
Nanoparticle‑based delivery systems for targeted therapy in brain tumors: Progress, challenges and perspectives (Review)
- Authors:
- Jing-Xing Si
- Zheng-Chuang Liu
- Fang Gu
- Xiaoli Jin
- Ying-Yu Ma
-
Affiliations: Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China, Department of Paediatrics, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China - Published online on: August 19, 2025 https://doi.org/10.3892/ijo.2025.5789
- Article Number: 83
-
Copyright: © Si et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL and Barnholtz-Sloan JS: Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 71:381–406. 2021.PubMed/NCBI | |
Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2013-2017. Neuro Oncol. 22(12 Suppl 2): iv1–iv96. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sadad T, Rehman A, Munir A, Saba T, Tariq U, Ayesha N and Abbasi R: Brain tumor detection and multi-classification using advanced deep learning techniques. Microsc Res Tech. 84:1296–1308. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan AC, Ashley DM, Lopez GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020.PubMed/NCBI | |
Arvanitis CD, Ferraro GB and Jain RK: The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 20:26–41. 2020. View Article : Google Scholar | |
Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, Genitori L and Sardi I: Glioblastoma chemoresistance: The double play by microenvironment and Blood-brain barrier. Int J Mol Sci. 19:28792018. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Yang Z, Zhang S, Cao S, Pang Z, Yang X and Jiang X: Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma localization, penetration and suppression of glioma growth. J Control Release. 172:921–928. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Lu W: Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv. 9:671–686. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han L and Jiang C: Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B. 11:2306–2325. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jena L, McErlean E and McCarthy H: Delivery across the blood-brain barrier: Nanomedicine for glioblastoma multiforme. Drug Deliv Transl Res. 10:304–318. 2020. View Article : Google Scholar : | |
Hersh AM, Alomari S and Tyler BM: Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in Neuro-oncology. Int J Mol Sci. 23:41532022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Guo Z, Tian H and Chen X: Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev. 3:160232016. View Article : Google Scholar : PubMed/NCBI | |
Huh MS, Lee EJ, Koo H, Yhee JY, Oh KS, Son S, Lee S, Kim SH, Kwon IC and Kim K: Polysaccharide-based nanoparticles for gene delivery. Top Curr Chem (Cham). 375:312017. View Article : Google Scholar : PubMed/NCBI | |
Arami H, Patel CB, Madsen SJ, Dickinson PJ, Davis RM, Zeng Y, Sturges BK, Woolard KD, Habte FG, Akin D, et al: Nanomedicine for spontaneous brain tumors: A companion clinical trial. ACS Nano. 13:2858–2869. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hahn A, Bode J, Kruwel T, Solecki G, Heiland S, Bendszus M, Tews B, Winkler F, Breckwoldt MO and Kurz FT: Glioblastoma multiforme restructures the topological connectivity of cerebrovascular networks. Sci Rep. 9:117572019. View Article : Google Scholar : PubMed/NCBI | |
Moreno A, Pitoc GA, Ganson NJ, Layzer JM, Hershfield MS, Tarantal AF and Sullenger BA: Anti-PEG Antibodies inhibit the anticoagulant activity of PEgylated aptamers. Cell Chem Biol. 26:634–644.e3. 2019. View Article : Google Scholar : PubMed/NCBI | |
Verry C, Dufort S, Villa J, Gavard M, Iriart C, Grand S, Charles J, Chovelon B, Cracowski JL, Quesada JL, et al: Theranostic AGuIX nanoparticles as radiosensitizer: A phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother Oncol. 160:159–165. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhanataev AK, Anisina EA, Kulakova AV, Shilovskiy IP, Lisitsyn AA, Koloskova OO, Khaitov MR and Durnev AD: Genotoxicity of cationic lipopeptide nanoparticles. Toxicol Lett. 328:1–6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lalatsa A and Butt AM: Physiology of the Blood-brain barrier and mechanisms of transport across the BBB. Nanotechnology-based Targeted Drug Delivery Systems for Brain Tumors. Elsevier Inc. 49–74. 2018. | |
Crone C and Olesen SP: Electrical resistance of brain microvascular endothelium. Brain Res. 241:49–55. 1982. View Article : Google Scholar : PubMed/NCBI | |
Kadry H, Noorani B and Cucullo L: A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 17:692020. View Article : Google Scholar : PubMed/NCBI | |
Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, Deik AA, Ginty DD, Clish CB and Gu C: Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron. 94:581–594.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eng ME, Imperio GE, Bloise E and Matthews SG: ATP-binding cassette (ABC) drug transporters in the developing blood-brain barrier: Role in fetal brain protection. Cell Mol Life Sci. 79:4152022. View Article : Google Scholar : PubMed/NCBI | |
Lochhead JJ, Yang J, Ronaldson PT and Davis TP: Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front Physiol. 11:9142020. View Article : Google Scholar : PubMed/NCBI | |
Salama NN, Eddington ND and Fasano A: Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev. 58:15–28. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lemmer HJ and Hamman JH: Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv. 10:103–114. 2013. View Article : Google Scholar | |
Lin Y, Gan L, Ren L, Ma C, Dai M, Qian K, Ye Q and Lin X: Acupuncture with specific mode electro-stimulation effectively and transiently opens the BBB through Shh signaling pathway. Neuroreport. 34:873–886. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Betterton RD, Williams EI, Stanton JA, Reddell ES, Ogbonnaya CE, Dorn E, Davis TP, Lochhead JJ and Ronaldson PT: High-dose acetaminophen alters the integrity of the blood-brain barrier and leads to increased CNS uptake of codeine in rats. Pharmaceutics. 14:9492022. View Article : Google Scholar : PubMed/NCBI | |
Han S, Mei L, Quach T, Porter C and Trevaskis N: Lipophilic conjugates of drugs: A tool to improve drug pharmacokinetic and therapeutic profiles. Pharm Res. 38:1497–1518. 2021. View Article : Google Scholar : PubMed/NCBI | |
Muller J, Martins A, Csabi J, Fenyvesi F, Konczol A, Hunyadi A and Balogh GT: BBB penetration-targeting physicochemical lead selection: Ecdysteroids as chemo-sensitizers against CNS tumors. Eur J Pharm Sci. 96:571–577. 2017. View Article : Google Scholar | |
Rankovic Z: CNS drug design: Balancing physicochemical properties for optimal brain exposure. J Med Chem. 58:2584–2608. 2015. View Article : Google Scholar | |
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T and de Vries HE: Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 19:1–12. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu Z, Gao C, Bian H, Ma Y, Jing F and Zhao X: Role of rituximab in treatment of patients with primary central nervous system lymphoma (PCNSL): A systematic review and Meta-analysis. Clin Lymphoma Myeloma Leuk. 23:733–741. 2023. View Article : Google Scholar : PubMed/NCBI | |
Paul PR, Mishra MK, Bora S, Kukal S, Singh A, Kukreti S and Kukreti R: The Impact of P-Glycoprotein on CNS drug efflux and variability in response. J Biochem Mol Toxicol. 39:e701902025. View Article : Google Scholar : PubMed/NCBI | |
Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, Buchel C, von Briesen H and Kreuter J: Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release. 137:78–86. 2009. View Article : Google Scholar : PubMed/NCBI | |
Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, Castaigne JP and Beliveau R: Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 324:1064–1072. 2008. View Article : Google Scholar | |
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL and Moos T: Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol. 181:1016652019. View Article : Google Scholar : PubMed/NCBI | |
Xin H, Jiang X, Gu J, Sha X, Chen L, Law K, Chen Y, Wang X, Jiang Y and Fang X: Angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials. 32:4293–4305. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gonatas NK, Stieber A, Hickey WF, Herbert SH and Gonatas JO: Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. J Cell Biol. 99:1379–1390. 1984. View Article : Google Scholar : PubMed/NCBI | |
Szecsko A, Meszaros M, Simoes B, Cavaco M, Chaparro C, Porkolab G, Castanho M, Deli MA, Neves V and Veszelka S: PepH3-modified nanocarriers for delivery of therapeutics across the blood-brain barrier. Fluids Barriers CNS. 22:312025. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng X, Gong M and Zhang J: Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma. Oncotarget. 7:79401–79407. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY and Wang SL: Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 31:908–915. 2010. View Article : Google Scholar | |
Dowaidar M: Cell-penetrating peptides with nanoparticles hybrid delivery vectors and their uptake pathways. Mitochondrion. 78:1019062024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, Lou J and Jiang C: Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials. 30:4195–4202. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu MC, Wang EY and Lai TW: TAT peptide at treatment-level concentrations crossed brain endothelial cell monolayer independent of receptor-mediated endocytosis or peptide-inflicted barrier disruption. PLoS One. 18:e02926812023. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Tao L, Cao X and Chen L: The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci. 15:131–144. 2020. View Article : Google Scholar : PubMed/NCBI | |
Al-Ahmad AJ: Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells. Am J Physiol Cell Physiol. 313:C421–C429. 2017. View Article : Google Scholar : PubMed/NCBI | |
Singh N and Ecker GF: Insights into the structure, function, and ligand discovery of the large neutral amino acid transporter 1, LAT1. Int J Mol Sci. 19:12782018. View Article : Google Scholar : PubMed/NCBI | |
Vijay N and Morris ME: Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des. 20:1487–1498. 2014. View Article : Google Scholar : | |
Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, Feng C, Xie Y, Sha X and Fang X: Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 35:518–529. 2014. View Article : Google Scholar | |
Campani V, Zappavigna S, Scotti L, Abate M, Porru M, Leonetti C, Caraglia M and De Rosa G: Hybrid lipid self-assembling nanoparticles for brain delivery of microRNA. Int J Pharm. 588:1196932020. View Article : Google Scholar : PubMed/NCBI | |
Estella-Hermoso de Mendoza A, Preat V, Mollinedo F and Blanco-Prieto MJ: In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma. J Control Release. 156:421–426. 2011. View Article : Google Scholar : PubMed/NCBI | |
Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, Quinones-Diaz BI, Noriega-Rivera RA, Martinez-Zayas G, Santana-Rivera Y, Santiago-Sanchez GS, Valiyeva F and Vivas-Mejia PE: Brain targeted gold liposomes improve RNAi delivery for glioblastoma. Int J Nanomedicine. 15:2809–2828. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pandian SRK, Pavadai P, Vellaisamy S, Ravishankar V, Palanisamy P, Sundar LM, Chandramohan V, Sankaranarayanan M, Panneerselvam T and Kunjiappan S: Formulation and evaluation of Rutin-loaded solid lipid nanoparticles for the treatment of brain tumor. Naunyn Schmiedebergs Arch Pharmacol. 394:735–749. 2021. View Article : Google Scholar | |
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ and Miller DW: Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci Rep. 10:112922020. View Article : Google Scholar : PubMed/NCBI | |
Wohlfart S, Khalansky AS, Gelperina S, Maksimenko O, Bernreuther C, Glatzel M and Kreuter J: Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One. 6:e191212011. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yin H and Zhang X: Modification of graphene oxide by angiopep-2 enhances anti-glioma efficiency of the nanoscaled delivery system for doxorubicin. Aging (Albany NY). 12:10506–10516. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cen J, Dai X, Zhao H, Li X, Hu X, Wu J and Duan S: Doxorubicin-loaded liposome with the function of 'Killing two birds with one stone' against Glioma. ACS Appl Mater Interfaces. 15:46697–46709. 2023. View Article : Google Scholar : PubMed/NCBI | |
He H, Li Y, Jia XR, Du J, Ying X, Lu WL, Lou JN and Wei Y: PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials. 32:478–487. 2011. View Article : Google Scholar | |
Khoury ES, Sharma A, Ramireddy RR, Thomas AG, Alt J, Fowler A, Rais R, Tsukamoto T, Blue ME, Slusher B, et al: Dendrimer-conjugated glutaminase inhibitor selectively targets microglial glutaminase in a mouse model of Rett syndrome. Theranostics. 10:5736–5748. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhao Z, Gao H, Rostami I, You Q, Jia X, Wang C, Zhu L and Yang Y: Enhanced blood-brain-barrier penetrability and tumor-targeting efficiency by peptide-functionalized poly(amidoamine) dendrimer for the therapy of gliomas. Nanotheranostics. 3:311–330. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saw PE, Zhang A, Nie Y, Zhang L, Xu Y and Xu X: Tumor-associated fibronectin targeted liposomal nanoplatform for cyclophilin a siRNA delivery and targeted malignant glioblastoma therapy. Front Pharmacol. 9:11942018. View Article : Google Scholar : PubMed/NCBI | |
Zong T, Mei L, Gao H, Shi K, Chen J, Wang Y, Zhang Q, Yang Y and He Q: Enhanced glioma targeting and penetration by dual-targeting liposome co-modified with T7 and TAT. J Pharm Sci. 103:3891–3901. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Shen Y, Fu Y, Muroski ME, Zhang P, Wang Q, Xu C, Lesniak MS, Li G and Cheng Y: Self-assembly of gold nanoparticles shows microenvironment-mediated dynamic switching and enhanced brain tumor targeting. Theranostics. 7:1875–1889. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liaw K, Sharma R, Sharma A, Salazar S, Appiani La Rosa S and Kannan RM: Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves Anti-tumor efficacy and reduces systemic toxicity in glioblastoma. J Control Release. 329:434–444. 2021. View Article : Google Scholar : | |
Lu W, Sun Q, Wan J, She Z and Jiang XG: Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 66:11878–11887. 2006. View Article : Google Scholar : PubMed/NCBI | |
Negron K, Khalasawi N, Lu B, Ho CY, Lee J, Shenoy S, Mao HQ, Wang TH, Hanes J and Suk JS: Widespread gene transfer to malignant gliomas with In vitro-to-In vivo correlation. J Control Release. 303:1–11. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X and Huang R: Multifunctional mesoporous Silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc. 135:4799–4804. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yu J, Zhang L, Cai J, Cai D and Lv C: Enhanced anti-tumor effects of doxorubicin on glioma by entrapping in polybutylcyanoacrylate nanoparticles. Tumour Biol. 37:2703–2708. 2016. View Article : Google Scholar | |
Dal Magro R, Ornaghi F, Cambianica I, Beretta S, Re F, Musicanti C, Rigolio R, Donzelli E, Canta A, Ballarini E, et al: ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier. J Control Release. 249:103–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Gabathuler R, Castaigne JP and Beliveau R: Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 106:1534–1544. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hultqvist G, Syvanen S, Fang XT, Lannfelt L and Sehlin D: Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics. 7:308–318. 2017. View Article : Google Scholar : PubMed/NCBI | |
Molino Y, David M, Varini K, Jabes F, Gaudin N, Fortoul A, Bakloul K, Masse M, Bernard A, Drobecq L, et al: Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 31:1807–1827. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pardridge WM, Kang YS, Buciak JL and Yang J: Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res. 12:807–816. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ribecco-Lutkiewicz M, Sodja C, Haukenfrers J, Haqqani AS, Ly D, Zachar P, Baumann E, Ball M, Huang J, Rukhlova M, et al: A novel human induced pluripotent stem cell blood-brain barrier model: Applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep. 8:18732018. View Article : Google Scholar : PubMed/NCBI | |
Wu LP, Ahmadvand D, Su J, Hall A, Tan X, Farhangrazi ZS and Moghimi SM: Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat Commun. 10:46352019. View Article : Google Scholar : PubMed/NCBI | |
Zhan C, Li B, Hu L, Wei X, Feng L, Fu W and Lu W: Micelle-based Brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew Chem Int Ed Engl. 50:5482–5485. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bera S, Kar RK, Mondal S, Pahan K and Bhunia A: Structural elucidation of the Cell-penetrating penetratin peptide in model membranes at the atomic level: Probing hydrophobic interactions in the Blood-brain barrier. Biochemistry. 55:4982–4996. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bertrand Y, Currie JC, Poirier J, Demeule M, Abulrob A, Fatehi D, Stanimirovic D, Sartelet H, Castaigne JP and Beliveau R: Influence of glioma tumour microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1. Br J Cancer. 105:1697–1707. 2011. View Article : Google Scholar : PubMed/NCBI | |
Du D, Chang N, Sun S, Li M, Yu H, Liu M, Liu X, Wang G, Li H, Liu X, et al: The role of glucose transporters in the distribution of p-aminophenyl-α-d-mannopyranoside modified liposomes within mice brain. J Control Release. 182:99–110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Joshi S, Cooke JRN, Ellis JA, Emala CW and Bruce JN: Targeting brain tumors by intra-arterial delivery of cell-penetrating peptides: A novel approach for primary and metastatic brain malignancy. J Neurooncol. 135:497–506. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li J, Shao K, Huang R, Ye L, Lou J and Jiang C: A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials. 31:5246–5257. 2010. View Article : Google Scholar : PubMed/NCBI | |
Molina-Arcas M, Casado FJ and Pastor-Anglada M: Nucleoside transporter proteins. Curr Vasc Pharmacol. 7:426–434. 2009. View Article : Google Scholar : PubMed/NCBI | |
Romano A, Koczwara JB, Gallelli CA, Vergara D, Micioni Di Bonaventura MV, Gaetani S and Giudett AM: Fats for thoughts: An update on brain fatty acid metabolism. Int J Biochem Cell Biol. 84:40–45. 2017. View Article : Google Scholar : PubMed/NCBI | |
Strickland M and Stoll EA: Metabolic reprogramming in glioma. Front Cell Dev Biol. 5:432017. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yang Y, Xie X, Cai X, Zhang H, Gong W, Wang Z and Mei X: PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials. 35:4368–4381. 2014. View Article : Google Scholar : PubMed/NCBI | |
Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, Labit C, Leplatois P, Liauzun P, Miloux B, et al: Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 362:248–250. 1993. View Article : Google Scholar : PubMed/NCBI | |
Debinski W and Gibo DM: Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol Med. 6:440–449. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kawakami M, Kawakami K, Takahashi S, Abe M and Puri RK: Analysis of interleukin-13 receptor alpha2 expression in human pediatric brain tumors. Cancer. 101:1036–1042. 2004. View Article : Google Scholar : PubMed/NCBI | |
Madhankumar AB, Slagle-Webb B, Mintz A, Sheehan JM and Connor JR: Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther. 5:3162–3169. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Guo XY, Yang T, Yu MZ, Chen DW and Wang JC: Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles. Int J Pharm. 510:394–405. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Chi C, Huang X, Chu H, Wang J, Du F, Jiang L and Chen J: Cyclophilin a is overexpressed in hepatocellular carcinoma and is associated with the cell cycle. Anticancer Res. 37:4443–4447. 2017.PubMed/NCBI | |
Jain R, Atak A, Yeola A and Srivastava S: Proteomic level changes associated with S3I201 treated U87 glioma cells. J Proteomics. 150:341–350. 2017. View Article : Google Scholar | |
Yang H, Chen J, Yang J, Qiao S, Zhao S and Yu L: Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. Biochem Biophys Res Commun. 361:763–767. 2007. View Article : Google Scholar : PubMed/NCBI | |
Campani V, De Rosa G, Misso G, Zarone MR and Grimaldi A: Lipid nanoparticles to deliver miRNA in cancer. Curr Pharm Biotechnol. 17:741–749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Trivedi P and Jain NK: Advances in siRNA delivery in cancer therapy. Artif Cells Nanomed Biotechnol. 46:274–283. 2018. View Article : Google Scholar | |
Pink DL, Loruthai O, Ziolek RM, Wasutrasawat P, Terry AE, Lawrence MJ and Lorenz CD: On the structure of solid lipid nanoparticles. Small. 15:e19031562019. View Article : Google Scholar : PubMed/NCBI | |
Negahdari R, Bohlouli S, Sharifi S, Maleki Dizaj S, Rahbar Saadat Y, Khezri K, Jafari S, Ahmadian E, Gorbani Jahandizi N and Raeesi S: Therapeutic benefits of rutin and its nanoformulations. Phytother Res. 35:1719–1738. 2021. View Article : Google Scholar | |
Ishak RAH, Mostafa NM and Kamel AO: Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery-comparative study with the gold standard (Tween 80): Optimization, characterization and biodistribution. Drug Deliv. 24:1874–1890. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neves AR, Queiroz JF, Lima SAC and Reis S: Apo E-Functionalization of solid lipid nanoparticles enhances brain drug delivery: Uptake mechanism and transport pathways. Bioconjug Chem. 28:995–1004. 2017. View Article : Google Scholar : PubMed/NCBI | |
Banerjee I, De K, Mukherjee D, Dey G, Chattopadhyay S, Mukherjee M, Mandal M, Bandyopadhyay AK, Gupta A, Ganguly S and Misra M: Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomater. 38:69–81. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S and Yenugonda VM: Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int J Nanomedicine. 14:1937–1952. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salzano G, Zappavigna S, Luce A, D'Onofrio N, Balestrieri ML, Grimaldi A, Lusa S, Ingrosso D, Artuso S, Porru M, et al: Transferrin-targeted nanoparticles containing zoledronic acid as a potential tool to inhibit glioblastoma growth. J Biomed Nanotechnol. 12:811–830. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aili T, Zong JB, Zhou YF, Liu YX, Yang XL, Hu B and Wu JH: Recent advances of self-assembled nanoparticles in the diagnosis and treatment of atherosclerosis. Theranostics. 14:7505–7533. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Shen M, Liao H, Guo Q, Fu H, Yu J and Duan Y: A paclitaxel and microRNA-124 coloaded stepped cleavable nanosystem against triple negative breast cancer. J Nanobiotechnology. 19:552021. View Article : Google Scholar : PubMed/NCBI | |
Srinageshwar B, Peruzzaro S, Andrews M, Johnson K, Hietpas A, Clark B, McGuire C, Petersen E, Kippe J, Stewart A, et al: PAMAM dendrimers cross the Blood-brain barrier when administered through the carotid artery in C57BL/6J mice. Int J Mol Sci. 18:6282017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Liang H, Liu J and Wang Z: Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm. 546:215–225. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fana M, Gallien J, Srinageshwar B, Dunbar GL and Rossignol J: PAMAM dendrimer nanomolecules utilized as drug delivery systems for potential treatment of glioblastoma: A systematic review. Int J Nanomedicine. 15:2789–2808. 2020. View Article : Google Scholar : PubMed/NCBI | |
Saraswathy M, Knight GT, Pilla S, Ashton RS and Gong S: Multifunctional drug nanocarriers formed by cRGD-conjugated betaCD-PAMAM-PEG for targeted cancer therapy. Colloids Surf B Biointerfaces. 126:590–597. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tambe V, Thakkar S, Raval N, Sharma D, Kalia K and Tekade RK: Surface engineered dendrimers in siRNA delivery and gene silencing. Curr Pharm Des. 23:2952–2975. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liaw K, Zhang F, Mangraviti A, Kannan S, Tyler B and Kannan RM: Dendrimer size effects on the selective brain tumor targeting in orthotopic tumor models upon systemic administration. Bioeng Transl Med. 5:e101602020. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Liaw K, Sharma R, Zhang Z, Kannan S and Kannan RM: Targeting mitochondrial dysfunction and oxidative stress in activated microglia using Dendrimer-based therapeutics. Theranostics. 8:5529–5547. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sharma R, Kim SY, Sharma A, Zhang Z, Kambhampati SP, Kannan S and Kannan RM: Activated microglia targeting Dendrimer-minocycline conjugate as therapeutics for neuroinflammation. Bioconjug Chem. 28:2874–2886. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Yao J, Wang X, Wang Y, Fu X, Ma J, Lin H, Xu J, Shen L and Yu X: Combinational chemoimmunotherapy for breast cancer by codelivery of doxorubicin and PD-L1 siRNA using a PAMAM-incorporated liposomal nanoplatform. ACS Appl Mater Interfaces. 14:8782–8792. 2022. View Article : Google Scholar : PubMed/NCBI | |
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N and Tyler BM: Polymeric nanoparticles in brain cancer therapy: A review of current approaches. Polymers (Basel). 14:29632022. View Article : Google Scholar : PubMed/NCBI | |
Qian L, Zheng J, Wang K, Tang Y, Zhang X, Zhang H, Huang F, Pei Y and Jiang Y: Cationic core-shell nanoparticles with carmustine contained within O6-benzylguanine shell for glioma therapy. Biomaterials. 34:8968–8978. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Hu L, Yin Q, Feng L and Li Y: Transferrin-modified c[RGDfK]-paclitaxel loaded hybrid micelle for sequential blood-brain barrier penetration and glioma targeting therapy. Mol Pharm. 9:1590–1598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xin H, Chen L, Gu J, Ren X, Wei Z, Luo J, Chen Y, Jiang X, Sha X and Fang X: Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(varepsilon-caprolactone) nanoparticles: In vitro and in vivo evaluation. Int J Pharm. 402:238–247. 2010. View Article : Google Scholar : PubMed/NCBI | |
Izquierdo M: Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther. 12:217–227. 2005. View Article : Google Scholar | |
Razavi ZS, Razavi FS and Alizadeh SS: Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem. 287:1173572025. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Bhattarai P, Dai Z and Chen X: Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 48:2053–2108. 2019. View Article : Google Scholar : | |
Bernardi RJ, Lowery AR, Thompson PA, Blaney SM and West JL: Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines. J Neurooncol. 86:165–172. 2008. View Article : Google Scholar | |
Ruan S, Xie R, Qin L, Yu M, Xiao W, Hu C, Yu W, Qian Z, Ouyang L, He Q and Gao H: Aggregable Nanoparticles-enabled chemotherapy and autophagy inhibition combined with Anti-PD-L1 antibody for improved glioma treatment. Nano Lett. 19:8318–8332. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qiu J, Kong L, Cao X, Li A, Wei P, Wang L, Mignani S, Caminade AM, Majoral JP and Shi X: Enhanced delivery of therapeutic siRNA into glioblastoma cells using Dendrimer-entrapped gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials (Basel). 8:1312018. View Article : Google Scholar | |
Maleki P, Dinari A, Jahangiri B and Raheb J: In vitro assessments of nanoplexes of polyethylenimine-coated graphene oxide-plasmid through various cancer cell lines and primary mesenchymal stem cells. PLoS One. 18:e02958222023. View Article : Google Scholar : PubMed/NCBI | |
Chuang CC, Lan YH, Lu YJ, Weng YL and Chen JP: Targeted delivery of irinotecan and SLP2 shRNA with GRP-conjugated magnetic graphene oxide for glioblastoma treatment. Biomater Sci. 10:3201–3222. 2022. View Article : Google Scholar : PubMed/NCBI | |
Norouzi M, Yathindranath V, Thliveris JA and Miller DW: Salinomycin-loaded iron oxide nanoparticles for glioblastoma therapy. Nanomaterials (Basel). 10:4772020. View Article : Google Scholar : PubMed/NCBI | |
Saalik P, Lingasamy P, Toome K, Mastandrea I, Rousso-Noori L, Tobi A, Simon-Gracia L, Hunt H, Paiste P, Kotamraju VR, et al: Peptide-guided nanoparticles for glioblastoma targeting. J Control Release. 308:109–118. 2019. View Article : Google Scholar : PubMed/NCBI | |
Manago A, Leanza L, Carraretto L, Sassi N, Grancara S, Quintana-Cabrera R, Trimarco V, Toninello A, Scorrano L, Trentin L, et al: Early effects of the antineoplastic agent salinomycin on mitochondrial function. Cell Death Dis. 6:e19302015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K, Kong Y, Wang J, Chen H, Ma Y, Li Z, et al: Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl Mater Interfaces. 12:43408–43421. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ruifang L, Zhu Y, Wang Z, Zhang H, Cui L, Duan S and Guo Y: Active targeting co-delivery of therapeutic Sur siRNA and an antineoplastic drug via epidermal growth factor receptor-mediated magnetic nanoparticles for synergistic programmed cell death in glioblastoma stem cells. Materials Chemistry Front. 4:574–588. 2019. View Article : Google Scholar | |
Nichols JW and Bae YH: EPR: Evidence and fallacy. J Control Release. 190:451–464. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yu M, Ning X, Zhou C, Yang S and Zheng J: PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew Chem Int Ed Engl. 52:12572–12576. 2013. View Article : Google Scholar : PubMed/NCBI | |
Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F and Tasciotti E: The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond). 11:81–100. 2016. View Article : Google Scholar | |
Zhang TX, Zhu GY, Lu BY, Zhang CL and Peng Q: Concentration-dependent protein adsorption at the nano-bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine (Lond). 12:2757–2769. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Dong J, Zhang T and Peng Q: Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 286:64–73. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Wang Y, Zhang H, Liu Y, Xie R, He X, Zhou Y, Liang L and Gao H: The protein corona hampers the transcytosis of Transferrin-modified nanoparticles through blood-brain barrier and attenuates their targeting ability to brain tumor. Biomaterials. 274:1208882021. View Article : Google Scholar : PubMed/NCBI | |
Schottler S, Landfester K and Mailander V: Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew Chem Int Ed Engl. 55:8806–8815. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao H and He Q: The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin Drug Deliv. 11:409–420. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peng Q, Wei XQ, Yang Q, Zhang S, Zhang T, Shao XR, Cai XX, Zhang ZR and Lin YF: Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona. Nanomedicine (Lond). 10:205–214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Guan J, Jiang Z, Yang Y, Liu J, Hua W, Mao Y, Li C, Lu W, Qian J and Zhan C: Brain-targeted drug delivery by manipulating protein corona functions. Nat Commun. 10:35612019. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZA, Xin X, Liu C, Liu YH, Duan HX, Qi LL, Zhang YY, Zhao HM, Chen LQ, Jin MJ, et al: Novel brain-targeted nanomicelles for anti-glioma therapy mediated by the ApoE-enriched protein corona in vivo. J Nanobiotechnology. 19:4532021. View Article : Google Scholar : PubMed/NCBI | |
Cheng Z, Li M, Dey R and Chen Y: Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol. 14:852021. View Article : Google Scholar : PubMed/NCBI | |
Xu HL, Yang JJ, ZhuGe DL, Lin MT, Zhu QY, Jin BH, Tong MQ, Shen BX, Xiao J and Zhao YZ: Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for Dual-imaging guiding cancer surgery. Adv Healthc Mater. 7:e17011302018. View Article : Google Scholar : PubMed/NCBI | |
Wu VM, Huynh E, Tang S and Uskokovic V: Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater. 88:422–447. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arias-Ramos N, Ibarra LE, Serrano-Torres M, Yague B, Caverzan MD, Chesta CA, Palacios RE and Lopez-Larrubia P: Iron oxide incorporated conjugated polymer nanoparticles for simultaneous use in magnetic resonance and fluorescent imaging of brain tumors. Pharmaceutics. 13:12582021. View Article : Google Scholar : PubMed/NCBI |