
Functional mechanisms of circular RNA‑encoded peptides and future research strategies and directions in nasopharyngeal carcinoma (Review)
- Authors:
- Weihua Xu
- Zhichao Ma
- Wei Gong
- Shengmiao Fu
- Xinping Chen
-
Affiliations: Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan 570312, P.R. China, School of Life Sciences, Hainan University, Haikou, Hainan 570228, P.R. China, Hainan Lvtou Medical Laboratory Center, Haikou, Hainan 570206, P.R. China - Published online on: August 18, 2025 https://doi.org/10.3892/ijo.2025.5788
- Article Number: 82
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Huang H, Yao Y, Deng X, Huang Z, Chen Y, Wang Z, Hong H, Huang H and Lin T: Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int J Oncol. 63:972023. View Article : Google Scholar : PubMed/NCBI | |
Guan S, Wei J, Huang L and Wu L: Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem. 207:1127582020. View Article : Google Scholar : PubMed/NCBI | |
Chang ET, Ye W, Zeng YX and Adami HO: The evolving epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 30:1035–1047. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Duan X, Chen X, Zhan M, Peng H, Meng Y, Li X, Li XY, Pang G and Dou X: Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Front Immunol. 13:10795152022. View Article : Google Scholar | |
Cantù G: Nasopharyngeal carcinoma. A 'different' head and neck tumour. Part B: Treatment, prognostic factors, and outcomes. Acta Otorhinolaryngol Ital. 43:155–169. 2023. View Article : Google Scholar | |
Juarez-Vignon Whaley JJ, Afkhami M, Onyshchenko M, Massarelli E, Sampath S, Amini A, Bell D and Villaflor VM: Recurrent/metastatic nasopharyngeal carcinoma treatment from present to future: Where are we and where are we heading? Curr Treat Options Oncol. 24:1138–1166. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li W, Xu R, Zhu B, Wang H, Zhang H, Hu L, Li H, Sun X, Yu H and Wang D: Circular RNAs: Functions and mechanisms in nasopharyngeal carcinoma. Head Neck. 44:494–504. 2022. View Article : Google Scholar | |
Chen RX, Liu HL, Yang LL, Kang FH, Xin LP, Huang LR, Guo QF and Wang YL: Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci. 23:8771–8778. 2019.PubMed/NCBI | |
Mo Y, Wang Y, Wang Y, Deng X, Yan Q, Fan C, Zhang S, Zhang S, Gong Z, Shi L, et al: Circular RNA circPVT1 promotes nasopharyngeal carcinoma metastasis via the β-TrCP/c-Myc/SRSF1 positive feedback loop. Mol Cancer. 21:1922022. View Article : Google Scholar | |
Li Q, Zhao YH, Xu C, Liang YL, Zhao Y, He QM, Li JY, Chen KL, Qiao H, Liu N, et al: Chemotherapy-induced senescence reprogramming promotes nasopharyngeal carcinoma metastasis by circRNA-Mediated PKR activation. Adv Sci (Weinh). 10:e22056682023. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Huang H, Sun Y, Cheng F, Zhao S, Liu J and Sun P: CircHIPK2 promotes proliferation of nasopharyngeal carcinoma by down-regulating HIPK2. Transl Cancer Res. 11:2348–2358. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Fang D, Zhang C, Zhao Z, Liu Y, Zhao S, Zhang N and Xu J: Circular MTHFD2L RNA-encoded CM-248aa inhibits gastric cancer progression by targeting the SET-PP2A interaction. Mol Ther. 31:1739–1755. 2023. View Article : Google Scholar : PubMed/NCBI | |
Geng X, Wang J, Zhang C, Zhou X, Jing J and Pan W: Circular RNA circCOL6A3_030 is involved in the metastasis of gastric cancer by encoding polypeptide. Bioengineered. 12:8202–8216. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430. 2022. View Article : Google Scholar : | |
Xiong L, Liu HS, Zhou C, Yang X, Huang L, Jie HQ, Zeng ZW, Zheng XB, Li WX, Liu ZZ, et al: A novel protein encoded by circINSIG1 reprograms cholesterol metabolism by promoting the ubiquitin-dependent degradation of INSIG1 in colorectal cancer. Mol Cancer. 22:722023. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Yan C and Zhao X: Research progress on circular RNA in glioma. Front Oncol. 11:7050592021. View Article : Google Scholar : PubMed/NCBI | |
Yuan W, Zhang X and Cong H: Advances in the protein-encoding functions of circular RNAs associated with cancer (review). Oncol Rep. 50:1602023. View Article : Google Scholar | |
Fang N, Ding GW, Ding H, Li J, Liu C, Lv L and Shi YJ: Research progress of circular RNA in gastrointestinal tumors. Front Oncol. 11:6652462021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Lu N, Wang L, Wang Y, Li M, Zhou Y, Yan H, Cui M, Zhang M and Zhang L: Circular RNAs and esophageal cancer. Cancer Cell Int. 20:3622020. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C and Fu S: CircRNA: A novel potential strategy to treat thyroid cancer (review). Int J Mol Med. 48:2012021. View Article : Google Scholar : PubMed/NCBI | |
Tang Q and Hann SS: Biological roles and mechanisms of circular RNA in human cancers. Onco Targets Ther. 13:2067–2092. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Luo J, Yang W and Ye WC: CircRNAs in colorectal cancer: Potential biomarkers and therapeutic targets. Cell Death Dis. 14:3532023. View Article : Google Scholar : PubMed/NCBI | |
Galardi A, Colletti M, Palma A and Di Giannatale A: An update on circular RNA in pediatric cancers. Biomedicines. 11:362022. View Article : Google Scholar | |
Zhu Y, Huang G, Li S, Xiong H, Chen R, Zuo L and Liu H: CircSMARCA5: A key circular RNA in various human diseases. Front Genet. 13:9213062022. View Article : Google Scholar : PubMed/NCBI | |
Hwang HJ and Kim YK: Molecular mechanisms of circular RNA translation. Exp Mol Med. 56:1272–1280. 2024. View Article : Google Scholar : PubMed/NCBI | |
Prats AC, David F, Diallo LH, Roussel E, Tatin F, Garmy-Susini B and Lacazette E: Circular RNA, the key for translation. Int J Mol Sci. 21:85912020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wu C, Du Y, Li Z, Li M, Hou P, Shen Z, Chu S, Zheng J and Bai J: Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas. Mol Cancer. 21:132022. View Article : Google Scholar : PubMed/NCBI | |
Wen SY, Qadir J and Yang BB: Circular RNA translation: Novel protein isoforms and clinical significance. Trends Mol Med. 28:405–420. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Gao H, Li X, Yu F and Li P: The important regulatory roles of circRNA-encoded proteins or peptides in cancer pathogenesis (review). Int J Oncol. 64:192024. View Article : Google Scholar : | |
Lin H, Wang Y, Wang P, Long F and Wang T: Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: Impacts on therapeutic resistance. Mol Cancer. 21:1482022. View Article : Google Scholar : PubMed/NCBI | |
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-Methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI | |
Sinha T, Panigrahi C, Das D and Chandra Panda A: Circular RNA translation, a path to hidden proteome. Wiley Interdiscip Rev RNA. 13:e16852022. View Article : Google Scholar : | |
Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, Xiao F, Huang N, Yang X, Zeng R, et al: Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 23:743–756. 2021. View Article : Google Scholar : | |
Misir S, Wu N and Yang BB: Specific expression and functions of circular RNAs. Cell Death Differ. 29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhou M, Yant L and Huang C: Circular RNA in disease: Basic properties and biomedical relevance. Wiley Interdiscip Rev RNA. 13:e17232022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Sun A, Yan A, Yao J, Huang H, Gao Z, Han T, Gu J, Li N, Wu H and Li K: Circular RNA MTCL1 promotes advanced laryngeal squamous cell carcinoma progression by inhibiting C1QBP ubiquitin degradation and mediating beta-catenin activation. Mol Cancer. 21:922022. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Shan G: CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 505:49–57. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and Xu RH: Circular RNA: Metabolism, functions and interactions with proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Gong Y, Jiang Q, Liu L, Li S, Zhou Q, Huang F and Liu Z: Circular RNA expression profiles in nasopharyngeal carcinoma by sequence analysis. Front Oncol. 10:6012020. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Cai Y, Guo L, Huang W, Yan J, Lai J, Wang Y, Jiang D and Peng L: hsa_circ_0136839 regulates the malignant phenotypes of nasopharyngeal carcinoma via the Wnt/β-catenin signaling pathway. Pathol Res Pract. 245:1544332023. View Article : Google Scholar | |
Kamali MJ, Salehi M, Mostafavi M, Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F and Daraei A: Hijacking and rewiring of host CircRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) regulatory networks by oncoviruses during development of viral cancers. Rev Med Virol. 34:e25302024. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Liu Y, Duan H, Fan X, Wang Y, Song J, Han J, Yang M, Lu L and Nie G: Identification of differentially expressed circular RNAs in human nasopharyngeal carcinoma. Cancer Biomark. 29:483–492. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Xu F and Zhang T: Circular RNA COL1A1 promotes Warburg effect and tumor growth in nasopharyngeal carcinoma. Discov Oncol. 15:1202024. View Article : Google Scholar : PubMed/NCBI | |
Yu KH, Shi CH, Wang B, Chow SH, Chung GT, Lung RW, Tan KE, Lim YY, Tsang AC, Lo KW and Yip KY: Quantifying full-length circular RNAs in cancer. Genome Res. 31:2340–2353. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Li Y, Xin S, Yang L, Jiang M, Xin Y, Wang Y, Yang J and Lu J: Insight into LncRNA- and CircRNA-mediated CeRNAs: Regulatory network and implications in nasopharyngeal Carcinoma-A narrative literature review. Cancers (Basel). 14:45642022. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Yuan G, Wu Y, Yan S, Jiang Q and Tang S: EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci. 79:3572022. View Article : Google Scholar : PubMed/NCBI | |
Li H, You J, Xue H, Tan X and Chao C: CircCTDP1 promotes nasopharyngeal carcinoma progression via a microRNA-320b/HOXA10/TGFβ2 pathway. Int J Mol Med. 45:836–846. 2020.PubMed/NCBI | |
Lin J, Qin H, Han Y, Li X, Zhao Y and Zhai G: CircNRIP1 modulates the miR-515-5p/IL-25 Axis to control 5-Fu and cisplatin resistance in nasopharyngeal carcinoma. Drug Des Devel Ther. 15:323–330. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Chen J, Ma C, Pei S, Du M, Zhang Y, Feng Y, Yin R, Bian X, He X, et al: Hsa_circ_0046263 functions as a ceRNA to promote nasopharyngeal carcinoma progression by upregulating IGFBP3. Cell Death Dis. 11:5622020. View Article : Google Scholar : PubMed/NCBI | |
Duan ZN, Dong CG and Liu JH: Circ-ABCB10 promotes growth and metastasis of nasopharyngeal carcinoma by upregulating ROCK1. Eur Rev Med Pharmacol Sci. 24:12208–12215. 2020.PubMed/NCBI | |
Chen H, Shi X, Ren L, Wan Y, Zhuo H, Zeng L, Sangdan W and Wang F: Screening of core genes and prediction of ceRNA regulation mechanism of circRNAs in nasopharyngeal carcinoma by bioinformatics analysis. Pathol Oncol Res. 29:16109602023. View Article : Google Scholar : PubMed/NCBI | |
Li S and Wang Q: Hsa_circ_0081534 increases the proliferation and invasion of nasopharyngeal carcinoma cells through regulating the miR-508-5p/FN1 axis. Aging (Albany NY). 12:20645–20657. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Wang J, Xiong F, Jiang X, Zhu K, Wang Y, Mo Y, Gong Z, Zhang S, He Y, et al: Epstein-Barr Virus-encoded circular RNA CircBART2.2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res. 81:5074–5088. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ka-Yue Chow L, Lai-Shun Chung D, Tao L, Chan KF, Tung SY, Cheong Ngan RK, Ng WT, Wing-Mui Lee A, Yau CC, Lai-Wan Kwong D, et al: Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma. EBioMedicine. 86:1043572022. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Qiao M, Chen Y and Xie H: EBV-positive glycoproteins associated with nasopharyngeal carcinoma. Pathol Res Pract. 260:1554272024. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Duan X, Deng X, Huang Y, Zhou X, Zhang S, Zhang X, Liu P, Yang C, Liu G, et al: EBV-Upregulated B7-H3 inhibits NK cell-mediated antitumor function and contributes to nasopharyngeal carcinoma progression. Cancer Immunol Res. 11:830–846. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Li S, Chen Q, Xia T, Luo D, Li L, Liu S, Guo S, Liu L, Du C, et al: EBV infection-induced GPX4 promotes chemoresistance and tumor progression in nasopharyngeal carcinoma. Cell Death Differ. 29:1513–1527. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shi F, Shang L, Zhou M, Lv C, Li Y, Luo C, Liu N, Lu J, Tang M, Luo X, et al: Epstein-Barr Virus-driven metabolic alterations contribute to the viral lytic reactivation and tumor progression in nasopharyngeal carcinoma. J Med Virol. 96:e296342024. View Article : Google Scholar : PubMed/NCBI | |
Wan X, Liu Y, Peng Y, Wang J, Yan SM, Zhang L, Wu W, Zhao L, Chen X, Ren K, et al: Primary and orthotopic murine models of nasopharyngeal carcinoma reveal molecular mechanisms underlying its Malignant Progression. Adv Sci (Weinh). 11:e24031612024. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Zhou Y, Tao Y and Liu S: Nasopharyngeal carcinoma: The role of the EGFR in Epstein-Barr virus infection. Pathogens. 10:11132021. View Article : Google Scholar : PubMed/NCBI | |
Su ZY, Siak PY, Lwin YY and Cheah SC: Epidemiology of nasopharyngeal carcinoma: Current insights and future outlook. Cancer Metastasis Rev. 43:919–939. 2024. View Article : Google Scholar : PubMed/NCBI | |
Campion NJ, Ally M, Jank BJ, Ahmed J and Alusi G: The molecular march of primary and recurrent nasopharyngeal carcinoma. Oncogene. 40:1757–1774. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Feng R, Liu Z, Zhou X, Chen Y, Cao Y, Valeri L, Li Z, Liu Z, Cao SM, et al: Host genetic variants, Epstein-Barr virus subtypes, and the risk of nasopharyngeal carcinoma: Assessment of interaction and mediation. Cell Genom. 4:1004742024. View Article : Google Scholar : PubMed/NCBI | |
Ren L, Jiang Q, Mo L, Tan L, Dong Q, Meng L, Yang N and Li G: Mechanisms of circular RNA degradation. Commun Biol. 5:13552022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu S, Meng N, He Y, Lu R and Yan GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther. 27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 20:1582021. View Article : Google Scholar | |
Huang B, Ren J, Ma Q, Yang F, Pan X, Zhang Y, Liu Y, Wang C, Zhang D, Wei L, et al: A novel peptide PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via interacting with PPP1CA to inhibit AKT dephosphorylation and activate the AKT-mTOR signaling pathway. Mol Cancer. 23:342024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Yang J, Sun Y, He Y, Wang Y, Chen X, Liang Y, Zhang N, Wang X, et al: CircTRIM1 encodes TRIM1-269aa to promote chemoresistance and metastasis of TNBC via enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR activation. Mol Cancer. 23:1022024. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Jian W, Luo Q and Fang L: CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell Death Dis. 13:7942022. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Xiao S, Zhang M, Yang L, Zhong J, Li B, Li F, Xia X, Li X, Zhou H, et al: A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol. 22:332021. View Article : Google Scholar : PubMed/NCBI | |
Song R, Guo P, Ren X, Zhou L, Li P, Rahman NA, Wołczyński S, Li X, Zhang Y, Liu M, et al: A novel polypeptide CAPG-171aa encoded by circCAPG plays a critical role in triple-negative breast cancer. Mol Cancer. 22:1042023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zheng W, Lv X, Song Y and Xu T: circMORC3-encoded novel protein negatively regulates antiviral immunity through synergizing with host gene MORC3. PLoS Pathog. 19:e10118942023. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Zhang L, Yang M, Wu X, Wang X, Huang W, Yuan L, Pan H, Wang Y, Wang Z, et al: Cancer-associated fibroblasts promote the survival of irradiated nasopharyngeal carcinoma cells via the NF-κB pathway. J Exp Clin Cancer Res. 40:872021. View Article : Google Scholar | |
Zhang H, Deng S, Zhang J, Zhu G, Zhou J, Ye W, Wang Q, Wang Y, Zou B, Zhang P, et al: Single nucleotide polymorphisms within NFKBIA are associated with nasopharyngeal carcinoma susceptibility in Chinese Han population. Cytokine. 138:1553562021. View Article : Google Scholar | |
Li XD, Zhong QL, Luo DJ, Liang QF, Qiu JQ, Du QH, Xiao L, Zhou YH, Long YB, Liu WQ, et al: RNF219 promotes nasopharyngeal carcinoma progression by activating the NF-κB pathway. Mol Biotechnol. 65:1318–1326. 2023. View Article : Google Scholar | |
Chen X, Weng Y, Li Y, Fu W, Huang Z, Pan Y, Hong W, Lin W, Lin X and Qiu S: Upregulation of PNCK Promotes Metastasis and Angiogenesis via Activating NF-κB/VEGF pathway in nasopharyngeal carcinoma. J Oncol. 2022:85415822022. | |
Ling J, Zhang L, Chang A, Huang Y, Ren J, Zhao H and Zhuo X: Overexpression of KITLG predicts unfavorable clinical outcomes and promotes lymph node metastasis via the JAK/STAT pathway in nasopharyngeal carcinoma. Lab Invest. 102:1257–1267. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kaisai T, Mantang Z, Tailei Y, Liying Z, Xiaoping C, Mingming J and Yi Z: Hsa_circ_0013561 promotes progression of nasopharyngeal carcinoma by activating JAK2/STAT3 signaling pathway. Braz J Otorhinolaryngol. 90:1013622024. View Article : Google Scholar | |
Bruce JP, To KF, Lui VWY, Chung GTY, Chan YY, Tsang CM, Yip KY, Ma BBY, Woo JKS, Hui EP, et al: Whole-genome profiling of nasopharyngeal carcinoma reveals viral-host co-operation in inflammatory NF-κB activation and immune escape. Nat Commun. 12:41932021. View Article : Google Scholar | |
Wang L, Lin Y, Zhou X, Chen Y, Li X, Luo W, Zhou Y and Cai L: CYLD deficiency enhances metabolic reprogramming and tumor progression in nasopharyngeal carcinoma via PFKFB3. Cancer Lett. 532:2155862022. View Article : Google Scholar : PubMed/NCBI | |
Deng M, Dai W, Yu VZ, Tao L and Lung ML: Cylindromatosis lysine 63 deubiquitinase (CYLD) regulates NF-kB signaling pathway and modulates fibroblast and endothelial cells recruitment in nasopharyngeal carcinoma. Cancers (Basel). 12:19242020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Shi F, Hu J, Xie L, Zhao L, Tang M, Luo X, Ye M, Zheng H, Zhou M, et al: Stabilization of p18 by deubiquitylase CYLD is pivotal for cell cycle progression and viral replication. NPJ Precis Oncol. 5:142021. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Wang L, Luo W, Zhou X, Chen Y, Yang K, Liao J, Wu D and Cai L: CYLD Promotes apoptosis of nasopharyngeal carcinoma cells by regulating NDRG1. Cancer Manag Res. 12:10639–10649. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mizokami H, Okabe A, Choudhary R, Mima M, Saeda K, Fukuyo M, Rahmutulla B, Seki M, Goh BC, Kondo S, et al: Enhancer infestation drives tumorigenic activation of inactive B compartment in Epstein-Barr virus-positive nasopharyngeal carcinoma. EBioMedicine. 102:1050572024. View Article : Google Scholar : PubMed/NCBI | |
Reffai A, Hori M, Adusumilli R, Bermudez A, Bouzoubaa A, Pitteri S, Bennani Mechita M and Mallick P: A proteomic analysis of nasopharyngeal carcinoma in a moroccan subpopulation. Cancers (Basel). 16:32822024. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Fu DJ, Li ZM, Lv DJ, Song XL, Yu YZ, Wang C, Li KJ, Zhai B, Wu J, et al: CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol Cancer. 21:1732022. View Article : Google Scholar : PubMed/NCBI | |
Song J, Liu Q, Han L, Song T, Huang S, Zhang X, He Q, Liang C, Zhu S and Xiong B: Hsa_circ_0009092/miR-665/NLK signaling axis suppresses colorectal cancer progression via recruiting TAMs in the tumor microenvironment. J Exp Clin Cancer Res. 42:3192023. View Article : Google Scholar : PubMed/NCBI | |
Miao Z, Li J, Wang Y, Shi M, Gu X, Zhang X, Wei F, Tang X, Zheng L and Xing Y: Hsa_circ_0136666 stimulates gastric cancer progression and tumor immune escape by regulating the miR-375/PRKDC Axis and PD-L1 phosphorylation. Mol Cancer. 22:2052023. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, Zhang S, Zhao S, Xu H, Li M, et al: EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 21:162022. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Jiang J, Qian H, Yan Y and Xu W: Exosomal circRNA: Emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 16:672023. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Mo Z, Lai G, Chen X, Li R, Wu R, Zhu J and Zheng F: Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF-κB-IL-6 axis of tumor-associated macrophages. J Exp Clin Cancer Res. 42:482023. View Article : Google Scholar | |
Li J, Song Y, Cai H, Zhou B and Ma J: Roles of circRNA dysregulation in esophageal squamous cell carcinoma tumor microenvironment. Front Oncol. 13:11532072023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Lin Y, Jiang DH, Yang X and He XG: CircRNA ZNF609 promotes angiogenesis in nasopharyngeal carcinoma by regulating miR-145/STMN1 axis. Kaohsiung J Med Sci. 37:686–698. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Liu Y, Yang Y, Mao XM and Yin ZD: CircRNA ZNF609 promotes growth and metastasis of nasopharyngeal carcinoma by competing with microRNA-150-5p. Eur Rev Med Pharmacol Sci. 23:2817–2826. 2019.PubMed/NCBI | |
Saunders JT, Kumar S, Benavides-Serrato A, Holmes B, Benavides KE, Bashir MT, Nishimura RN and Gera J: Translation of circHGF RNA encodes an HGF protein variant promoting glioblastoma growth through stimulation of c-MET. J Neurooncol. 163:207–218. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhou J, Zhang C, Chen R, Sun Q, Yang P, Peng C, Tan Y, Jin C, Wang T, et al: A novel tumour suppressor protein encoded by circMAPK14 inhibits progression and metastasis of colorectal cancer by competitively binding to MKK6. Clin Transl Med. 11:e6132021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou X, Geng X, Zhang Y, Wang J, Wang Y, Jing J, Zhou X and Pan W: Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis. 12:4432021. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C, et al: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 18:472019. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Yang Z, Xian S, Lin Q, Huang L and Ding Y: Hsa_circ_0008833 promotes COPD progression via inducing pyroptosis in bronchial epithelial cells. Exp Lung Res. 50:1–14. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li F, Cai Y, Deng S, Yang L, Liu N, Chang X, Jing L, Zhou Y and Li H: A peptide CORO1C-47aa encoded by the circular noncoding RNA circ-0000437 functions as a negative regulator in endometrium tumor angiogenesis. J Biol Chem. 297:1011822021. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang Y, Li Q, Li X, Feng X and Zeng K: The novel β-TrCP protein isoform hidden in circular RNA confers trastuzumab resistance in HER2-positive breast cancer. Redox Biol. 67:1028962023. View Article : Google Scholar | |
Chadani Y, Sugata N, Niwa T, Ito Y, Iwasaki S and Taguchi H: Nascent polypeptide within the exit tunnel stabilizes the ribosome to counteract risky translation. EMBO J. 40:e1082992021. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Li W, Yang Y, Cheng N, Zhang Y, Zhang N, Yin Y, Tong L, Li Z and Luo J: A polypeptide inhibitor of calcineurin blocks the calcineurin-NFAT signalling pathway in vivo and in vitro. J Enzyme Inhib Med Chem. 37:202–210. 2022. View Article : Google Scholar | |
Huo J, Zhang R, Wu X, Fu C, Hu J, Hu X, Sun W, Chen Z and Zhu X: Active polypeptide MDANP protect against necrotizing enterocolitis (NEC) by regulating the PERK-eIF2α-QRICH1 axis. Sci Rep. 13:229122023. View Article : Google Scholar | |
Shubayev VI, Dolkas J, Catroli GF and Chernov AV: A human coronavirus OC43-derived polypeptide causes neuropathic pain. EMBO Rep. 23:e540692022. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Li J, Liu S, Li W, Zhang Q, Zhao J, Xiong M, Bao Y and Yao Y: Nanoblock-mediated selective oncolytic polypeptide therapy for triple-negative breast cancer. Theranostics. 13:2800–2810. 2023. View Article : Google Scholar : PubMed/NCBI | |
Höpfler M and Hegde RS: Control of mRNA fate by its encoded nascent polypeptide. Mol Cell. 83:2840–2855. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI | |
Meng E, Deng J, Jiang R and Wu H: CircRNA-Encoded peptides or proteins as new players in digestive system neoplasms. Front Oncol. 12:9441592022. View Article : Google Scholar : PubMed/NCBI | |
Ferreira HJ, Stevenson BJ, Pak H, Yu F, Almeida Oliveira J, Huber F, Taillandier-Coindard M, Michaux J, Ricart-Altimiras E, Kraemer AI, et al: Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides. Nat Commun. 15:23572024. View Article : Google Scholar : PubMed/NCBI | |
Khan FA, Nsengimana B, Khan NH, Song Z, Ngowi EE, Wang Y, Zhang W and Ji S: Chimeric Peptides/proteins encoded by circRNA: An update on mechanisms and functions in human cancers. Front Oncol. 12:7812702022. View Article : Google Scholar : PubMed/NCBI | |
Ke SA, Zhao S, Liu Y, Zhuo Q, Tong X and Xu Y: Circular RNA-encoded peptides and proteins: Implications to cancer. Sheng Wu Gong Cheng Xue Bao. 38:3131–3140. 2022.In Chinese. PubMed/NCBI | |
Li W, Liu JQ, Chen M, Xu J and Zhu D: Circular RNA in cancer development and immune regulation. J Cell Mol Med. 26:1785–1798. 2022. View Article : Google Scholar : | |
Mo D, Li X, Raabe CA, Rozhdestvensky TS, Skryabin BV and Brosius J: Circular RNA encoded amyloid beta peptides-A novel putative player in Alzheimer's disease. Cells. 9:21962020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Hao W, Yang J, Zhang Y, Wang X and Zhang C: Emerging roles and potential clinical applications of translatable circular RNAs in cancer and other human diseases. Genes Dis. 10:1994–2012. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zheng W, Wang L, Geng S and Xu T: CircYthdc2 generates polypeptides through two translation strategies to facilitate virus escape. Cell Mol Life Sci. 81:912024. View Article : Google Scholar : PubMed/NCBI | |
Li P, Song R, Yin F, Liu M, Liu H, Ma S, Jia X, Lu X, Zhong Y, Yu L, et al: circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther. 30:431–447. 2022. View Article : Google Scholar : | |
Gao J, Pan H, Li J, Jiang J and Wang W: A peptide encoded by the circular form of the SHPRH gene induces apoptosis in neuroblastoma cells. PeerJ. 12:e168062024. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Zhou S, Dain L, Mei L and Zhu G: Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li K, Peng ZY, Wang R, Li X, Du N, Liu DP, Zhang J, Zhang YF, Ma L, Sun Y, et al: Enhancement of TKI sensitivity in lung adenocarcinoma through m6A-dependent translational repression of Wnt signaling by circ-FBXW7. Mol Cancer. 22:1032023. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Zhang Y and Zhu Y: Circular RNA circβ-catenin aggravates the malignant phenotype of non-small-cell lung cancer via encoding a peptide. J Clin Lab Anal. 35:e239002021. View Article : Google Scholar | |
Wang Y, Tian X, Wang Z, Liu D, Zhao X, Sun X, Tu Z, Li Z, Zhao Y, Zheng S, et al: A novel peptide encoded by circ-SLC9A6 promotes lipid dyshomeostasis through the regulation of H4K16ac-mediated CD36 transcription in NAFLD. Clin Transl Med. 14:e18012024. View Article : Google Scholar : PubMed/NCBI | |
Torres K, Landeros N, Wichmann IA, Polakovicova I, Aguayo F and Corvalan AH: EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis Dis. 1867:1660492021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Li P, Zhang X, Xu J, Xu J, Yu S, Wang D, Dong W, Cao X, Yan H, et al: Mutational landscape of nasopharyngeal carcinoma based on targeted next-generation sequencing: Implications for predicting clinical outcomes. Mol Med. 28:552022. View Article : Google Scholar | |
Gong L, Luo J, Zhang Y, Yang Y, Li S, Fang X, Zhang B, Huang J, Chow LK, Chung D, et al: Nasopharyngeal carcinoma cells promote regulatory T cell development and suppressive activity via CD70-CD27 interaction. Nat Commun. 14:19122023. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Zhang JY, Gong LP, Feng ZY, Wang D, Pan YH, Sun LP, Wen JY, Chen GF, Liang J, et al: Hypoxia-induced ebv-circLMP2A promotes angiogenesis in EBV-associated gastric carcinoma through the KHSRP/VHL/HIF1α/VEGFA pathway. Cancer Lett. 526:259–272. 2022. View Article : Google Scholar | |
Mo Y, Wang Y, Zhang S, Xiong F, Yan Q, Jiang X, Deng X, Wang Y, Fan C, Tang L, et al: Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2. Mol Cancer. 20:1122021. View Article : Google Scholar : PubMed/NCBI | |
Hong X, Li Q, Li J, Chen K, He Q, Zhao Y, Liang Y, Zhao Y, Qiao H, Liu N, et al: CircIPO7 promotes nasopharyngeal carcinoma metastasis and cisplatin chemoresistance by facilitating YBX1 nuclear localization. Clin Cancer Res. 28:4521–4535. 2022. View Article : Google Scholar : PubMed/NCBI | |
Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al: A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 21:932022. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Li Z, Lin C, Zhang J and Shen Z: Translation role of circRNAs in cancers. J Clin Lab Anal. 35:e238662021. View Article : Google Scholar : PubMed/NCBI | |
Othoum G, Coonrod E, Zhao S, Dang HX and Maher CA: Pan-cancer proteogenomic analysis reveals long and circular noncoding RNAs encoding peptides. NAR Cancer. 2:zcaa0152020. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Shen H, Nie F and Sun M: A Whole new comprehension about ncRNA-Encoded Peptides/proteins in cancers. Cancers (Basel). 14:51962022. View Article : Google Scholar : PubMed/NCBI | |
Zheng W, Wang L, Geng S, Yang L, Lv X, Xin S and Xu T: CircMIB2 therapy can effectively treat pathogenic infection by encoding a novel protein. Cell Death Dis. 14:5782023. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Liao S, Bi Z, Liu J, Li H and Feng C: Newly discovered circRNAs encoding proteins: Recent progress. Front Genet. 14:12646062023. View Article : Google Scholar : PubMed/NCBI | |
Jiang J and Ying H: Revealing the crosstalk between nasopharyngeal carcinoma and immune cells in the tumor microenvironment. J Exp Clin Cancer Res. 41:2442022. View Article : Google Scholar | |
Tang LL, Guo R, Zhang N, Deng B, Chen L, Cheng ZB, Huang J, Hu WH, Huang SH, Luo WJ, et al: Effect of radiotherapy alone vs radiotherapy with concurrent chemoradiotherapy on survival without disease relapse in patients with Low-risk nasopharyngeal carcinoma: A randomized clinical trial. JAMA. 328:728–736. 2022. View Article : Google Scholar : PubMed/NCBI | |
You R, Liu YP, Huang PY, Zou X, Sun R, He YX, Wu YS, Shen GP, Zhang HD, Duan CY, et al: Efficacy and safety of locoregional radiotherapy with chemotherapy vs chemotherapy alone in de novo metastatic nasopharyngeal carcinoma: A multicenter phase 3 randomized clinical trial. JAMA Oncol. 6:1345–1352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Toumi N, Ennouri S, Charfeddine I, Daoud J and Khanfir A: Prognostic factors in metastatic nasopharyngeal carcinoma. Braz J Otorhinolaryngol. 88:212–219. 2022. View Article : Google Scholar : | |
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in Triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Peng Y, Chang S, Luo X, Yuan Y, Zhu X, Xu Y, Du K, Chen Y, Deng S, et al: Vimentin binds to a novel tumor suppressor protein, GSPT1-238aa, encoded by circGSPT1 with a selective encoding priority to halt autophagy in gastric carcinoma. Cancer Lett. 545:2158262022. View Article : Google Scholar : PubMed/NCBI |