-aided intestinal inflammation management. Nano Today. 53:1020442023. View Article : Google Scholar | |
Zhou D, Yin Y, Zhu Z, Gao Y, Yang J, Pan Y and Song Y: Orally administered platinum nanomarkers for urinary monitoring of inflammatory bowel disease. ACS Nano. 16:18503–18514. 2022. View Article : Google Scholar : PubMed/NCBI | |
Duan ZY, Liu JQ, Yin P, Li JJ, Cai GY and Chen XM: Impact of aging on the risk of platinum-related renal toxicity: A systematic review and meta-analysis. Cancer Treat Rev. 69:243–253. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Zhao J, Cheng L, Li C, Yan X, Deng Z, Zhang Y, Liang J, Liu C and Zhang M: Versatile carbon dots with superoxide dismutase-like nanozyme activity and red fluorescence for inflammatory bowel disease therapeutics. Carbon. 204:526–537. 2023. View Article : Google Scholar | |
Zhao S, Li Y, Liu Q, Li S, Cheng Y, Cheng C, Sun Z, Du Y, Butch CJ and Wei H: An Orally Administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv Funct Mater. 30:20046922020. View Article : Google Scholar | |
Wang Q, Cheng C, Zhao S, Liu Q, Zhang Y, Liu W, Zhao X, Zhang H, Pu J, Zhang S, et al: A valence-engineered self-cascading antioxidant nanozyme for the therapy of inflammatory bowel disease. Angew Chem Int Ed Engl. 61:e2022011012022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cheng Y, Zhang H, Zhou M, Yu Y, Lin S, Jiang B, Zhao X, Miao L, Wei CW, et al: Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv. 6:eabb26952020. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Zhao X, Xu X, Cai C, Tang X, Zhang Q, Zhong L, Zhou F, Yang D and Zhu Z: Rational design of orally administered cascade nanozyme for inflammatory bowel disease therapy. Adv Mater. 35:e23049672023. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, et al: Oral metal-free melanin nanozymes for natural and durable targeted treatment of inflammatory bowel disease (IBD). Small. 19:e22073502023. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Wang F, Chong H, Wang J, Bai Y, Du M, Yuan X, Yang X, Wu M, Li Y and Pang H: A Curcumin-modified coordination polymers with ros scavenging and macrophage phenotype regulating properties for efficient ulcerative colitis treatment. Adv Sci (Weinh). 10:e23006012023. View Article : Google Scholar : PubMed/NCBI | |
Cao F, Jin L, Gao Y, Ding Y, Wen H, Qian Z, Zhang C, Hong L, Yang H, Zhang J, et al: Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat Nanotechnol. 18:617–627. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu H and Li YR: Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: Updated experimental and clinical evidence. Exp Biol Med (Maywood). 237:474–480. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miao Z, Jiang S, Ding M, Sun S, Ma Y, Younis MR, He G, Wang J, Lin J, Cao Z, et al: Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett. 20:3079–3089. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Dai X, Wu L, Xiang H, Chen Y and Zhang R: Atomic vacancies-engineered ultrathin trimetallic nanozyme with anti-inflammation and antitumor performances for intestinal disease treatment. Biomaterials. 299:1221782023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Xu F, Ruan X, Sun J, Zhang Y, Zhang H, Zhao J, Zheng J, Larsson SC, Wang X, et al: Therapeutic targets for inflammatory bowel disease: Proteome-wide Mendelian randomization and colocalization analyses. EBioMedicine. 89:1044942023. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez CG, Mills RH, Zhu Q, Sauceda C, Knight R, Dulai PS and Gonzalez DJ: Location-specific signatures of Crohn's disease at a multi-omics scale. Microbiome. 10:1332022. View Article : Google Scholar : PubMed/NCBI | |
Bagherzadeh F and Mohammadi-Moghadam F: New insights into the role of metal(loid)s in the development of ulcerative colitis: A systematic review. Environ Sci Pollut Res Int. 30:66486–66493. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, et al: Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health. 11:11407862023. View Article : Google Scholar : PubMed/NCBI | |
Li M, Liu J, Shi L, Zhou C, Zou M, Fu D, Yuan Y, Yao C, Zhang L, Qin S, et al: Gold nanoparticles-embedded ceria with enhanced antioxidant activities for treating inflammatory bowel disease. Bioact Mater. 25:95–106. 2023.PubMed/NCBI | |
Kim HS, Lee S and Lee DY: Aurozyme: A revolutionary nanozyme in colitis, switching peroxidase-like to catalase-like activity. Small. 19:e23023312023. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Du Y, Liu L, Du Y, Cui K, Yu P, Li L, Zhu Y, Jiang W, Li Z, et al: Oral nanozyme-engineered probiotics for the treatment of ulcerative colitis. J Mater Chem B. 10:4002–4011. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen QW, Cao MW, Qiao JY, Li QR and Zhang XZ: Integrated cascade catalysis of microalgal bioenzyme and inorganic nanozyme for anti-inflammation therapy. Nanoscale Horiz. 8:489–498. 2023. View Article : Google Scholar : PubMed/NCBI | |
Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S and Vande Casteele N: JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 17:323–337. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang B and Shen J: NF-κB inducing kinase regulates intestinal immunity and homeostasis. Front Immunol. 13:8956362022. View Article : Google Scholar | |
Zhu D, Wu H, Jiang K, Xu Y, Miao Z, Wang H and Ma Y: Zero-valence selenium-enriched prussian blue nanozymes reconstruct intestinal barrier against inflammatory bowel disease via inhibiting ferroptosis and T cells differentiation. Adv Healthc Mater. 12:e22031602023. View Article : Google Scholar : PubMed/NCBI | |
Wang CJ, Ko GR, Lee YY, Park J, Park W, Park TE, Jin Y, Kim SN, Lee JS and Park CG: Polymeric DNase-I nanozymes targeting neutrophil extracellular traps for the treatment of bowel inflammation. Nano Converg. 11:62024. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Gao W, Zhang Y, Yang M, Yan X, Zhang Y, Li G, Liu C, Xu C and Zhang M: Biomimetic MOF nanoparticles delivery of C-Dot nanozyme and CRISPR/Cas9 system for site-specific treatment of ulcerative colitis. ACS Appl Mater Interfaces. 14:6358–6369. 2022. View Article : Google Scholar : PubMed/NCBI | |
Stoffel EM and Murphy CC: Epidemiology and mechanisms of the increasing incidence of colon and rectal cancers in young adults. Gastroenterology. 158:341–353. 2020. View Article : Google Scholar | |
Clarke WT and Feuerstein JD: Colorectal cancer surveillance in inflammatory bowel disease: Practice guidelines and recent developments. World J Gastroenterol. 25:4148–4157. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hou YJ, Yang XX, Liu RQ, Zhao D, Guo CX, Zhu AC, Wen MN, Liu Z, Qu GF and Meng HX: Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles. Int J Nanomedicine. 15:6827–6838. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Gong Y, Liu Y, Yang C, Wu S, Yuan G, Guo X, Liu J and Qin X: Ru@CeO2 yolk shell nanozymes: Oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials. 242:1199232020. View Article : Google Scholar | |
Zhou R, Ohulchanskyy TY, Xu Y, Ziniuk R, Xu H, Liu L and Qu J: Tumor-microenvironment-activated NIR-II nanotheranostic platform for precise diagnosis and treatment of colon cancer. ACS Appl Mater Interfaces. 14:23206–23218. 2022. View Article : Google Scholar : PubMed/NCBI | |
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, et al: Photodynamic therapy of cancer: An update. CA Cancer J Clin. 61:250–281. 2011.PubMed/NCBI | |
Hao Y, Chen Y, He X, Yu Y, Han R, Li Y, Yang C, Hu D and Qian Z: Polymeric nanoparticles with ROS-responsive prodrug and platinum nanozyme for enhanced chemophotodynamic therapy of colon cancer. Adv Sci (Weinh). 7:20018532020. View Article : Google Scholar : PubMed/NCBI | |
Duo Y, Suo M, Zhu D, Li Z, Zheng Z and Tang BZ: AIEgen-based bionic nanozymes for the interventional photodynamic therapy-based treatment of orthotopic colon cancer. ACS Appl Mater Interfaces. 14:26394–26403. 2022. View Article : Google Scholar : PubMed/NCBI | |
Son S, Kim JH, Wang X, Zhang C, Yoon SA, Shin J, Sharma A, Lee MH, Cheng L, Wu J and Kim JS: Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev. 49:3244–3261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao J, Zhang L, Zhao Y, Zhang Y, Cheng L, Wang D, Liu C and Zhang M, Fan K and Zhang M: A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS augment and autophagy blockage. Nano Today. 49:1017982023. View Article : Google Scholar | |
Wang G, He X and Wang Q: Intratumoral bacteria are an important 'accomplice' in tumor development and metastasis. Biochim Biophys Acta Rev Cancer. 1878:1888462023. View Article : Google Scholar | |
Wang X, Chen Q, Zhu Y, Wang K, Chang Y, Wu X, Bao W, Cao T, Chen H, Zhang Y and Qin H: Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme. Signal Transduct Target Ther. 8:2772023. View Article : Google Scholar : PubMed/NCBI | |
Cao F, Jin L, Zhang C, Gao Y, Qian Z, Wen H, Yang S, Ye Z, Hong L, Yang H, et al: engineering clinically relevant probiotics with switchable 'nano-promoter' and 'nano-effector' for precision tumor therapy. Adv Mater. 36:e23042572023. View Article : Google Scholar | |
Cabrero-Martín A, Santiago S, Serafín V, Pedrero M, Montero-Calle A, Pingarrón JM, Barderas R and Campuzano S: Multifunctional cerium nanolabels in electrochemical immunosensing with improved robustness and performance: Determination of TIM-1 in colorectal cancer scenarios as a case study. Mikrochim Acta. 192:2432025. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Fang Y, Liu J, Chen X, Teng F and Li C: Nanozyme-based pump-free microfluidic chip for colorectal cancer diagnosis via circulating cancer stem cell detection. ACS Sens. 9:5090–5098. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharjee R, Tanaka S, Moriam S, Masud MK, Lin J, Alshehri SM, Ahamad T, Salunkhe RR, Nguyen NT, Yamauchi Y, et al: Porous nanozymes: The peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation. J Mater Chem B. 6:4783–4791. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee MS, Menter DG and Kopetz S: Right versus left colon cancer biology: Integrating the consensus molecular subtypes. J Natl Compr Canc Netw. 15:411–419. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L, Etienne-Grimaldi MC, Schiappa R, Guenot D, Ayadi M, et al: Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med. 10:e10014532013. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Liu T, Zhou H, Xu R, Li K, Chen M and Chen Y: Oxygen-supplying ROS-responsive prodrug for synergistic chemotherapy and photodynamic therapy of colon cancer. Front Pharmacol. 15:13255442024. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Sundaram A, Mathew AP, Hareshkumar VS, Mohapatra A, Thomas RG, Bui TTM, Moon K, Kweon S, Park IK and Jeong YY: In situ hypoxia modulating nano-catalase for amplifying DNA damage in radiation resistive colon tumors. Biomater Sci. 11:6177–6192. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Gao W, Liu J, Wang J, Li L, Yu H and Xu ZP: O2-supplying nanozymes alleviate hypoxia and deplete lactate to eliminate tumors and activate antitumor immunity. ACS Appl Mater Interfaces. 14:56644–56657. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Chen L, Bai Q, Wang L, Li S, Sui N, Yang D and Zhu Z: Nonmetal graphdiyne nanozyme-based ferroptosis-apoptosis strategy for colon cancer therapy. ACS Appl Mater Interfaces. 14:27720–27732. 2022. View Article : Google Scholar : PubMed/NCBI | |
Du J, Liu J, Zhao Z, Dai J, Li K and Lin Y: Nonmetallic N/C nanozyme performs continuous consumption of glu for inhibition of colorectal cancer cells. ACS Appl Bio Mater. 6:267–276. 2023. View Article : Google Scholar | |
Jin Y, Zhang J, Xu Y, Yi K, Li F, Zhou H, Wang H, Chan HF, Lao YH, Lv S, et al: Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater. 28:112–131. 2023.PubMed/NCBI | |
Sahu A, Jeon J, Lee MS, Yang HS and Tae G: nanozyme impregnated mesenchymal stem cells for hepatic ischemia-reperfusion injury alleviation. ACS Appl Mater Interfaces. 13:25649–25662. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu H, Yang SH, Wang T, Liu C and Cao YC: Nanoparticle-based artificial RNA silencing machinery for antiviral therapy. Proc Natl Acad Sci USA. 109:12387–12392. 2012. View Article : Google Scholar : PubMed/NCBI |