1
|
Siddiqui S, Mateen S, Ahmad R and Moin S:
A brief insight into the etiology, genetics, and immunology of
polycystic ovarian syndrome (PCOS). J Assist Reprod Genet.
39:2439–2473. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Xu Q, Zhang J, Lu Y and Wu L: Association
of metabolic-dysfunction associated steatotic liver disease with
polycystic ovary syndrome. iScience. 27:1087832024. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vidal-Cevallos P, Mijangos-Trejo A, Uribe
M and Tapia NC: The interlink between metabolic-associated fatty
liver disease and polycystic ovary syndrome. Endocrinol Metab Clin
North Am. 52:533–545. 2023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Paschou SA, Polyzos SA, Anagnostis P,
Goulis DG, Kanaka-Gantenbein C, Lambrinoudaki I, Georgopoulos NA
and Vryonidou A: Nonalcoholic fatty liver disease in women with
polycystic ovary syndrome. Endocrine. 67:1–8. 2020. View Article : Google Scholar
|
5
|
Kumarendran B, O'Reilly MW, Manolopoulos
KN, Toulis KA, Gokhale KM, Sitch AJ, Wijeyaratne CN, Coomarasamy A,
Arlt W and Nirantharakumar K: Polycystic ovary syndrome, androgen
excess, and the risk of nonalcoholic fatty liver disease in women:
A longitudinal study based on a United Kingdom primary care
database. PLoS Med. 15:e10025422018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wu J, Yao XY, Shi RX, Liu SF and Wang XY:
A potential link between polycystic ovary syndrome and
non-alcoholic fatty liver disease: an update meta-analysis. Reprod
Health. 15:772018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Younossi ZM, Blissett D, Blissett R, Henry
L, Stepanova M, Younossi Y, Racila A, Hunt S and Beckerman R: The
economic and clinical burden of nonalcoholic fatty liver disease in
the United States and Europe. Hepatology. 64:1577–1586. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Swinnen JV, Ulrix W, Heyns W and Verhoeven
G: Coordinate regulation of lipogenic gene expression by androgens:
Evidence for a cascade mechanism involving sterol regulatory
element binding proteins. Proc Natl Acad Sci USA. 94:12975–12980.
1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li N, Li X, Ding Y, Liu X, Diggle K,
Kisseleva T and Brenner DA: SREBP regulation of lipid metabolism in
liver disease, and therapeutic strategies. Biomedicines.
11:32802023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Seidu T, McWhorter P, Myer J, Alamgir R,
Eregha N, Bogle D, Lofton T, Ecelbarger C and Andrisse S: DHT
causes liver steatosis via transcriptional regulation of SCAP in
normal weight female mice. J Endocrinol. 250:49–65. 2021.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Matsumoto H, Yamamoto Y, Shiota M, Kuruma
H, Beraldi E, Matsuyama H, Zoubeidi A and Gleave M: Cotargeting
androgen receptor and clusterin delays castrate-resistant prostate
cancer progression by inhibiting adaptive stress response and AR
stability. Cancer Res. 73:5206–5217. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Saxena N, Beraldi E, Fazli L, Somasekharan
SP, Adomat H, Zhang F, Molokwu C, Gleave A, Nappi L, Nguyen K, et
al: Androgen receptor (AR) antagonism triggers acute
succinate-mediated adaptive responses to reactivate AR signaling.
EMBO Mol Med. 13:e134272021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Magni P, Macchi C, Morlotti B, Sirtori CR
and Ruscica M: Risk identification and possible countermeasures for
muscle adverse effects during statin therapy. Eur J Intern Med.
26:82–88. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yaribeygi H, Maleki M, Butler AE,
Jamialahmadi T and Sahebkar A: New insights into cellular links
between sodium-glucose cotransporter-2 inhibitors and ketogenesis.
J Cell Biochem. 123:1879–1890. 2022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hu Q, Zhang W, Wu Z, Tian X, Xiang J, Li
L, Li Z, Peng X, Wei S, Ma X, et al: Baicalin and the liver-gut
system: Pharmacological bases explaining its therapeutic effects.
Pharmacol Res. 165:1054442021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu
H, Lv J, Cao C, Chen T, Zhuang S, et al: Chemoproteomics reveals
baicalin activates hepatic CPT1 to ameliorate diet-induced obesity
and hepatic steatosis. Proc Natl Acad Sci USA. 115:E5896–e5905.
2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jin BR and An HJ: Baicalin alleviates
benign prostate hyperplasia through androgen-dependent apoptosis.
Aging (Albany NY). 12:2142–2155. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chan FL, Choi HL, Chen ZY, Chan PS and
Huang Y: Induction of apoptosis in prostate cancer cell lines by a
flavonoid, baicalin. Cancer Lett. 160:219–228. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim AR, Kim SN, Jung IK, Kim HH, Park YH
and Park WS: The inhibitory effect of Scutellaria baicalensis
extract and its active compound, baicalin, on the translocation of
the androgen receptor with implications for preventing androgenetic
alopecia. Planta Med. 80:153–158. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu X, Xu X, Wang X and Shen L: Baicalin
suppress the development of polycystic ovary syndrome via
regulating the miR-874-3p/FOXO3 and miR-144/FOXO1 axis. Pharm Biol.
61:878–885. 2023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Percie du Sert N, Hurst V, Ahluwalia A,
Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl
U, et al: The ARRIVE guidelines 2.0: Updated guidelines for
reporting animal research. Br J Pharmacol. 177:3617–3624. 2020.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Jin J, Ma Y, Tong X, Yang W, Dai Y, Pan Y,
Ren P, Liu L, Fan HY, Zhang Y, et al: Metformin inhibits
testosterone-induced endoplasmic reticulum stress in ovarian
granulosa cells via inactivation of p38 MAPK. Hum Reprod.
35:1145–1158. 2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Aflatounian A, Paris VR, Richani D,
Edwards MC, Cochran BJ, Ledger WL, Gilchrist RB, Bertoldo MJ, Wu LE
and Walters KA: Declining muscle NAD(+) in a hyperandrogenism PCOS
mouse model: Possible role in metabolic dysregulation. Mol Metab.
65:1015832022. View Article : Google Scholar : PubMed/NCBI
|
24
|
American Veterinary Medical Association:
AVMA Guidelines for the Euthanasia of Animals: 2020 edition.
American Veterinary Medical Association; Schaumburg, IL: 2020
|
25
|
McLean AC, Valenzuela N, Fai S and Bennett
SA: Performing vaginal lavage, crystal violet staining, and vaginal
cytological evaluation for mouse estrous cycle staging
identification. J Vis Exp. 15:e43892012.
|
26
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kanehisa M and Goto S: KEGG: kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar
|
28
|
Yu G, Wang LG, Han Y and He QY:
ClusterProfiler: An R package for comparing biological themes among
gene clusters. Omics. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
30
|
McRae JM, Falconer RJ and Kennedy JA:
Thermodynamics of grape and wine tannin interaction with
polyproline: implications for red wine astringency. J Agric Food
Chem. 58:12510–12518. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sato R: Sterol metabolism and SREBP
activation. Arch Biochem Biophys. 501:177–181. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Audet-Walsh É, Vernier M, Yee T, Laflamme
C, Li S, Chen Y and Giguère V: SREBF1 activity is regulated by an
AR/mTOR nuclear axis in prostate cancer. Mol Cancer Res.
16:1396–1405. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Singh RK, Kumar S, Tomar MS, Verma PK,
Kumar A, Kumar S, Kumar N, Singh JP and Acharya A: Putative role of
natural products as protein kinase C modulator in different disease
conditions. Daru. 29:397–414. 2021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Barber TM, Kabisch S, Randeva HS, Pfeiffer
AFH and Weickert MO: Implications of resveratrol in obesity and
insulin resistance: A state-of-the-art review. Nutrients.
14:28702022. View Article : Google Scholar : PubMed/NCBI
|
35
|
He S, He X, Pan S and Jiang W: Exploring
the mechanism of chuanxiong rhizoma against thrombosis based on
network pharmacology, molecular docking and experimental
verification. Molecules. 28:67022023. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hu X, Shi W, Wei S, Zhang X and Yu H:
Identification of (anti-) androgenic activities and risks of
sludges from industrial and domestic wastewater treatment plants.
Environ Pollut. 268:1157162021. View Article : Google Scholar
|
37
|
Guo HX, Liu DH, Ma Y, Liu JF, Wang Y, Du
ZY, Wang X, Shen JK and Peng HL: Long-term baicalin administration
ameliorates metabolic disorders and hepatic steatosis in rats given
a high-fat diet. Acta Pharmacol Sin. 30:1505–1512. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gao Y, Liu J, Hao Z, Sun N, Guo J, Zheng
X, Sun P, Yin W, Fan K and Li H: Baicalin ameliorates high fat
diet-induced nonalcoholic fatty liver disease in mice via adenosine
monophosphate-activated protein kinase-mediated regulation of
SREBP1/Nrf2/NF-κB signaling pathways. Phytother Res. 37:2405–2418.
2023. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shi H, Qiao F, Lu W, Huang K, Wen Y, Ye L
and Chen Y: Baicalin improved hepatic injury of NASH by regulating
NRF2/HO-1/NRLP3 pathway. Eur J Pharmacol. 934:1752702022.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang J, Zhang H, Deng X, Zhang N, Liu B,
Xin S, Li G and Xu K: Baicalin attenuates non-alcoholic
steatohepatitis by suppressing key regulators of lipid metabolism,
inflammation and fibrosis in mice. Life Sci. 192:46–54. 2018.
View Article : Google Scholar
|
41
|
Armanini D, Boscaro M, Bordin L and
Sabbadin C: Controversies in the pathogenesis, diagnosis and
treatment of PCOS: Focus on insulin resistance, inflammation, and
hyperandrogenism. Int J Mol Sci. 23:41102022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen S, Ruan Q, Bedner E, Deptala A, Wang
X, Hsieh TC, Traganos F and Darzynkiewicz Z: Effects of the
flavonoid baicalin and its metabolite baicalein on androgen
receptor expression, cell cycle progression and apoptosis of
prostate cancer cell lines. Cell Prolif. 34:293–304. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang L, Feng T, Su Z, Pi C, Wei Y and Zhao
L: Latest research progress on anticancer effect of baicalin and
its aglycone baicalein. Arch Pharm Res. 45:535–557. 2022.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhou HC, Du R, Wang H, Zeng FL, Shi K, Li
JM and Zong Y: Advance in studies on pharmacokinetics of baicalin.
Zhongguo Zhong Yao Za Zhi. 43:684–688. 2018.In Chinese. PubMed/NCBI
|
45
|
Lu JQ, Luo ZY, Sun C, Wang SM, Sun D,
Huang RJ, Yang X, Ding Y and Wang G: Baicalin administration could
rescue high glucose-induced craniofacial skeleton malformation by
regulating neural crest development. Front Pharmacol.
15:12953562024. View Article : Google Scholar : PubMed/NCBI
|
46
|
Deng L, Jin Y, Zheng X, Yang Y, Feng Y,
Zhou H and Zeng Q: Pharmacological and toxicological
characteristics of baicalin in preventing spontaneous abortion and
recurrent pregnancy loss: A multi-level critical review. Heliyon.
10:e386332024. View Article : Google Scholar : PubMed/NCBI
|