
Alteration of cardiac energetics and mitochondrial function in doxorubicin‑induced cardiotoxicity: Molecular mechanism and prospective implications (Review)
- Authors:
- Gong Qing
- Chao Huang
- Jixiang Pei
- Bo Peng
-
Affiliations: Department of Gastroenterology, The People's Hospital of Chongqing Liangping District, Chongqing 405299, P.R. China, State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China, Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China, Department of Anesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China - Published online on: September 3, 2025 https://doi.org/10.3892/ijmm.2025.5624
- Article Number: 183
-
Copyright: © Qing et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022.PubMed/NCBI | |
GBD 2019 Cancer Risk Factors Collaborators: The global burden of cancer attributable to risk factors, 2010-19: A systematic analysis for the global burden of disease study 2019. Lancet. 400:563–591. 2022. View Article : Google Scholar : PubMed/NCBI | |
Global Burden of Disease 2019 Cancer Collaboration; Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, Henrikson HJ, Lu D, Pennini A, et al: Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019. JAMA Oncol. 8:420–444. 2022. View Article : Google Scholar : | |
Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D and Cipolla CM: Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin. 66:309–325. 2016.PubMed/NCBI | |
Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, et al: 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: The task force for cancer treatments and cardiovascular toxicity of the european society of cardiology (ESC). Eur Heart J. 37:2768–2801. 2016. View Article : Google Scholar : PubMed/NCBI | |
Swain SM, Whaley FS and Ewer MS: Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer. 97:2869–2879. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y and Liu LF: Topoisomerase IIbeta mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67:8839–8846. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shaikh F, Dupuis LL, Alexander S, Gupta A, Mertens L and Nathan PC: Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: A systematic review and meta-analysis. J Natl Cancer Inst. 108:djv3572015. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Shi S and Dai Y: Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother. 156:1139032022. View Article : Google Scholar | |
Wallace KB, Sardão VA and Oliveira PJ: Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ Res. 126:926–941. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bartlett JJ, Trivedi PC and Pulinilkunnil T: Autophagic dysregulation in doxorubicin cardiomyopathy. J Mol Cell Cardiol. 104:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bayer AL, Zambrano MA, Smolgovsky S, Robbe ZL, Ariza A, Kaur K, Sawden M, Avery A, London C, Asnani A and Alcaide P: Cytotoxic T cells drive doxorubicin-induced cardiac fibrosis and systolic dysfunction. Nat Cardiovasc Res. 3:970–986. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao P, Li Y, Xu X, Yang H, Li X, Fu S, Guo Z, Zhang J, Li H and Tian J: Neutrophil extracellular traps mediate cardiomyocyte ferroptosis via the Hippo-Yap pathway to exacerbate doxorubicin-induced cardiotoxicity. Cell Mol Life Sci. 81:1222024. View Article : Google Scholar : PubMed/NCBI | |
Bhagat A, Shrestha P and Kleinerman ES: The innate immune system in cardiovascular diseases and its role in doxorubicin-induced cardiotoxicity. Int J Mol Sci. 23:146492022. View Article : Google Scholar : PubMed/NCBI | |
Hutchins E, Yang EH and Stein-Merlob AF: Inflammation in chemotherapy-induced cardiotoxicity. Curr Cardiol Rep. 26:1329–1340. 2024. View Article : Google Scholar : | |
Christidi E and Brunham LR: Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 12:3392021. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Li X, Li H, Chen R, Li Z, Li D, Xu X, Zhang G, Qin L, Li B and Chu XM: Role of gut microbiota in doxorubicin-induced cardiotoxicity: From pathogenesis to related interventions. J Transl Med. 22:4332024. View Article : Google Scholar : | |
Pohjoismäki JL and Goffart S: The role of mitochondria in cardiac development and protection. Free Radic Biol Med. 106:345–354. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lopaschuk GD, Karwi QG, Tian R, Wende AR and Abel ED: Cardiac energy metabolism in heart failure. Circ Res. 128:1487–1513. 2021. View Article : Google Scholar : PubMed/NCBI | |
Greenwell AA, Gopal K and Ussher JR: Myocardial energy metabolism in non-ischemic cardiomyopathy. Front Physiol. 11:5704212020. View Article : Google Scholar : PubMed/NCBI | |
Schirone L, D'Ambrosio L, Forte M, Genovese R, Schiavon S, Spinosa G, Iacovone G, Valenti V, Frati G and Sciarretta S: Mitochondria and doxorubicin-induced cardiomyopathy: A complex interplay. Cells. 11:20002022. View Article : Google Scholar : | |
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J and Ascensão A: The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer. 1869:189–199. 2018. View Article : Google Scholar : PubMed/NCBI | |
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M and Zhang D: Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B. 11:1098–1116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bornstein MR, Tian R and Arany Z: Human cardiac metabolism. Cell Metab. 36:1456–1481. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ritterhoff J and Tian R: Metabolic mechanisms in physiological and pathological cardiac hypertrophy: New paradigms and challenges. Nat Rev Cardiol. 20:812–829. 2023. View Article : Google Scholar | |
Lam CK and Wu JC: Clinical trial in a dish: Using patient-derived induced pluripotent stem cells to identify risks of drug-induced cardiotoxicity. Arterioscler Thromb Vasc Biol. 41:1019–1031. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xue Z, Zhuo L, Zhang B, Zhu L, Xiang X, Zhang C, Liu W, Tan G and Liao W: Untargeted metabolomics reveals the combination effects and mechanisms of Huangqi-fuzi herb-pair against doxorubicin-induced cardiotoxicity. J Ethnopharmacol. 305:1161092023. View Article : Google Scholar : PubMed/NCBI | |
Díaz-Guerra A, Villena-Gutiérrez R, Clemente-Moragón A, Gómez M, Oliver E, Fernández-Tocino M, Galán-Arriola C, Cádiz L and Ibáñez B: Anthracycline cardiotoxicity induces progressive changes in myocardial metabolism and mitochondrial quality control: novel therapeutic target. JACC CardioOncol. 6:217–232. 2024. View Article : Google Scholar | |
Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T and Schlattner U: New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. J Mol Cell Cardiol. 41:389–405. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wu H, Liu Y, Liu L, Houser SR and Wang WE: Metabolic reprogramming: A byproduct or a driver of cardiomyocyte proliferation? Circulation. 149:1598–1610. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hrelia S, Fiorentini D, Maraldi T, Angeloni C, Bordoni A, Biagi PL and Hakim G: Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta. 1567:150–156. 2002. View Article : Google Scholar : PubMed/NCBI | |
Renu K, Vinayagam S, Madhyastha H, Madhyastha R, Maruyama M, Suman S, Arunachalam S, Vellingiri B and Valsala Gopalakrishnan A: Exploring the pattern of metabolic alterations causing energy imbalance via PPARα dysregulation in cardiac muscle during doxorubicin treatment. Cardiovasc Toxicol. 22:436–461. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jeyaseelan R, Poizat C, Wu HY and Kedes L: Molecular mechanisms of doxorubicin-induced cardiomyopathy. Selective suppression of Reiske iron-sulfur protein, ADP/ATP translocase, and phosphofructokinase genes is associated with ATP depletion in rat cardiomyocytes. J Biol Chem. 272:5828–5832. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Shen M, Liu Y, Manhas A, Zhao SR, Zhang M, Belbachir N, Ren L, Zhang JZ, Caudal A, et al: CRISPRi/a screens in human iPSC-cardiomyocytes identify glycolytic activation as a druggable target for doxorubicin-induced cardiotoxicity. Cell Stem Cell. 31:1760–1776.e9. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bertero E and Maack C: Metabolic remodelling in heart failure. Nat Rev Cardiol. 15:457–470. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M and Evans RM: PPARγ signaling and metabolism: The good, the bad and the future. Nat Med. 19:557–566. 2013. View Article : Google Scholar : PubMed/NCBI | |
Loke YK, Kwok CS and Singh S: Comparative cardiovascular effects of thiazolidinediones: Systematic review and meta-analysis of observational studies. BMJ. 342:d13092011. View Article : Google Scholar : PubMed/NCBI | |
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS and Stanley WC: Myocardial fatty acid metabolism in health and disease. Physiol Rev. 90:207–258. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abdel-aleem S, el-Merzabani MM, Sayed-Ahmed M, Taylor DA and Lowe JE: Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes. J Mol Cell Cardiol. 29:789–797. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhang H, Li X, Yang T and Jiang Q: Effects of PPARα/PGC-1α on the myocardial energy metabolism during heart failure in the doxorubicin induced dilated cardiomyopathy in mice. Int J Clin Exp Med. 7:2435–2442. 2014. | |
Kim TT and Dyck JRB: Is AMPK the savior of the failing heart? Trends Endocrinol Metab. 26:40–48. 2015. View Article : Google Scholar | |
Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JF and Luiken JJ: Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia. 53:2209–2219. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hardie DG: AMP-activated protein kinase: A master switch in glucose and lipid metabolism. Rev Endocr Metab Disord. 5:119–125. 2004. View Article : Google Scholar : PubMed/NCBI | |
Folmes CDL and Lopaschuk GD: Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Cardiovasc Res. 73:278–287. 2007. View Article : Google Scholar | |
Tokarska-Schlattner M, Zaugg M, da Silva R, Lucchinetti E, Schaub MC, Wallimann T and Schlattner U: Acute toxicity of doxorubicin on isolated perfused heart: Response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol. 289:H37–H47. 2005. View Article : Google Scholar : PubMed/NCBI | |
Timm KN and Tyler DJ: The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovasc Drugs Ther. 34:255–269. 2020. View Article : Google Scholar : | |
Puchalska P and Crawford PA: Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25:262–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL and Passonneau JV: Control of glucose utilization in working perfused rat heart. J Biol Chem. 269:25502–25514. 1994. View Article : Google Scholar : PubMed/NCBI | |
Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, et al: The failing heart relies on ketone bodies as a fuel. Circulation. 133:698–705. 2016. View Article : Google Scholar : PubMed/NCBI | |
Selvaraj S, Kelly DP and Margulies KB: Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation. 141:1800–1812. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, Harms HJ, Frøkiær J, Eiskjaer H, Jespersen NR, et al: Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 139:2129–2141. 2019. View Article : Google Scholar : PubMed/NCBI | |
Horton JL, Davidson MT, Kurishima C, Vega RB, Powers JC, Matsuura TR, Petucci C, Lewandowski ED, Crawford PA, Muoio DM, et al: The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight. 4:e1240792019. View Article : Google Scholar : | |
Matsuura TR, Puchalska P, Crawford PA and Kelly DP: Ketones and the heart: Metabolic principles and therapeutic implications. Circ Res. 132:882–898. 2023. View Article : Google Scholar : | |
Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, Xiao H, Yu H, Zheng Y, Liang Y, et al: Targeting mitochondria-inflammation circuit by beta-hydroxybutyrate mitigates HFpEF. Circ Res. 128:232–245. 2021. View Article : Google Scholar | |
Liu Y, Wei X, Wu M, Xu J, Xu B and Kang L: Cardioprotective roles of β-hydroxybutyrate against doxorubicin induced cardiotoxicity. Front Pharmacol. 11:6035962020. View Article : Google Scholar | |
McGarrah RW and White PJ: Branched-chain amino acids in cardiovascular disease. Nat Rev Cardiol. 20:77–89. 2023. View Article : Google Scholar | |
Quitter F, Figulla HR, Ferrari M, Pernow J and Jung C: Increased arginase levels in heart failure represent a therapeutic target to rescue microvascular perfusion. Clin Hemorheol Microcirc. 54:75–85. 2013. View Article : Google Scholar | |
Navik U, Sheth VG, Kabeer SW and Tikoo K: Dietary supplementation of methyl donor l-methionine alters epigenetic modification in type 2 diabetes. Mol Nutr Food Res. 63:e18014012019. View Article : Google Scholar : PubMed/NCBI | |
Xin Y, Zhang Y, Yuan Z and Li S: Methionine is an essential amino acid in doxorubicin-induced cardiotoxicity through modulating mitophagy. Free Radic Biol Med. 232:28–39. 2025. View Article : Google Scholar : PubMed/NCBI | |
Nolfi-Donegan D, Braganza A and Shiva S: Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 37:1016742020. View Article : Google Scholar : PubMed/NCBI | |
Dorn GW II: Mitochondrial dynamism and heart disease: Changing shape and shaping change. EMBO Mol Med. 7:865–877. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peoples JN, Saraf A, Ghazal N, Pham TT and Kwong JQ: Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 51:1–13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q and Dolinsky VW: Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem. 290:10981–10993. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Abudureyimu M, Wang X, Zhou Y, Zhang Y and Ren J: PHB2 ameliorates doxorubicin-induced cardiomyopathy through interaction with NDUFV2 and restoration of mitochondrial complex I function. Redox Biol. 65:1028122023. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Chen Z, Lu D, Wu Y, Fan M, Qian J and Ge J: Overexpression of COX5A protects H9c2 cells against doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun. 524:43–49. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Chiang WC, Sumpter R Jr, Mishra P and Levine B: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 168:224–238.e10. 2017. View Article : Google Scholar : | |
Berthiaume JM and Wallace KB: Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol. 23:15–25. 2007. View Article : Google Scholar | |
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hirschhorn T and Stockwell BR: The development of the concept of ferroptosis. Free Radic Biol Med. 133:130–143. 2019. View Article : Google Scholar : | |
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : | |
Wu L, Zhang Y, Wang G and Ren J: Molecular mechanisms and therapeutic targeting of ferroptosis in doxorubicin-induced cardiotoxicity. JACC Basic Transl Sci. 9:811–826. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Wang Q, Zhang M, Shu Q and Zhu J: Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 178:1172172024. View Article : Google Scholar : PubMed/NCBI | |
Stěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V and Simůnek T: Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal. 18:899–929. 2013. View Article : Google Scholar | |
Ji Y, Jin D, Qi J, Wang X, Zhang C, An P, Luo Y and Luo J: Fucoidan protects against doxorubicin-induced cardiotoxicity by reducing oxidative stress and preventing mitochondrial function injury. Int J Mol Sci. 23:106852022. View Article : Google Scholar : PubMed/NCBI | |
Picca A, Mankowski RT, Burman JL, Donisi L, Kim JS, Marzetti E and Leeuwenburgh C: Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol. 15:543–554. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Wang L, Du Y, Zhang Y and Ren J: Mitochondrial quality control mechanisms as therapeutic targets in doxorubicin-induced cardiotoxicity. Trends Pharmacol Sci. 44:34–49. 2023. View Article : Google Scholar | |
Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, et al: Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 470:359–365. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, et al: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 127:1109–1122. 2006. View Article : Google Scholar | |
Herzig S and Shaw RJ: AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 19:121–135. 2018. View Article : Google Scholar : | |
Jäger S, Handschin C, St-Pierre J and Spiegelman BM: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 104:12017–12022. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guberman M, Dhingra R, Cross J, Margulets V, Gang H, Rabinovich-Nikitin I and Kirshenbaum LA: IKKβ stabilizes mitofusin 2 and suppresses doxorubicin cardiomyopathy. Cardiovasc Res. 120:164–173. 2024. View Article : Google Scholar : PubMed/NCBI | |
Maneechote C, Chattipakorn SC and Chattipakorn N: Recent advances in mitochondrial fission/fusion-targeted therapy in doxorubicin-induced cardiotoxicity. Pharmaceutics. 15:11822023. View Article : Google Scholar : PubMed/NCBI | |
Giacomello M, Pyakurel A, Glytsou C and Scorrano L: The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 21:204–224. 2020. View Article : Google Scholar | |
Chen W, Zhao H and Li Y: Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct Target Ther. 8:3332023. View Article : Google Scholar : | |
Xia Y, Chen Z, Chen A, Fu M, Dong Z, Hu K, Yang X, Zou Y, Sun A, Qian J and Ge J: LCZ696 improves cardiac function via alleviating Drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy. J Mol Cell Cardiol. 108:138–148. 2017. View Article : Google Scholar | |
Ding M, Shi R, Cheng S, Li M, De D, Liu C, Gu X, Li J, Zhang S, Jia M, et al: Mfn2-mediated mitochondrial fusion alleviates doxorubicin-induced cardiotoxicity with enhancing its anticancer activity through metabolic switch. Redox Biol. 52:1023112022. View Article : Google Scholar : PubMed/NCBI | |
He W, Wang J, He W, Zeng L, Zhao R, Qiu K, Tong G, Sun Z and He P: PGAM5 aggravated doxorubicin-induced cardiotoxicity by disturbing mitochondrial dynamics and exacerbating cardiomyocytes apoptosis. Free Radic Biol Med. 235:95–108. 2025. View Article : Google Scholar : PubMed/NCBI | |
Youle RJ and Narendra DP: Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 12:9–14. 2011. View Article : Google Scholar | |
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ and Ren J: Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends Mol Med. 28:836–849. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW and Zhao G: The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 8:3042023. View Article : Google Scholar | |
Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, Ikeda K, Ogata T and Matoba S: Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun. 4:23082013. View Article : Google Scholar : PubMed/NCBI | |
Dhingra R, Margulets V, Chowdhury SR, Thliveris J, Jassal D, Fernyhough P, Dorn GW II and Kirshenbaum LA: Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc Natl Acad Sci USA. 111:E5537–E5544. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Wang L, Lu J, Hu Y, Wang Q, Li Z, Cai S, Liang L, Guo K, Xie J, et al: SESN2 protects against doxorubicin-induced cardiomyopathy via rescuing mitophagy and improving mitochondrial function. J Mol Cell Cardiol. 133:125–137. 2019. View Article : Google Scholar : PubMed/NCBI | |
He W, Sun Z, Tong G, Zeng L, He W, Chen X, Zhen C, Chen P, Tan N and He P: FUNDC1 alleviates doxorubicin-induced cardiotoxicity by restoring mitochondrial-endoplasmic reticulum contacts and blocked autophagic flux. Theranostics. 14:3719–3738. 2024. View Article : Google Scholar : | |
Yu W, Deng D, Li Y, Ding K, Qian Q, Shi H, Luo Q, Cai J and Liu J: Cardiomyocyte-specific Tbk1 deletion aggravated chronic doxorubicin cardiotoxicity via inhibition of mitophagy. Free Radic Biol Med. 222:244–258. 2024. View Article : Google Scholar | |
Lu L, Shao Y, Wang N, Xiong X, Zhai M, Tang J, Liu Y, Yang J and Yang L: Follistatin-like protein 1 attenuates doxorubicin-induced cardiomyopathy by inhibiting MsrB2-mediated mitophagy. Mol Cell Biochem. 479:1817–1831. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Xie S and Deng W: Mitophagy in doxorubicin-induced cardiotoxicity: Insights into molecular biology and novel therapeutic strategies. Biomolecules. 14:16142024. View Article : Google Scholar : | |
Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, Plana JC, Cohen V, Banchs J, Carver JR, et al: Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 63:809–816. 2014. View Article : Google Scholar | |
Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP and Deigner HP: Targeted metabolomics for biomarker discovery. Angew Chem Int Ed Engl. 49:5426–5445. 2010. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Bakhtyar M, Jun SR, Boerma M, Lan RS, Su LJ, Makhoul S and Hsu PC: A narrative review of metabolomics approaches in identifying biomarkers of doxorubicin-induced cardiotoxicity. Metabolomics. 21:682025. View Article : Google Scholar : PubMed/NCBI | |
Asnani A, Shi X, Farrell L, Lall R, Sebag IA, Plana JC, Gerszten RE and Scherrer-Crosbie M: Changes in citric acid cycle and nucleoside metabolism are associated with anthracycline cardiotoxicity in patients with breast cancer. J Cardiovasc Transl Res. 13:349–356. 2020. View Article : Google Scholar | |
Thonusin C, Osataphan N, Leemasawat K, Nawara W, Sriwichaiin S, Supakham S, Gunaparn S, Apaijai N, Somwangprasert A, Phrommintikul A, et al: Changes in blood metabolomes as potential markers for severity and prognosis in doxorubicin-induced cardiotoxicity: A study in HER2-positive and HER2-negative breast cancer patients. J Transl Med. 22:3982024. View Article : Google Scholar : | |
Finkelman BS, Putt M, Wang T, Wang L, Narayan H, Domchek S, DeMichele A, Fox K, Matro J, Shah P, et al: Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. J Am Coll Cardiol. 70:152–162. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thonusin C, Nawara W, Khuanjing T, Prathumsup N, Arinno A, Ongnok B, Arunsak B, Sriwichaiin S, Chattipakorn SC and Chattipakorn N: Blood metabolomes as non-invasive biomarkers and targets of metabolic interventions for doxorubicin and trastuzumab-induced cardiotoxicity. Arch Toxicol. 97:603–618. 2023. View Article : Google Scholar | |
Choksey A and Timm KN: Cancer therapy-induced cardiotoxicity-a metabolic perspective on pathogenesis, diagnosis and therapy. Int J Mol Sci. 23:4412021. View Article : Google Scholar | |
Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, Ghidella A, Pomposelli E, Miglino M, Ameri P, et al: Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: A translational 18F-FDG PET/CT observation. J Nucl Med. 58:1638–1645. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seiffert AP, Gómez-Grande A, Castro-Leal G, Rodríguez A, Palomino-Fernández D, Gómez EJ, Sánchez-González P and Bueno H: An image processing tool for the detection of anthracycline-induced cardiotoxicity by evaluating the myocardial metabolic activity in [18F]FDG PET/CT. Int J Comput Assist Radiol Surg. 17:373–383. 2022. View Article : Google Scholar | |
Oh CM, Cho S, Jang JY, Kim H, Chun S, Choi M, Park S and Ko YG: Cardioprotective potential of an SGLT2 inhibitor against doxorubicin-induced heart failure. Korean Circ J. 49:1183–1195. 2019. View Article : Google Scholar : | |
Sabatino J, De Rosa S, Tammè L, Iaconetti C, Sorrentino S, Polimeni A, Mignogna C, Amorosi A, Spaccarotella C, Yasuda M and Indolfi C: Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc Diabetol. 19:662020. View Article : Google Scholar : PubMed/NCBI | |
Thirunavukarasu S, Brown LA, Chowdhary A, Jex N, Swoboda P, Greenwood JP, Plein S and Levelt E: Rationale and design of the randomised controlled cross-over trial: Cardiovascular effects of empaglifozin in diabetes mellitus. Diab Vasc Dis Res. 18:147916412110215852021. View Article : Google Scholar : PubMed/NCBI | |
Wang CY, Chen CC, Lin MH, Su HT, Ho MY, Yeh JK, Tsai ML, Hsieh IC and Wen MS: TLR9 binding to beclin 1 and mitochondrial SIRT3 by a sodium-glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity. Biology (Basel). 9:3692020. | |
Barış VÖ, Dinçsoy AB, Gedikli E, Zırh S, Müftüoğlu S and Erdem A: Empagliflozin significantly prevents the doxorubicin-induced acute cardiotoxicity via non-antioxidant pathways. Cardiovasc Toxicol. 21:747–758. 2021. View Article : Google Scholar | |
Medina-Her nández D, Cádiz L, Mastrangelo A, Moreno-Arciniegas A, Fernández Tocino M, Cueto Becerra AA, Díaz-Guerra Priego A, Skoza WA, Higuero-Verdejo MI, López-Martín GJ, et al: SGLT2i therapy prevents anthracycline-induced cardiotoxicity in a large animal model by preserving myocardial energetics. JACC CardioOncol. 7:171–184. 2025. View Article : Google Scholar | |
Daniele AJ, Gregorietti V, Costa D and López-Fernández T: Use of EMPAgliflozin in the prevention of CARDiotoxicity: The EMPACARD-PILOT trial. Cardiooncology. 10:582024. | |
Bhalraam U, Veerni RB, Paddock S, Meng J, Piepoli M, López-Fernández T, Tsampasian V and Vassiliou VS: Impact of sodium-glucose cotransporter-2 inhibitors on heart failure outcomes in cancer patients and survivors: A systematic review and meta-analysis. Eur J Prev Cardiol. Mar 6–2025.Epub ahead of print. View Article : Google Scholar | |
Singh M and Jadhav HR: Melatonin: Functions and ligands. Drug Discov Today. 19:1410–1418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Govender J, Loos B, Marais E and Engelbrecht AM: Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: A review of the protective role of melatonin. J Pineal Res. 57:367–380. 2014. View Article : Google Scholar | |
Attachaipanich T, Chattipakorn SC and Chattipakorn N: Potential roles of melatonin in doxorubicin-induced cardiotoxicity: From cellular mechanisms to clinical application. Pharmaceutics. 15:7852023. View Article : Google Scholar : PubMed/NCBI | |
Thonusin C, Nawara W, Arinno A, Khuanjing T, Prathumsup N, Ongnok B, Chattipakorn SC and Chattipakorn N: Effects of melatonin on cardiac metabolic reprogramming in doxorubicin-induced heart failure rats: A metabolomics study for potential therapeutic targets. J Pineal Res. 75:e128842023. View Article : Google Scholar : PubMed/NCBI | |
Pascale C, Fornengo P, Epifani G, Bosio A and Giacometto F: Cardioprotection of trimetazidine and anthracycline-induced acute cardiotoxic effects. Lancet. 359:1153–1154. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tuunanen H, Engblom E, Naum A, Någren K, Scheinin M, Hesse B, Juhani Airaksinen KE, Nuutila P, Iozzo P, Ukkonen H, et al: Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation. 118:1250–1258. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang S, Pan G, Lin L, Liu D, Liu Z, Mei S, Zhang L, Hu Z, Chen J, et al: Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci. 249:1174982020. View Article : Google Scholar : PubMed/NCBI | |
Foretz M, Guigas B and Viollet B: Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 15:569–589. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kobashigawa LC, Xu YC, Padbury JF, Tseng YT and Yano N: Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: An in vitro study. PLoS One. 9:e1048882014. View Article : Google Scholar : PubMed/NCBI | |
Zilinyi R, Czompa A, Czegledi A, Gajtko A, Pituk D, Lekli I and Tosaki A: The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: The role of autophagy. Molecules. 23:11842018. View Article : Google Scholar : PubMed/NCBI | |
Onoue T, Kang Y, Lefebvre B, Smith AM, Denduluri S, Carver J, Fradley MG, Chittams J and Scherrer-Crosbie M: The association of metformin with heart failure in patients with diabetes mellitus receiving anthracycline chemotherapy. JACC CardioOncol. 5:674–682. 2023. View Article : Google Scholar : PubMed/NCBI | |
Serageldin MA, Kassem AB, El-Kerm Y, Helmy MW, El-Mas MM and El-Bassiouny NA: The effect of metformin on chemotherapy-induced toxicities in non-diabetic breast cancer patients: A randomised controlled study. Drug Saf. 46:587–599. 2023. View Article : Google Scholar : | |
Alenghat FJ and Davis AM: Management of blood cholesterol. JAMA. 321:800–801. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Lee TS, Zhu M, Gu C, Wang Y, Zhu Y and Shyy JY: Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation. 114:2655–2662. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yoshida M, Shiojima I, Ikeda H and Komuro I: Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol. 47:698–705. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huelsenbeck J, Henninger C, Schad A, Lackner KJ, Kaina B and Fritz G: Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis. 2:e1902011. View Article : Google Scholar : PubMed/NCBI | |
Al-Kuraishy HM, Al-Gareeb AI, Alkhuriji AF, Al-Megrin WAI, Elekhnawy E, Negm WA, De Waard M and Batiha GE: Investigation of the impact of rosuvastatin and telmisartan in doxorubicin-induced acute cardiotoxicity. Biomed Pharmacother. 154:1136732022. View Article : Google Scholar | |
He H, Wang L, Qiao Y, Yang B, Yin D and He M: Epigallocatechin-3-gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKα2 and activating adaptive autophagy. Redox Biol. 48:1021852021. View Article : Google Scholar | |
Andreadou I, Sigala F, Iliodromitis EK, Papaefthimiou M, Sigalas C, Aligiannis N, Savvari P, Gorgoulis V, Papalabros E and Kremastinos DT: Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. J Mol Cell Cardiol. 42:549–558. 2007. View Article : Google Scholar : PubMed/NCBI | |
Andreadou I, Mikros E, Ioannidis K, Sigala F, Naka K, Kostidis S, Farmakis D, Tenta R, Kavantzas N, Bibli SI, et al: Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism. J Mol Cell Cardiol. 69:4–16. 2014. View Article : Google Scholar : PubMed/NCBI | |
Andreadou I, Papaefthimiou M, Zira A, Constantinou M, Sigala F, Skaltsounis AL, Tsantili-Kakoulidou A, Iliodromitis EK, Kremastinos DT and Mikros E: Metabonomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective effect of the natural antioxidant oleuropein. NMR Biomed. 22:585–592. 2009. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Yadav P, Patel D, Tanwar SS, Sherawat A, Khurana A, Bhatti JS and Navik U: Betaine ameliorates doxorubicin-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and fibrosis through the modulation of AMPK/Nrf2/TGF-β expression. Environ Toxicol. 39:4134–4147. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kong L, Liu Y, Wang JH, Lv MJ, Wang YZ, Sun WP, Cao HM, Guo RB, Zhang L, Yu Y, et al: Linggui Zhugan decoction ameliorating mitochondrial damage of doxorubicin-induced cardiotoxicity by modulating the AMPK-FOXO3a pathway targeting BTG2. Phytomedicine. 139:1565292025. View Article : Google Scholar : PubMed/NCBI | |
Qaed E, Almoiliqy M, Liu W, Al-Mashriqi HS, Alyafeai E, Aldahmash W, Mahyoub MA and Tang Z: Protective effects of phosphocreatine against doxorubicin-Induced cardiotoxicity through mitochondrial function enhancement and apoptosis suppression via AMPK/PGC-1α signaling pathway. Int Immunopharmacol. 144:1136772025. View Article : Google Scholar | |
Liu D, Ma Z, Di S, Yang Y, Yang J, Xu L, Reiter RJ, Qiao S and Yuan J: AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med. 129:59–72. 2018. View Article : Google Scholar | |
Gharanei M, Hussain A, Janneh O and Maddock H: Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: A mitochondrial division/mitophagy inhibitor. PLoS One. 8:e777132013. View Article : Google Scholar : PubMed/NCBI | |
Dhingra A, Jayas R, Afshar P, Guberman M, Maddaford G, Gerstein J, Lieberman B, Nepon H, Margulets V, Dhingra R and Kirshenbaum LA: Ellagic acid antagonizes Bnip3-mediated mitochondrial injury and necrotic cell death of cardiac myocytes. Free Radic Biol Med. 112:411–422. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Wang S, Wang L, Ceylan AF, Ren J and Zhang Y: Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol Res. 157:1048462020. View Article : Google Scholar : PubMed/NCBI | |
Marechal X, Montaigne D, Marciniak C, Marchetti P, Hassoun SM, Beauvillain JC, Lancel S and Neviere R: Doxorubicin-induced cardiac dysfunction is attenuated by ciclosporin treatment in mice through improvements in mitochondrial bioenergetics. Clin Sci (Lond). 121:405–413. 2011. View Article : Google Scholar | |
Ding M, Shi R, Fu F, Li M, De D, Du Y and Li Z: Paeonol protects against doxorubicin-induced cardiotoxicity by promoting Mfn2-mediated mitochondrial fusion through activating the PKCε-Stat3 pathway. J Adv Res. 47:151–162. 2023. View Article : Google Scholar | |
Sripusanapan A, Piriyakulthorn C, Apaijai N, Chattipakorn SC and Chattipakorn N: Ivabradine ameliorates doxorubicin-induced cardiotoxicity through improving mitochondrial function and cardiac calcium homeostasis. Biochem Pharmacol. 236:1168812025. View Article : Google Scholar | |
Ge W, Zhang X, Lin J, Wang Y, Zhang X, Duan Y, Dai X, Zhang J, Zhang Y, Jiang M, et al: Rnd3 protects against doxorubicin-induced cardiotoxicity through inhibition of PANoptosis in a Rock1/Drp1/mitochondrial fission-dependent manner. Cell Death Dis. 16:22025. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Yu W, Sun S, Li C, Zhang Y and Ren J: Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy. Front Physiol. 11:1132020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Luo W, Tang Y, Wu J, Zhang J, Chen S, Zhou L, Tao Y, Tang Y, Wang F, et al: Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-Mediated mitochondrial dysfunction. Redox Biol. 72:1031292024. View Article : Google Scholar : PubMed/NCBI | |
Maghraby N, El-Baz MAH, Hassan AMA, Abd-Elghaffar SK, Ahmed AS and Sabra MS: Metformin alleviates doxorubicin-induced cardiotoxicity via preserving mitochondrial dynamics balance and calcium homeostasis. Appl Biochem Biotechnol. 197:2713–2733. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Zhang H, Xu T, Mei X, Wang X, Yang Q, Luo Z, Zeng Q, Xu D and Ren H: Vericiguat attenuates doxorubicin-induced cardiotoxicity through the PRKG1/PINK1/STING axis. Transl Res. 273:90–103. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ma C, Mi K, Cao X, Tan Y, Yuan H, Ren J and Liang X: Urolithin A attenuates doxorubicin-induced cardiotoxicity by enhancing PINK1-regulated mitophagy via Ambra1. Chem Biol Interact. 406:1113632025. View Article : Google Scholar | |
Fu J, Cheng L, Zhang J, Sun R, Yu M, Wu M, Li S and Cui X: Isoliquiritin targeting m5C RNA methylation improves mitophagy in doxorubicin-induced myocardial cardiotoxicity. Phytomedicine. 136:1562932025. View Article : Google Scholar | |
Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, Izquierdo M, Ruilope LM and Lucia A: Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat Rev Cardiol. 15:731–743. 2018. View Article : Google Scholar : PubMed/NCBI | |
Naaktgeboren WR, Binyam D, Stuiver MM, Aaronson NK, Teske AJ, van Harten WH, Groen WG and May AM: Efficacy of physical exercise to offset anthracycline-induced cardiotoxicity: A systematic review and meta-analysis of clinical and preclinical studies. J Am Heart Assoc. 10:e0215802021. View Article : Google Scholar | |
Antunes P, Joaquim A, Sampaio F, Nunes C, Ascensão A, Vilela E, Teixeira M, Capela A, Amarelo A, Marques C, et al: Effects of exercise training on cardiac toxicity markers in women with breast cancer undergoing chemotherapy with anthracyclines: A randomized controlled trial. Eur J Prev Cardiol. 30:844–855. 2023. View Article : Google Scholar : PubMed/NCBI | |
Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS and Jones LW: Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: Current evidence and underlying mechanisms. Circulation. 124:642–650. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Qiao Y, Yu J, Wang Q, Wu X, Cao Q, Zhang Z, Feng Z and He H: Endurance exercise preconditioning alleviates ferroptosis induced by doxorubicin-induced cardiotoxicity through mitochondrial superoxide-dependent AMPKα2 activation. Redox Biol. 70:1030792024. View Article : Google Scholar | |
Suthivanich P, Boonhoh W, Sumneang N, Punsawad C, Cheng Z and Phungphong S: Aerobic exercise attenuates doxorubicin-induced cardiomyopathy by suppressing NLRP3 inflammasome activation in a rat model. Int J Mol Sci. 25:96922024. View Article : Google Scholar : | |
Wang J, Liu S, Meng X, Zhao X, Wang T, Lei Z, Lehmann HI, Li G, Alcaide P, Bei Y and Xiao J: Exercise inhibits doxorubicin-induced cardiotoxicity via regulating B cells. Circ Res. 134:550–568. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ozcan M, Guo Z, Valenzuela Ripoll C, Diab A, Picataggi A, Rawnsley D, Lotfinaghsh A, Bergom C, Szymanski J, Hwang D, et al: Sustained alternate-day fasting potentiates doxorubicin cardiotoxicity. Cell Metab. 35:928–942.e4. 2023. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Sun J, Zhang G, Yu T and Piao H: Fasting: A complex, double-edged blade in the battle against doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol. 24:1395–1409. 2024. View Article : Google Scholar : PubMed/NCBI | |
Cortellino S, Quagliariello V, Delfanti G, Blaževitš O, Chiodoni C, Maurea N, Di Mauro A, Tatangelo F, Pisati F, Shmahala A, et al: Fasting mimicking diet in mice delays cancer growth and reduces immunotherapy-associated cardiovascular and systemic side effects. Nat Commun. 14:55292023. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Xu T, Zang F, Luo Y and Pan D: Cardiotoxicity of anticancer drugs: Molecular mechanisms, clinical management and innovative treatment. Drug Des Devel Ther. 18:4089–4116. 2024. View Article : Google Scholar : | |
Hayashida K, Takegawa R, Shoaib M, Aoki T, Choudhary RC, Kuschner CE, Nishikimi M, Miyara SJ, Rolston DM, Guevara S, et al: Mitochondrial transplantation therapy for ischemia reperfusion injury: A systematic review of animal and human studies. J Transl Med. 19:2142021. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Jiang W, Mu N, Zhang Z, Yu L and Ma H: Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases. J Transl Med. 21:3472023. View Article : Google Scholar : PubMed/NCBI | |
Maleki F, Salimi M, Shirkoohi R and Rezaei M: Mitotherapy in doxorubicin induced cardiotoxicity: A promising strategy to reduce the complications of treatment. Life Sci. 304:1207012022. View Article : Google Scholar : PubMed/NCBI | |
Maleki F, Rabbani S, Shirkoohi R and Rezaei M: Allogeneic mitochondrial transplantation ameliorates cardiac dysfunction due to doxorubicin: An in vivo study. Biomed Pharmacother. 168:1156512023. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Chen H, Gao R, Huang Y, Qu Y, Yang H, Wei X, Hu S, Zhang J, Wang P, et al: Mitochondrial transplantation ameliorates doxorubicin-induced cardiac dysfunction via activating glutamine metabolism. iScience. 26:1077902023. View Article : Google Scholar : PubMed/NCBI | |
Xiong W, Li B, Pan J, Li D, Yuan H, Wan X, Zhang Y, Fu L, Zhang J, Lei M and Chang ACY: Mitochondrial amount determines doxorubicin-induced cardiotoxicity in cardiomyocytes. Adv Sci (Weinh). 12:e24120172025. View Article : Google Scholar : PubMed/NCBI | |
Nencioni A, Caffa I, Cortellino S and Longo VD: Fasting and cancer: Molecular mechanisms and clinical application. Nat Rev Cancer. 18:707–719. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Zingaro VA, Lincoff J, Tom H, Oikawa S, Oses-Prieto JA, Edmondson Q, Seiple I, Shah H, Kajimura S, et al: Remodelling of the translatome controls diet and its impact on tumorigenesis. Nature. 633:189–197. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang L, TeSlaa T, Ng S, Nofal M, Wang L, Lan T, Zeng X, Cowan A, McBride M, Lu W, et al: Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med. 3:119–136. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ferrer M, Mourikis N, Davidson EE, Kleeman SO, Zaccaria M, Habel J, Rubino R, Gao Q, Flint TR, Young L, et al: Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. Cell Metab. 35:1147–1162.e7. 2023. View Article : Google Scholar : PubMed/NCBI | |
Karlstaedt A, Moslehi J and de Boer RA: Cardio-oncometabolism: Metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol. 19:414–425. 2022. View Article : Google Scholar : PubMed/NCBI |