
Innovative strategies to enhance MSCs efficacy in acute kidney injury (Review)
- Authors:
- Yuanxia Zou
- Jian Dai
- Jingyuan Fu
- Honglian Wang
- Meng Yang
- Jiraporn Kantapan
- Li Wang
- Nathupakorn Dechsupa
-
Affiliations: Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Neurology, The Third People's Hospital of Luzhou, Luzhou, Sichuan 646000, P.R. China, Department of Neonatal Intensive Care Unit, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China, Department of Children's Diagnosis and Treatment Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50000, Thailand - Published online on: September 1, 2025 https://doi.org/10.3892/ijmm.2025.5620
- Article Number: 179
-
Copyright: © Zou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Ronco C, Bellomo R and Kellum JS: Acute kidney injury. Lancet. 394:1949–1964. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fu Y and Dong Z: Immune response in COVID-19-associated acute kidney injury and maladaptive kidney repair. Integrative Medicine in Nephrology and Andrology. 10:e000222023. View Article : Google Scholar | |
Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J and Chawla LS: Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 14:607–625. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meena J, Kumar J, Kocharlakota JP, Gupta H, Mittal P, Kumar A, Sinha A, Hari P and Bagga A: Acute kidney injury in neonates: A meta-analysis. Pediatrics. 154:e20230651822024. View Article : Google Scholar : PubMed/NCBI | |
Gautam SC, Lim J and Jaar BG: Complications associated with continuous RRT. Kidney360. 3:1980–1990. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Widdop RE and Ricardo SD: Transition from acute kidney injury to chronic kidney disease: Mechanisms, models, and biomarkers. Am J Physiol Renal Physiol. 327:F788–F805. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Duan J, Hua C, Pan S, Li G, Feng Q, Liu D and Liu Z: Nanomedicine embraces the treatment and prevention of acute kidney injury to chronic kidney disease transition: Evidence, challenges, and opportunities. Burns Trauma. 12:tkae0442024. View Article : Google Scholar : PubMed/NCBI | |
Koh ES and Chung S: Recent update on acute kidney injury-to-chronic kidney disease transition. Yonsei Med J. 65:247–256. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song Z and Gong X: Research progress on the potential mechanisms of acute kidney injury and chronic kidney disease induced by proton pump inhibitors. Integrative Medicine in Nephrology and Andrology. 10:2023. View Article : Google Scholar | |
Stanski NL, Rodrigues CE, Strader M, Murray PT, Endre ZH and Bagshaw SM: Precision management of acute kidney injury in the intensive care unit: Current state of the art. Intensive Care Med. 49:1049–1061. 2023. View Article : Google Scholar : PubMed/NCBI | |
Krishnasamy S, Sinha A and Bagga A: Management of acute kidney injury in critically Ill children. Indian J Pediatr. 90:481–491. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, Guo L, Zhang X, Zhou X, Xu X, et al: Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: A next generation therapeutic tool? Cell Death Dis. 13:5802022. View Article : Google Scholar : PubMed/NCBI | |
Allinson CS, Pollock CA and Chen X: Mesenchymal stem cells in the treatment of acute kidney injury (AKI), chronic kidney disease (CKD) and the AKI-to-CKD transition. Integrative Medicine in Nephrology and Andrology. 10:e000142023. View Article : Google Scholar | |
Sávio-Silva C, Soinski-Sousa PE, Balby-Rocha MTA, Lira ÁO and Rangel ÉB: Mesenchymal stem cell therapy in acute kidney injury (AKI): Review and perspectives. Rev Assoc Med Bras (1992). 13(66 Suppl 1): S45–S54. 2020. View Article : Google Scholar | |
Lee PW, Wu BS, Yang CY and Lee OK: Molecular mechanisms of mesenchymal stem cell-based therapy in acute kidney injury. Int J Mol Sci. 22:114062021. View Article : Google Scholar : PubMed/NCBI | |
Khubutiya MS, Vagabov AV, Temnov AA and Sklifas AN: Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy. 16:579–585. 2014. View Article : Google Scholar | |
Han Q, Wang X, Ding X, He J, Cai G and Zhu H: Immunomodulatory effects of mesenchymal stem cells on drug-induced acute kidney injury. Front Immunol. 12:6830032021. View Article : Google Scholar : PubMed/NCBI | |
Fazekas B and Griffin MD: Mesenchymal stromal cell-based therapies for acute kidney injury: Progress in the last decade. Kidney Int. 97:1130–1140. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Hu C, Han F, Wang J and Chen J: Regenerative abilities of mesenchymal stem cells via acting as an ideal vehicle for subcellular component delivery in acute kidney injury. J Cell Mol Med. 24:4882–4891. 2020. View Article : Google Scholar : PubMed/NCBI | |
Birtwistle L, Chen XM and Pollock C: Mesenchymal stem cell-derived extracellular vesicles to the rescue of renal injury. Int J Mol Sci. 22:65962021. View Article : Google Scholar : PubMed/NCBI | |
Mukkala AN, Jerkic M, Khan Z, Szaszi K, Kapus A and Rotstein O: Therapeutic effects of mesenchymal stromal cells require mitochondrial transfer and quality control. Int J Mol Sci. 24:157882023. View Article : Google Scholar : PubMed/NCBI | |
Jiang D, Chen FX, Zhou H, Lu YY, Tan H, Yu SJ, Yuan J, Liu H, Meng W and Jin ZB: Bioenergetic Crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria. Theranostics. 10:7260–7272. 2020. View Article : Google Scholar : PubMed/NCBI | |
Paliwal S, Chaudhuri R, Agrawal A and Mohanty S: Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 25:312018. View Article : Google Scholar : PubMed/NCBI | |
Michaeloudes C, Li X, Mak JCW and Bhavsar PK: Study of mesenchymal stem cell-mediated mitochondrial transfer in in vitro models of oxidant-mediated airway epithelial and smooth muscle cell injury. Methods Mol Biol. 2269:93–105. 2021. View Article : Google Scholar : PubMed/NCBI | |
Iorio R, Petricca S, Mattei V and Monache SD: Horizontal mitochondrial transfer as a novel bioenergetic tool for mesenchymal stromal/stem cells: Molecular mechanisms and therapeutic potential in a variety of diseases. J Transl Med. 22:4912024. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Hu C, Zhang P, Jiang H and Chen J: Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury. J Cell Mol Med. 23:720–730. 2019. View Article : Google Scholar : | |
Zhao L, Hu C, Zhang P, Jiang H and Chen J: Novel preconditioning strategies for enhancing the migratory ability of mesenchymal stem cells in acute kidney injury. Stem Cell Res Ther. 9:2252018. View Article : Google Scholar : PubMed/NCBI | |
Makkar D, Gakhar D, Mishra V and Rakha A: Fine tuning mesenchymal stromal cells-code for mitigating kidney diseases. Stem Cell Rev Rep. 20:738–754. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Zhang Y, Geng X, Chi K, Liu C, Song C, Cai G, Chen X and Hong Q: Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther. 14:1162023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Lee EH and Yang Z: Hypoxia-conditioned mesenchymal stem cells in tissue regeneration application. Tissue Eng Part B Rev. 28:966–977. 2022. View Article : Google Scholar | |
Yasan GT and Gunel-Ozcan A: Hypoxia and hypoxia mimetic agents as potential priming approaches to empower mesenchymal stem cells. Curr Stem Cell Res Ther. 19:33–54. 2024. View Article : Google Scholar | |
Li H, Ji XQ, Zhang SM and Bi RH: Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells. World J Stem Cells. 15:999–1016. 2023. View Article : Google Scholar : PubMed/NCBI | |
Muscari C, Giordano E, Bonafè F, Govoni M, Pasini A and Guarnieri C: Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J Biomed Sci. 20:632013. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Liu L, Huo Y, Yang Y and Wang Y: Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. Biomed Res Int. 2014:4624722014.PubMed/NCBI | |
Collino F, Lopes JA, Corrêa S, Abdelhay E, Takiya CM, Wendt CHC, de Miranda KR, Vieyra A and Lindoso R: Adipose-derived mesenchymal stromal cells under hypoxia: Changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury. Cell Physiol Biochem. 52:1463–1483. 2019.PubMed/NCBI | |
Jang MJ, You D, Park JY, Kim K, Aum J, Lee C, Song G, Shin HC, Suh N, Kim YM and Kim CS: Hypoxic preconditioned mesenchymal stromal cell therapy in a rat model of renal ischemia-reperfusion injury: development of optimal protocol to potentiate therapeutic efficacy. Int J Stem Cells. 11:157–167. 2018. View Article : Google Scholar : PubMed/NCBI | |
Putra A, Pertiwi D, Milla MN, Indrayani UD, Jannah D, Sahariyani M, Trisnadi S and Wibowo JW: Hypoxia-preconditioned MSCs have superior effect in ameliorating renal function on acute renal failure animal model. Open Access Maced J Med Sci. 7:305–310. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan F, Liu J, Zhong L, Liu P, Li T, Yang K, Gao W, Zhang G, Sun J and Zou X: Enhanced therapeutic effects of hypoxia-preconditioned mesenchymal stromal cell-derived extracellular vesicles in renal ischemic injury. Stem Cell Res Ther. 16:392025. View Article : Google Scholar : PubMed/NCBI | |
Overath JM, Gauer S, Obermüller N, Schubert R, Schäfer R, Geiger H and Baer PC: Short-term preconditioning enhances the therapeutic potential of adipose-derived stromal/stem cell-conditioned medium in cisplatin-induced acute kidney injury. Exp Cell Res. 342:175–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Lu C, Liu H, Rao S, Cai J, Liu S, Kriegel AJ, Greene AS, Liang M and Ding X: Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One. 8:e627032013. View Article : Google Scholar : PubMed/NCBI | |
Tseng WC, Lee PY, Tsai MT, Chang FP, Chen NJ, Chien CT, Hung SC and Tarng DC: Hypoxic mesenchymal stem cells ameliorate acute kidney ischemia-reperfusion injury via enhancing renal tubular autophagy. Stem Cell Res Ther. 12:3672021. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Feng Y, Dong C, Liu D, Wu X, Wu H, Lv P and Zhou Y: Study on therapeutic action of bone marrow derived mesenchymal stem cell combined with vitamin E against acute kidney injury in rats. Life Sci. 92:829–837. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo Q and Wang J: Effect of combination of vitamin E and umbilical cord-derived mesenchymal stem cells on inflammation in mice with acute kidney injury. Immunopharmacol Immunotoxicol. 40:168–172. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Li H, Su X, Zhang Y, Xu H, Fan L, Fan J, Han Q, Bai X and Zhao RC: Chlorzoxazone, a small molecule drug, augments immunosuppressive capacity of mesenchymal stem cells via modulation of FOXO3 phosphorylation. Cell Death Dis. 11:1582020. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Yu X, Zhang B, Zhang H, Fang Y, Liu S, Liu T and Ding X: Atorvastatin improves survival of implanted stem cells in a rat model of renal ischemia-reperfusion injury. Am J Nephrol. 39:466–475. 2014. View Article : Google Scholar : PubMed/NCBI | |
Altun B, Yilmaz R, Aki T, Akoglu H, Zeybek D, Piskinpasa S, Uckan D, Purali N, Korkusuz P and Turgan C: Use of mesenchymal stem cells and darbepoetin improve ischemia-induced acute kidney injury outcomes. Am J Nephrol. 35:531–539. 2012. View Article : Google Scholar : PubMed/NCBI | |
LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (Internet). National Institute of Diabetes and Digestive and Kidney Diseases; Bethesda, MD: 2012, https://www.ncbi.nlm.nih.gov/books/NBK548137/. | |
Dh HS, Sultana R, Prabhu A, Pavan SR, Mohanto S and Subramaniyan V: Biomedicine and pharmacotherapeutic effectiveness of combinatorial atorvastatin and quercetin on diabetic nephropathy: An in vitro study. Biomed Pharmacother. 174:1165332024. View Article : Google Scholar : PubMed/NCBI | |
Qu H, Xu H, Tian Y and Jiang X: Atorvastatin improves microenvironment to enhance the beneficial effects of BMSCs therapy in a rabbit model of acute myocardial infarction. Cell Physiol Biochem. 32:380–389. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu Y and Yang B: Erythropoietin Receptor/β common receptor: A shining light on acute kidney injury induced by ischemia-reperfusion. Front Immunol. 12:6977962021. View Article : Google Scholar | |
Ghassemi-Barghi N, Ehsanfar Z, Mohammadrezakhani O, Ashari S, Ghiabi S and Bayrami Z: Mechanistic approach for protective effect of ARA290, a specific ligand for the erythropoietin/CD131 heteroreceptor, against cisplatin-induced nephrotoxicity, the involvement of apoptosis and inflammation pathways. Inflammation. 46:342–358. 2023. View Article : Google Scholar | |
Johnson DW, Pat B, Vesey DA, Guan Z, Endre Z and Gobe GC: Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure. Kidney Int. 69:1806–1813. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hakiminia B, Goudarzi A and Moghaddas A: Has vitamin E any shreds of evidence in cisplatin-induced toxicity. J Biochem Mol Toxicol. 33:e223492019. View Article : Google Scholar : PubMed/NCBI | |
Darwish MA, Abo-Youssef AM, Khalaf MM, Abo-Saif AA, Saleh IG and Abdelghany TM: Vitamin E mitigates cisplatin-induced nephrotoxicity due to reversal of oxidative/nitrosative stress, suppression of inflammation and reduction of total renal platinum accumulation. J Biochem Mol Toxicol. 31:1–9. 2017. View Article : Google Scholar | |
Abo-Elmaaty AMA, Behairy A, El-Naseery NI and Abdel-Daim MM: The protective efficacy of vitamin E and cod liver oil against cisplatin-induced acute kidney injury in rats. Environ Sci Pollut Res Int. 27:44412–44426. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Yu MR, Lee H, Kwon SH, Jeon JS, Han DC and Noh H: Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging Cell. 20:e133172021. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Zhu B, Yang G, Jia J, Wang H, Tan R, Zhang Q, Wang L and Kantawong F: Calycosin pretreatment enhanced the therapeutic efficacy of mesenchymal stem cells to alleviate unilateral ureteral obstruction-induced renal fibrosis by inhibiting necroptosis. J Pharmacol Sci. 151:72–83. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang W and Xu J: Immune modulation by mesenchymal stem cells. Cell Prolif. 53:e127122020. View Article : Google Scholar : | |
Huang Y, Wu Q and Tam PKH: Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. Int J Mol Sci. 23:100232022. View Article : Google Scholar : PubMed/NCBI | |
Zhou J and Shi Y: Mesenchymal stem/stromal cells (MSCs): Origin, immune regulation, and clinical applications. Cell Mol Immunol. 20:555–557. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Fang J, Liu B, Shao C and Shi Y: Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell. 29:1515–1530. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li P, Ou Q, Shi S and Shao C: Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol. 20:558–569. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Umrath F, Cen W, Salgado AJ, Reinert S and Alexander D: Pre-conditioning with IFN-γ and hypoxia enhances the angiogenic potential of iPSC-Derived MSC secretome. Cells. 11:9882022. View Article : Google Scholar | |
Wu J, Wu J, Xiang W, Gong Y, Feng D, Fang S, Wu Y, Liu Z, Li Y, Chen R, et al: Engineering exosomes derived from TNF-α preconditioned IPFP-MSCs enhance both yield and therapeutic efficacy for osteoarthritis. J Nanobiotechnology. 22:5552024. View Article : Google Scholar | |
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, et al: Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 122:306–324. 2021. View Article : Google Scholar | |
Ma T, Wang X, Jiao Y, Wang H, Qi Y, Gong H, Zhang L and Jiang D: Interleukin 17 (IL-17)-induced mesenchymal stem cells prolong the survival of allogeneic skin grafts. Ann Transplant. 23:615–621. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Li J, Cai H, Wu D, Tao S, Pi C, Zhu L, Xu N and Zhang T: An injectable hydrogel scaffold with IL-1β-activated MSC-derived exosomes for the treatment of endometritis. Biomater Sci. 11:1422–1436. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pezzanite LM, Chow L, Phillips J, Griffenhagen GM, Moore AR, Schaer TP, Engiles JB, Werpy N, Gilbertie J, Schnabel LV, et al: TLR-activated mesenchymal stromal cell therapy and antibiotics to treat multi-drug resistant Staphylococcal septic arthritis in an equine model. Ann Transl Med. 10:11572022. View Article : Google Scholar : PubMed/NCBI | |
Giuliani M, Bennaceur-Griscelli A, Nanbakhsh A, Oudrhiri N, Chouaib S, Azzarone B, Durrbach A and Lataillade JJ: TLR ligands stimulation protects MSC from NK killing. Stem Cells. 32:290–300. 2014. View Article : Google Scholar | |
Kwon YW, Heo SC, Jeong GO, Yoon JW, Mo WM, Lee MJ, Jang IH, Kwon SM, Lee JS and Kim JH: Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochim Biophys Acta. 1832:2136–2144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heo SC, Jeon ES, Lee IH, Kim HS, Kim MB and Kim JH: Tumor necrosis factor-α-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J Invest Dermatol. 131:1559–1567. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Xi J, Bi Y, Zhao X, Bing W, Meng X, Liu Y, Zhu Z and Song G: TNF-alpha promotes survival and migration of MSCs under oxidative stress via NF-κB pathway to attenuate intimal hyperplasia in vein grafts. J Cell Mol Med. 21:2077–2091. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Hu C, Zhang P, Jiang H and Chen J: Melatonin preconditioning is an effective strategy for mesenchymal stem cell-based therapy for kidney disease. J Cell Mol Med. 24:25–33. 2020. View Article : Google Scholar | |
Alzahrani FA: Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats. Am J Transl Res. 11:2887–2907. 2019.PubMed/NCBI | |
Aussel C, Baudry N, Grosbot M, Caron C, Vicaut E, Banzet S and Peltzer JS: IL-1β primed mesenchymal stromal cells moderate hemorrhagic shock-induced organ injuries. Stem Cell Res Ther. 12:4382021. View Article : Google Scholar | |
Bai M, Zhang L, Fu B, Bai J, Zhang Y, Cai G, Bai X, Feng Z, Sun S and Chen X: IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney Int. 93:814–825. 2018. View Article : Google Scholar | |
Chen HH, Lin KC, Wallace CG, Chen YT, Yang CC, Leu S, Chen YC, Sun CK, Tsai TH, Chen YL, et al: Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. J Pineal Res. 57:16–32. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kanai R, Nakashima A, Doi S, Kimura T, Yoshida K, Maeda S, Ishiuchi N, Yamada Y, Ike T, Doi T, et al: Interferon-gamma enhances the therapeutic effect of mesenchymal stem cells on experimental renal fibrosis. Sci Rep. 11:8502021. View Article : Google Scholar | |
Mias C, Trouche E, Seguelas MH, Calcagno F, Dignat-George F, Sabatier F, Piercecchi-Marti MD, Daniel L, Bianchi P, Calise D, et al: Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells. 26:1749–1757. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Young YK, Fradette J and Eliopoulos N: Melatonin pretreatment of human adipose tissue-derived mesenchymal stromal cells enhances their prosurvival and protective effects on human kidney cells. Am J Physiol Renal Physiol. 308:F1474–F1483. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Qiao YM, Liu YG, Liu D, Hu JM, Liao J, Li M, Guo Y, Fan LP, Li LY and Zhao M: Bone marrow derived mesenchymal stem cells pretreated with erythropoietin accelerate the repair of acute kidney injury. Cell Biosci. 10:1302020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang G, Zhang L, Li F, Liu K, Wang Y, Shi Y and Cao K: Interleukin-17 promotes nitric oxide-dependent expression of PD-L1 in mesenchymal stem cells. Cell Biosci. 10:732020. View Article : Google Scholar : PubMed/NCBI | |
Han X, Yang Q, Lin L, Xu C, Zheng C, Chen X, Han Y, Li M, Cao W, Cao K, et al: Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ. 21:1758–1768. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Jiang C, Yang Y, Xi C, Yin Y, Wu H and Qian C: Therapeutic potential of HUC-MSC-exos primed with IFN-γ against LPS-induced acute lung injury. Iran J Basic Med Sci. 27:375–382. 2024. | |
Stazi M, Negro S, Megighian A, D'Este G, Solimena M, Jockers R, Lista F, Montecucco C and Rigoni M: Melatonin promotes regeneration of injured motor axons via MT1 receptors. J Pineal Res. 70:e126952021. View Article : Google Scholar | |
Romero A, Morales-Garcia JA and Ramos E: Melatonin: A multitasking indoleamine to modulate hippocampal neurogenesis. Neural Regen Res. 18:503–505. 2023. View Article : Google Scholar | |
Reiter RJ, Tan DX, Poeggeler B, Menendez-Pelaez A, Chen LD and Saarela S: Melatonin as a free radical scavenger: Implications for aging and age-related diseases. Ann N Y Acad Sci. 719:1–12. 1994. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ, Tan DX and Fuentes-Broto L: Melatonin: A multitasking molecule. Prog Brain Res. 181:127–151. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ: Melatonin: The chemical expression of darkness. Mol Cell Endocrinol. 79:C153–C158. 1991. View Article : Google Scholar : PubMed/NCBI | |
Feng ZY, Yang SD, Wang T and Guo S: Effect of melatonin for regulating mesenchymal stromal cells and derived extracellular vesicles. Front Cell Dev Biol. 9:7179132021. View Article : Google Scholar : PubMed/NCBI | |
Elzainy A, El Sadik A and Altowayan WM: Comparison between the regenerative and therapeutic impacts of bone marrow mesenchymal stem cells and adipose mesenchymal stem cells pre-treated with melatonin on liver fibrosis. Biomolecules. 14:2972024. View Article : Google Scholar : PubMed/NCBI | |
Zou D, Liao J, Xiao M, Liu L and Xu M: Melatonin alleviates hyperoxia-induced lung injury through elevating MSC exosomal miR-18a-5p expression to repress PUM2 signaling. FASEB J. 38:e700122024. View Article : Google Scholar : PubMed/NCBI | |
Rafiq H, Ayaz M, Khan HA, Iqbal M, Quraish S, Afridi SG, Khan A, Khan B, Sher A, Siraj F and Shams S: Therapeutic potential of stem cell and melatonin on the reduction of CCl4-induced liver fibrosis in experimental mice model. Braz J Biol. 84:e2530612022. View Article : Google Scholar : PubMed/NCBI | |
Mintoft A, Vallatos A and Robertson NJ: Mesenchymal stromal cell therapy for hypoxic ischemic encephalopathy: Future directions for combination therapy with hypothermia and/or melatonin. Semin Perinatol. 48:1519292024. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Han YS and Lee SH: Melatonin-induced PGC-1α improves angiogenic potential of mesenchymal stem cells in hindlimb ischemia. Biomol Ther (Seoul). 28:240–249. 2020. View Article : Google Scholar | |
Hanna M, Elnassag SS, Mohamed DH, Elbaset MA, Shaker O, Khowailed EA and Gouda SAA: Melatonin and mesenchymal stem cells co-administration alleviates chronic obstructive pulmonary disease via modulation of angiogenesis at the vascular-alveolar unit. Pflugers Arch. 476:1155–1168. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tripathy S and Bhattamisra SK: Cellular signalling of melatonin and its role in metabolic disorders. Mol Biol Rep. 52:1932025. View Article : Google Scholar : PubMed/NCBI | |
Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS and Slominski AT: Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol Cell Endocrinol. 351:152–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Charif SE and Dorfman VB: Melatonin, modulation of hypothalamic activity, and reproduction. Vitam Horm. 127:283–303. 2025. View Article : Google Scholar : PubMed/NCBI | |
Saberi K, Pasbakhsh P, Omidi A, Borhani-Haghighi M, Nekoonam S, Omidi N, Ghasemi S and Kashani IR: Melatonin preconditioning of bone marrow-derived mesenchymal stem cells promotes their engraftment and improves renal regeneration in a rat model of chronic kidney disease. J Mol Histol. 50:129–140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yasuoka Y, Izumi Y, Fukuyama T, Oshima T, Yamazaki T, Uematsu T, Kobayashi N, Nanami M, Shimada Y, Nagaba Y, et al: Tubular endogenous erythropoietin protects renal function against ischemic reperfusion injury. Int J Mol Sci. 25:12232024. View Article : Google Scholar : PubMed/NCBI | |
Bi B, Guo J, Marlier A, Lin SR and Cantley LG: Erythropoietin expands a stromal cell population that can mediate renoprotection. Am J Physiol Renal Physiol. 295:F1017–F1022. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zuo L, Li DD, Ma XX, Shi SH, Lyu DC, Shen J, Zhang WF, Gao EH and Cao JM: Erythropoietin promotes myocardial infarction repair in mice by improving the function of Sca-1(+) stem cells. Sheng Li Xue Bao. 75:36–48. 2023.PubMed/NCBI | |
Wu YW, Comstock BA, Gonzalez FF, Mayock DE, Goodman AM, Maitre NL, Chang T, Van Meurs KP, Lampland AL, Bendel-Stenzel E, et al: Trial of erythropoietin for hypoxic-ischemic encephalopathy in newborns. N Engl J Med. 387:148–159. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bianchi VE and von Haehling S: The treatment of chronic anemia in heart failure: A global approach. Clin Res Cardiol. 113:1117–1136. 2024. View Article : Google Scholar | |
Jun JH, Jun NH, Shim JK, Shin EJ and Kwak YL: Erythropoietin protects myocardium against ischemia-reperfusion injury under moderate hyperglycemia. Eur J Pharmacol. 745:1–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Liu YG, Zhang Y, Hu JM, Liu D, Chen H, Li M, Guo Y, Fan LP, Li LY and Zhao M: Bone mesenchymal stem cells pretreated with erythropoietin enhance the effect to ameliorate cyclosporine A-induced nephrotoxicity in rats. J Cell Biochem. 119:8220–8232. 2018. View Article : Google Scholar : PubMed/NCBI | |
Verdino P, Lee SL, Cooper FN, Cottle SR, Grealish PF, Hu CC, Meyer CM, Lin J, Copeland V, Porter G, et al: Development of a long-acting relaxin analogue, LY3540378, for treatment of chronic heart failure. Br J Pharmacol. 180:1965–1980. 2023. View Article : Google Scholar : PubMed/NCBI | |
Samuel CS and Hewitson TD: Relaxin in cardiovascular and renal disease. Kidney Int. 69:1498–1502. 2006. View Article : Google Scholar : PubMed/NCBI | |
Martins RC, Pintalhao M, Leite-Moreira A and Castro-Chaves P: Relaxin and the cardiovascular system: From basic science to clinical practice. Curr Mol Med. 20:167–184. 2020. View Article : Google Scholar | |
Feiteng C, Lei C, Deng L, Chaoliang X, Zijie X, Yi S and Minglei S: Relaxin inhibits renal fibrosis and the epithelial-to-mesenchymal transition via the Wnt/beta-catenin signaling pathway. Ren Fail. 44:513–524. 2022. View Article : Google Scholar : PubMed/NCBI | |
Conrad KP, von Versen-Hoynck F and Baker VL: Potential role of the corpus luteum in maternal cardiovascular adaptation to pregnancy and preeclampsia risk. Am J Obstet Gynecol. 226:683–699. 2022. View Article : Google Scholar | |
Bathgate RA, Ivell R, Sanborn BM, Sherwood OD and Summers RJ: International union of pharmacology LVII: Recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 58:7–31. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Shen M, Ferens D, Broughton BRS, Murthi P, Saini S, Widdop RE, Ricardo SD, Pinar AA and Samuel CS: Combining mesenchymal stem cells with serelaxin provides enhanced renoprotection against 1K/DOCA/salt-induced hypertension. Br J Pharmacol. 178:1164–1181. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Lu W, Wang A, Jiang H and Lyu J: Changing epidemiology of chronic kidney disease as a result of type 2 diabetes mellitus from 1990 to 2017: Estimates from global burden of disease 2017. J Diabetes Investig. 12:346–356. 2021. View Article : Google Scholar | |
Huuskes BM, Wise AF, Cox AJ, Lim EX, Payne NL, Kelly DJ, Samuel CS and Ricardo SD: Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy. FASEB J. 29:540–553. 2015. View Article : Google Scholar | |
Badawi A, Jefferson OC, Huuskes BM, Ricardo SD, Kerr PG, Samuel CS and Murthi P: A novel approach to enhance the regenerative potential of circulating endothelial progenitor cells in patients with end-stage kidney disease. Biomedicines. 10:8832022. View Article : Google Scholar : PubMed/NCBI | |
Feng G, Zhang J, Li Y, Nie Y, Zhu D, Wang R, Liu J, Gao J, Liu N, He N, et al: IGF-1 C domain-modified hydrogel enhances cell therapy for AKI. J Am Soc Nephrol. 27:2357–2369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Chu Y, Geng X, Ma Y, Chi K, Song C, Liao S, Hong Q, Wu D and Wang Y: Artificial kidney capsule packed with mesenchymal stem cell-laden hydrogel for the treatment of rhabdomyolysis-induced acute kidney injury. ACS Biomater Sci Eng. 8:1726–1734. 2022. View Article : Google Scholar : PubMed/NCBI | |
Geng X, Hong Q, Wang W, Zheng W, Li O, Cai G, Chen X and Wu D: Biological membrane-packed mesenchymal stem cells treat acute kidney disease by ameliorating mitochondrial-related apoptosis. Sci Rep. 7:411362017. View Article : Google Scholar : PubMed/NCBI | |
Han DS, Erickson C, Hansen KC, Kirkbride-Romeo L, He Z, Rodell CB and Soranno DE: Mesenchymal stem cells delivered locally to ischemia-reperfused kidneys via injectable hyaluronic acid hydrogels decrease extracellular matrix remodeling 1 month after injury in male mice. Cells. 12:17712023. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Li Y, Wang X, Ma X and Zhang X: Injectable co-gels of collagen and decellularized vascular matrix improve MSC-based therapy for acute kidney injury. J Biomater Sci Polym Ed. 28:2186–2195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Najafi H, Abolmaali SS, Heidari R, Valizadeh H, Tamaddon AM and Azarpira N: Integrin receptor-binding nanofibrous peptide hydrogel for combined mesenchymal stem cell therapy and nitric oxide delivery in renal ischemia/reperfusion injury. Stem Cell Res Ther. 13:3442022. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Shi T, Xu A and Zhang L: 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. J Cell Mol Med. 20:1203–1213. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Shang Y, Chen X, Wang Z, Zhu D, Liu Y, Zhang C, Chen P, Wu J, Wu L, et al: Delivery of MSCs with a hybrid beta-sheet peptide hydrogel consisting IGF-1C domain and D-Form peptide for acute kidney injury therapy. Int J Nanomedicine. 15:4311–4324. 2020. View Article : Google Scholar : | |
Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, Duh TH, Yang MH and Tyan YC: Hydrogels: Properties and applications in biomedicine. Molecules. 27:29022022. View Article : Google Scholar : PubMed/NCBI | |
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS and Jamshaid M: A Comprehensive review of hydrogel-based drug delivery systems: classification, properties, recent trends, and applications. AAPS PharmSciTech. 25:642024. View Article : Google Scholar : PubMed/NCBI | |
Seliktar D: Designing cell-compatible hydrogels for biomedical applications. Science. 336:1124–1128. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yap JX, Leo CP, Yasin NH, Show PL, Chu DT, Singh V and Derek CJC: Recent advances of natural biopolymeric culture scaffold: Synthesis and modification. Bioengineered. 13:2226–2247. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wechsler ME, Rao VV, Borelli AN and Anseth KS: Engineering the MSC Secretome: A hydrogel focused approach. Adv Healthc Mater. 10:e20019482021. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Yang T, Chen S, Deng N, Luo X, Liao R and Su B: Utilization of hydrogels in mesenchymal stem cell-based therapy for kidney diseases. Tissue Eng Part B Rev. 30:315–326. 2024. View Article : Google Scholar | |
Zhao L, Zhou Y, Zhang J, Liang H, Chen X and Tan H: Natural polymer-based hydrogels: From polymer to biomedical applications. Pharmaceutics. 15:25142023. View Article : Google Scholar : PubMed/NCBI | |
Zhang M and Zhao X: Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol. 162:1414–1428. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kou SG, Peters LM and Mucalo MR: Chitosan: A review of sources and preparation methods. Int J Biol Macromol. 169:85–94. 2021. View Article : Google Scholar | |
Yazdi MK, Taghizadeh A, Taghizadeh M, Stadler FJ, Farokhi M, Mottaghitalab F, Zarrintaj P, Ramsey JD, Seidi F, Saeb MR and Mozafari M: Agarose-based biomaterials for advanced drug delivery. J Control Release. 326:523–543. 2020. View Article : Google Scholar | |
Burdick JA and Prestwich GD: Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 23:H41–H56. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Xia Z and Cai K: Recent advances in 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. J Mater Chem B. 10:1486–1507. 2022. View Article : Google Scholar : PubMed/NCBI | |
Axpe E and Oyen ML: Applications of alginate-based bioinks in 3D Bioprinting. Int J Mol Sci. 17:19762016. View Article : Google Scholar : PubMed/NCBI | |
Troy E, Tilbury MA, Power AM and Wall JG: Nature-based biomaterials and their application in biomedicine. Polymers (Basel). 13:33212021. View Article : Google Scholar : PubMed/NCBI | |
Lee KY and Mooney DJ: Alginate: Properties and biomedical applications. Prog Polym Sci. 37:106–126. 2012. View Article : Google Scholar | |
Khatab S, Leijs MJ, van Buul G, Haeck J, Kops N, Nieboer M, Bos PK, Verhaar JAN, Bernsen M and van Osch GJVM: MSC encapsulation in alginate microcapsules prolongs survival after intra-articular injection, a longitudinal in vivo cell and bead integrity tracking study. Cell Biol Toxicol. 36:553–570. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mohammadi M, Luong JC, Rodriguez SM, Cao R, Wheeler AE, Lau H, Li S, Shabestari SK, Chadarevian JP, Alexander M, et al: Controlled release of stem cell secretome attenuates inflammatory response against implanted biomaterials. Adv Healthc Mater. 9:e19018742020. View Article : Google Scholar : PubMed/NCBI | |
Bari E, Scocozza F, Perteghella S, Sorlini M, Auricchio F, Torre ML and Conti M: 3D bioprinted scaffolds containing mesenchymal stem/stromal lyosecretome: Next generation controlled release device for bone regenerative medicine. Pharmaceutics. 13:5152021. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Onyeri S, Siewe M, Moshfeghian A and Madihally SV: In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials. 26:7616–7627. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wagenbrenner M, Mayer-Wagner S, Rudert M, Holzapfel BM and Weissenberger M: Combinations of hydrogels and mesenchymal stromal cells (MSCs) for cartilage tissue engineering-A review of the literature. Gels. 7:2172021. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Liu R, Wu J, Liu Z, Li J, Zhou J, Hao T, Wang Y, Du Z, Duan C and Wang C: The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury. Biomaterials. 33:3673–3681. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Singla A and Lee Y: Biomedical applications of collagen. Int J Pharm. 221:1–22. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Li D, Chen J, Ji Y, Su T, Chen Y, Zhang Y, Wang Y, Li F, Chen S, et al: Comparison of the treatment efficacy of umbilical mesenchymal stem cell transplantation via renal subcapsular and parenchymal routes in AKI-CKD mice. Stem Cell Res Ther. 13:1282022. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP and Du J: Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev. 46:6255–6275. 2017. View Article : Google Scholar : PubMed/NCBI | |
La Manna G, Bianchi F, Cappuccilli M, Cenacchi G, Tarantino L, Pasquinelli G, Valente S, Della Bella E, Cantoni S, Claudia C, et al: Mesenchymal stem cells in renal function recovery after acute kidney injury: Use of a differentiating agent in a rat model. Cell Transplant. 20:1193–1208. 2011. View Article : Google Scholar | |
Rohanizadeh R, Swain MV and Mason RS: Gelatin sponges (Gelfoam) as a scaffold for osteoblasts. J Mater Sci Mater Med. 19:1173–1182. 2008. View Article : Google Scholar | |
Bello AB, Kim D, Kim D, Park H and Lee SH: Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Eng Part B Rev. 26:164–180. 2020. View Article : Google Scholar : PubMed/NCBI | |
Helminger M, Wu B, Kollmann T, Benke D, Schwahn D, Pipich V, Faivre D, Zahn D and Cölfen H: Synthesis and characterization of gelatin-based magnetic hydrogels. Adv Funct Mater. 24:3187–3196. 2014. View Article : Google Scholar | |
Mushtaq F, Raza ZA, Batool SR, Zahid M, Onder OC, Rafique A and Nazeer MA: Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol. 218:601–633. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sobreiro-Almeida R, Quinteira R and Neves NM: Renal regeneration: The role of extracellular matrix and current ECM-based tissue engineered strategies. Adv Healthc Mater. 10:e21001602021. View Article : Google Scholar : PubMed/NCBI | |
Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP and Ott HC: Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 19:646–651. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim JW, Nam SA, Yi J, Kim JY, Lee JY, Park SY, Sen T, Choi YM, Lee JY, Kim HL, et al: Kidney decellularized extracellular matrix enhanced the vascularization and maturation of human kidney organoids. Adv Sci (Weinh). 9:e21035262022. View Article : Google Scholar : PubMed/NCBI | |
Saldin LT, Cramer MC, Velankar SS, White LJ and Badylak SF: Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 49:1–15. 2017. View Article : Google Scholar : | |
Zhou C, Zhou L, Liu J, Xu L, Xu Z, Chen Z, Ge Y, Zhao F, Wu R, Wang X, et al: Kidney extracellular matrix hydrogel enhances therapeutic potential of adipose-derived mesenchymal stem cells for renal ischemia reperfusion injury. Acta Biomater. 115:250–263. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chee HL, Chong YT, Chan BQY, Xue K, Lim PC, Loh XJ and Wang F: Hofmeister effect mediated strong PHEMA-Gelatin hydrogel actuator. ACS Appl Mater Interfaces. 14:23826–23838. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zullo JA, Nadel EP, Rabadi MM, Baskind MJ, Rajdev MA, Demaree CM, Vasko R, Chugh SS, Lamba R, Goligorsky MS and Ratliff BB: The secretome of hydrogel-coembedded endothelial progenitor cells and mesenchymal stem cells instructs macrophage polarization in endotoxemia. Stem Cells Transl Med. 4:852–861. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tietze S, Kräter M, Jacobi A, Taubenberger A, Herbig M, Wehner R, Schmitz M, Otto O, List C, Kaya B, et al: Spheroid culture of mesenchymal stromal cells results in morphorheological properties appropriate for improved microcirculation. Adv Sci (Weinh). 6:18021042019. View Article : Google Scholar : PubMed/NCBI | |
Shoma Suresh K, Bhat S, Guru BR, Muttigi MS and Seetharam RN: A nanocomposite hydrogel delivery system for mesenchymal stromal cell secretome. Stem Cell Res Ther. 11:2052020. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Jha AK, Harrington DA, Farach-Carson MC and Jia X: Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter. 8:3280–3294. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kleinman HK and Martin GR: Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goetzke R, Franzen J, Ostrowska A, Vogt M, Blaeser A, Klein G, Rath B, Fischer H, Zenke M and Wagner W: Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels. Biomaterials. 156:147–158. 2018. View Article : Google Scholar | |
Najafi H, Abolmaali SS, Heidari R, Valizadeh H, Jafari M, Tamaddon AM and Azarpira N: Nitric oxide releasing nanofibrous Fmoc-dipeptide hydrogels for amelioration of renal ischemia/reperfusion injury. J Control Release. 337:1–13. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin RZ and Chang HY: Chang, recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 3:1172–1184. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ryu NE, Lee SH and Park H: Spheroid culture system methods and applications for mesenchymal stem cells. Cells. 8:16202019. View Article : Google Scholar : PubMed/NCBI | |
Yang WY, Chen LC, Jhuang YT, Lin YJ, Hung PY, Ko YC, Tsai MY, Lee YW, Hsu LW, Yeh CK, et al: Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioeng Transl Med. 6:e102122021. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Chen C, Hu L and Hou J: Gene-modified mesenchymal stem cell-based therapy in renal ischemia-reperfusion injury. Curr Gene Ther. 17:453–460. 2017. View Article : Google Scholar | |
Roudkenar MH, Halabian R, Tehrani HA, Amiri F, Jahanian-Najafabadi A, Roushandeh AM, Abbasi-Malati Z and Kuwahara Y: Lipocalin 2 enhances mesenchymal stem cell-based cell therapy in acute kidney injury rat model. Cytotechnology. 70:103–117. 2018. View Article : Google Scholar : | |
Ni W, Zhang Y and Yin Z: The protective mechanism of Klotho gene-modified bone marrow mesenchymal stem cells on acute kidney injury induced by rhabdomyolysis. Regen Ther. 18:255–267. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yuan Z, Zhong W and Wei Y: Stem cell as vehicles of antibody in treatment of lymphoma: A novel and potential targeted therapy. Stem Cell Rev Rep. 17:829–841. 2021. View Article : Google Scholar | |
Chen Y, Qian H, Zhu W, Zhang X, Yan Y, Ye S, Peng X, Li W and Xu W: Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev. 20:103–113. 2011. View Article : Google Scholar | |
Hagiwara M, Shen B, Chao L and Chao J: Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosivgs and inflammation. Hum Gene Ther. 19:807–819. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Patzak A and Zhang J: CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. Am J Physiol Renal Physiol. 305:F1064–F1073. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Tian J, Cheng J and Zhang J: Migration of CXCR4 gene-modified bone marrow-derived mesenchymal stem cells to the acute injured kidney. J Cell Biochem. 114:2677–2689. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Wang H, Han G, Cheng J, Hu W and Zhang J: Enhanced proliferation and differentiation of HO-1 gene-modified bone marrow-derived mesenchymal stem cells in the acute injured kidney. Int J Mol Med. 42:946–956. 2018.PubMed/NCBI | |
Liu N, Wang H, Han G, Tian J, Hu W and Zhang J: Alleviation of apoptosis of bone marrow-derived mesenchymal stem cells in the acute injured kidney by heme oxygenase-1 gene modification. Int J Biochem Cell Biol. 69:85–94. 2015. View Article : Google Scholar : PubMed/NCBI | |
da Cunha MGM, Zia S, Beckmann DV, Carlon MS, Arcolino FO, Albersen M, Pippi NL, Graça DL, Gysemans C, Carmeliet P, et al: Vascular endothelial growth factor up-regulation in human amniotic fluid stem cell enhances nephroprotection after ischemia-reperfusion injury in the rat. Crit Care Med. 45:e86–e96. 2017. View Article : Google Scholar | |
Yuzeng Q, Weiyang H, Xin G, Qingson Z, Youlin K and Ke R: Effects of transplantation with marrow-derived mesenchymal stem cells modified with survivin on renal ischemia-reperfusion injury in mice. Yonsei Med J. 55:1130–1137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pawitan JA, Bui TA, Mubarok W, Antarianto RD, Nurhayati RW, Dilogo IH and Oceandy D: Enhancement of the therapeutic capacity of mesenchymal stem cells by genetic modification: A systematic review. Front Cell Dev Biol. 8:5877762020. View Article : Google Scholar : PubMed/NCBI | |
Kresse JC, Gregersen E, Atay JCL, Eijken M and Nørregaard R: Does the route matter? A preclinical review of mesenchymal stromal cell delivery to the kidney. APMIS. 131:687–697. 2023. View Article : Google Scholar : PubMed/NCBI | |
Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC and Pelletier MP: Stem cell transplantation: The lung barrier. Transplant Proc. 39:573–576. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA and Cox CS Jr: Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev. 18:683–692. 2009. View Article : Google Scholar | |
Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, Hei DJ, Hematti P and Raval AN: Biodistribution and clearance of human mesenchymal stem cells by quantitative three-dimensional cryo-imaging after intravenous infusion in a rat lung injury model. Stem Cells Transl Med. 5:1668–1675. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J and Stewart DJ; Canadian Critical Care Trials Group: Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials. PLoS One. 7:e475592012. View Article : Google Scholar : PubMed/NCBI | |
Kansu E: Thrombosis in stem cell transplantation. Hematology. 17(Suppl 1): S159–S162. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cui LL, Kerkelä E, Bakreen A, Nitzsche F, Andrzejewska A, Nowakowski A, Janowski M, Walczak P, Boltze J, Lukomska B and Jolkkonen J: The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Res Ther. 6:112015. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Diaz M, Quiñones-Vico MI, de la Torre RS, Montero-Vílchez T, Sierra-Sánchez A, Molina-Leyva A and Arias-Santiago S: Biodistribution of mesenchymal stromal cells after administration in animal models and humans: A systematic review. J Clin Med. 10:29252021. View Article : Google Scholar : PubMed/NCBI | |
Bagno LL, Salerno AG, Balkan W and Hare JM: Mechanism of Action of Mesenchymal Stem Cells (MSCs): Impact of delivery method. Expert Opin Biol Ther. 22:449–463. 2022. View Article : Google Scholar : | |
Kim K, Bou-Ghannam S, Kameishi S, Oka M, Grainger DW and Okano T: Allogeneic mesenchymal stem cell sheet therapy: A new frontier in drug delivery systems. J Control Release. 330:696–704. 2021. View Article : Google Scholar |