1
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung
H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45.
2025.PubMed/NCBI
|
2
|
Yang C, Liu Y, Huang Z, Liu S, Zhang X,
Liu Q and Dai J: Recent advances and challenges of cellular
immunotherapies in lung cancer treatment. Exp Hematol Oncol.
14:942025. View Article : Google Scholar : PubMed/NCBI
|
3
|
No authors listed. Lung Cancer. Am Fam
Physician. 105:Online2022.
|
4
|
Zhang Y, Luo G, Etxeberria J and Hao Y:
Global patterns and trends in lung cancer incidence: A
population-based study. J Thorac Oncol. 16:933–944. 2021.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Allemani C, Matsuda T, Di Carlo V,
Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ,
Estève J, et al: Global surveillance of trends in cancer survival
2000–14 (CONCORD-3): Analysis of individual records for 37 513 025
patients diagnosed with one of 18 cancers from 322 population-based
registries in 71 countries. Lancet. 391:1023–1075. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rodrigues T, Sieglitz F and Bernardes GJ:
Natural product modulators of transient receptor potential (TRP)
channels as potential anti-cancer agents. Chem Soc Rev.
45:6130–6137. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Samanta A, Hughes TET and Moiseenkova-Bell
VY: Transient receptor potential (TRP) channels. Subcell Biochem.
87:141–165. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pan F, Wang K, Zheng M, Ren Y, Hao W and
Yan J: A TRP family based signature for prognosis prediction in
head and neck squamous cell carcinoma. J Oncol. 2022:87576562022.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ouadid-Ahidouch H, Dhennin-Duthille I,
Gautier M, Sevestre H and Ahidouch A: TRP channels: Diagnostic
markers and therapeutic targets for breast cancer? Trends Mol Med.
19:117–124. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Büch TRH, Büch EAM, Boekhoff I, Steinritz
D and Aigner A: Role of chemosensory TRP channels in lung cancer.
Pharmaceuticals (Basel). 11:902018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao Y, Wang J and Liu X: TRPV4 induces
apoptosis via p38 MAPK in human lung cancer cells. Braz J Med Biol
Res. 54:e108672021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mounir M, Lucchetta M, Silva TC, Olsen C,
Bontempi G, Chen X, Noushmehr H, Colaprico A and Papaleo E: New
functionalities in the TCGAbiolinks package for the study and
integration of cancer data from GDC and GTEx. PLoS Comput Biol.
15:e10067012019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen H, Su X, Li Y, Dang C and Luo Z:
Identification of metabolic reprogramming-related genes as
potential diagnostic biomarkers for diabetic nephropathy based on
bioinformatics. Diabetol Metab Syndr. 16:2872024. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tu X, Huang H, Xu S, Li C and Luo S:
Single-cell transcriptomics reveals immune infiltrate in sepsis.
Front Pharmacol. 14:11331452023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wilkerson MD and Hayes DN:
ConsensusClusterPlus: A class discovery tool with confidence
assessments and item tracking. Bioinformatics. 26:1572–1573. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tong M, Tu Q, Wang L, Chen H, Wan X and Xu
Z: Joint analysis of single-cell RNA sequencing and bulk
transcriptome reveals the heterogeneity of the urea cycle of
astrocytes in glioblastoma. Neurobiol Dis. 208:1068352025.
View Article : Google Scholar : PubMed/NCBI
|
18
|
O'Connell TM: Pathway volcano: An
interactive tool for pathway guided visualization of differential
expression data. Bioinformatics. 41:btaf3672025. View Article : Google Scholar : PubMed/NCBI
|
19
|
Melit Devassy B, George S and Nussbaum P:
Unsupervised clustering of hyperspectral paper data using t-SNE. J
Imaging. 6:292020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang S, Huang G, Li X, Zhang Z, Peng K,
Zhu L, Zhang C and Niu TT: Global, regional and national
retinoblastoma burden in children under 10 years of age from 1990
to 2021: Trend analysis based on the global burden of disease study
2021. PLoS One. 20:e03278322025. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li H, Li G, Gao X, Chen C, Cui Z, Cao X
and Su J: Development of a reliable risk prognostic model for lung
adenocarcinoma based on the genes related to endotheliocyte
senescence. Sci Rep. 15:126042025. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen X, Chen W, Zhou J, Chen J, Cao G,
Huang C, Lu X, Chen X, Luo R, Huang H, et al: Association between
early antibiotic treatment after admission and mortality of
acute-on-chronic liver failure patients with bacterial infection: A
multicenter retrospective study. Virulence. 16:25097572025.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Li-Fei M, Ren SM, Wang J, Zhao WJ, Chen J
and Hu WT: Risk scoring model for lung adenocarcinoma based on
PD-L1 related signature reveals prognostic predictability and
correlation with tumor immune microenvironment genes was
constructed. Front Immunol. 16:16019822025. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hänzelmann S, Castelo R and Guinney J:
GSVA: Gene set variation analysis for microarray and RNA-seq data.
BMC Bioinformatics. 14:72013. View Article : Google Scholar : PubMed/NCBI
|
25
|
SCOT-HEART Investigators, . Newby DE,
Adamson PD, Berry C, Boon NA, Dweck MR, Flather M, Forbes J, Hunter
A, Lewis S, et al: Coronary CT angiography and 5-year risk of
myocardial infarction. N Engl J Med. 379:924–933. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang N and Liu D: Identification and
validation a necroptosis-related prognostic signature and
associated regulatory axis in stomach adenocarcinoma. Onco Targets
Ther. 14:5373–5383. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sun S, Wang Y, Li M and Wu J:
Identification of TRP-related subtypes, development of a prognostic
model, and characterization of tumor microenvironment infiltration
in lung adenocarcinoma. Front Mol Biosci. 9:8613802022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu J, Li L, Zhang H, Zhao Y, Zhang H, Wu S
and Xu B: A risk model developed based on tumor microenvironment
predicts overall survival and associates with tumor immunity of
patients with lung adenocarcinoma. Oncogene. 40:4413–4424. 2021.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu Q and Chen Y: An aging-related gene
signature-based model for risk stratification and prognosis
prediction in lung adenocarcinoma. Front Cell Dev Biol.
9:6853792021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Suzuki C, Daigo Y, Ishikawa N, Kato T,
Hayama S, Ito T, Tsuchiya E and Nakamura Y: ANLN plays a critical
role in human lung carcinogenesis through the activation of RHOA
and by involvement in the phosphoinositide 3-kinase/AKT pathway.
Cancer Res. 65:11314–11325. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xu J, Zheng H, Yuan S, Zhou B, Zhao W, Pan
Y and Qi D: Overexpression of ANLN in lung adenocarcinoma is
associated with metastasis. Thorac Cancer. 10:1702–1709. 2019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Li S, Liu Y, Bai Y, Chen M, Cheng D, Wu M
and Xia J: Ras homolog family member F, filopodia associated
promotes hepatocellular carcinoma metastasis by altering the
metabolic status of cancer cells through RAB3D. Hepatology.
73:2361–2379. 2021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kunita R, Otomo A and Ikeda JE:
Identification and characterization of novel members of the CREG
family, putative secreted glycoproteins expressed specifically in
brain. Genomics. 80:456–460. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Weivoda MM, Chew CK, Monroe DG, Farr JN,
Atkinson EJ, Geske JR, Eckhardt B, Thicke B, Ruan M, Tweed AJ, et
al: Identification of osteoclast-osteoblast coupling factors in
humans reveals links between bone and energy metabolism. Nat
Commun. 11:872020. View Article : Google Scholar : PubMed/NCBI
|
36
|
He Y, Davies CM, Harrington BS, Hellmers
L, Sheng Y, Broomfield A, McGann T, Bastick K, Zhong L, Wu A, et
al: CDCP1 enhances Wnt signaling in colorectal cancer promoting
nuclear localization of β-catenin and E-cadherin. Oncogene.
39:219–233. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Khan T, Kryza T, Lyons NJ, He Y and Hooper
JD: The CDCP1 signaling hub: A target for cancer detection and
therapeutic intervention. Cancer Res. 81:2259–2269. 2021.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Alajati A, D'Ambrosio M, Troiani M, Mosole
S, Pellegrini L, Chen J, Revandkar A, Bolis M, Theurillat JP,
Guccini I, et al: CDCP1 overexpression drives prostate cancer
progression and can be targeted in vivo. J Clin Invest.
130:2435–2450. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hwang SM, Lee JY, Park CK and Kim YH: The
role of TRP channels and PMCA in brain disorders: Intracellular
calcium and pH homeostasis. Front Cell Dev Biol. 9:5843882021.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Balood M, Ahmadi M, Eichwald T, Ahmadi A,
Majdoubi A, Roversi K, Roversi K, Lucido CT, Restaino AC, Huang S,
et al: Nociceptor neurons affect cancer immunosurveillance. Nature.
611:405–412. 2022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lory NC, Nawrocki M, Corazza M, Schmid J,
Schumacher V, Bedke T, Menzel S, Koch-Nolte F, Guse AH, Huber S and
Mittrücker HW: TRPM2 is not required for T-Cell activation and
differentiation. Front Immunol. 12:7789162022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kozai D, Ogawa N and Mori Y: Redox
regulation of transient receptor potential channels. Antioxid Redox
Signal. 21:971–986. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sullivan JM, Bagnell AM, Alevy J, Avila
EM, Mihaljević L, Saavedra-Rivera PC, Kong L, Huh JS, McCray BA,
Aisenberg WH, et al: Gain-of-function mutations of TRPV4 acting in
endothelial cells drive blood-CNS barrier breakdown and motor
neuron degeneration in mice. Sci Transl Med. 16:eadk13582024.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Tian X, Nanding K, Dai X, Wang Q, Wang J
and Morigen Fan L: Pattern recognition receptor mediated innate
immune response requires a Rif-dependent pathway. J Autoimmun.
134:1029752023. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liang Q, Wang JW, Bai YR, Li RL, Wu CJ and
Peng W: Targeting TRPV1 and TRPA1: A feasible strategy for natural
herbal medicines to combat postoperative ileus. Pharmacol Res.
196:1069232023. View Article : Google Scholar : PubMed/NCBI
|
46
|
Datta A, Lee JH, Flandrin O, Horneman H,
Lee J, Metruccio MME, Bautista D, Evans DJ and Fleiszig SMJ: TRPA1
and TPRV1 ion channels are required for contact lens-induced
corneal parainflammation and can modulate levels of resident
corneal immune cells. Invest Ophthalmol Vis Sci. 64:212023.
View Article : Google Scholar : PubMed/NCBI
|
47
|
He M, Wu G, Wang Z, Ren K, Yang Z and Xue
Q: Development and validation of a TRP-related gene signature for
overall survival prediction in lung adenocarcinoma. Front Genet.
13:9056502022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang Z, Zhang J, Zuo C, Chen H, Wang L,
Xie Y, Ma H, Min S, Wang X and Lian C: Identification and
validation of tryptophan-related gene signatures to predict
prognosis and immunotherapy response in lung adenocarcinoma reveals
a critical role for PTTG1. Front Immunol. 15:13864272024.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Guo Y and Liu N: Systematic analysis and
identification of molecular subtypes of TRP-related genes and
prognosis prediction in lung adenocarcinoma. J Oncol.
2022:53882832022. View Article : Google Scholar : PubMed/NCBI
|