
Immunotherapy combined with radiotherapy for advanced non‑small cell lung cancer: Current status and challenge (Review)
- Authors:
- Qiong Li
- Ya-Qin Cai
- Li-Hua Shao
- Yue-Xiao Qi
- Li-Yun Guo
- Hai-Xia Song
- Yu-Mei Dong
- Shi-Hong Wei
-
Affiliations: Department of Radiation Oncology, Gansu Provincial Cancer Hospital, Gansu Provincial Academy of Medical Science, Lanzhou, Gansu 730050, P.R. China - Published online on: August 4, 2025 https://doi.org/10.3892/ol.2025.15215
- Article Number: 469
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.PubMed/NCBI |
|
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI |
|
Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, Mariotto AB, Lowy DR and Feuer EJ: The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 383:640–649. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, et al: Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 28:2181–2190. 2010. View Article : Google Scholar : PubMed/NCBI |
|
Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Magliocco A, et al: Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol. 16:187–199. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 373:1627–1639. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, et al: Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 387:1540–1550. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI |
|
de Castro G Jr, Kudaba I, Wu YL, Lopes G, Kowalski DM, Turna HZ, Caglevic C, Zhang L, Karaszewska B, Laktionov KK, et al: Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and programmed death ligand-1 tumor proportion score ≥1% in the KEYNOTE-042 study. J Clin Oncol. 41:1986–1991. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Bianco A, Malapelle U, Rocco D, Perrotta F and Mazzarella G: Targeting immune checkpoints in non small cell lung cancer. Curr Opin Pharmacol. 40:46–50. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, Ready NE, Gerber DE, Chow LQ, Juergens RA, et al: Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol. 18:31–41. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, et al: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 378:2093–2104. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et al: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 377:1919–1929. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Faivre-Finn C, Vicente D, Kurata T, Planchard D, Paz-Ares L, Vansteenkiste JF, Spigel DR, Garassino MC, Reck M, Senan S, et al: Four-year survival with durvalumab after chemoradiotherapy in stage III NSCLC-an update from the PACIFIC trial. J Thorac Oncol. 16:860–867. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Jabbour SK, Lee KH, Frost N, Breder V, Kowalski DM, Pollock T, Levchenko E, Reguart N, Martinez-Marti A, Houghton B, et al: Pembrolizumab plus concurrent chemoradiation therapy in patients with unresectable, locally advanced, stage III non-small cell lung cancer: The phase 2 KEYNOTE-799 nonrandomized trial. JAMA Oncol. 7:1–9. Jun 4–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI |
|
Mole RH: Whole body irradiation; radiobiology or medicine? Br J Radiol. 26:234–241. 1953. View Article : Google Scholar : PubMed/NCBI |
|
Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L and Formenti SC: Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 58:862–870. 2004. View Article : Google Scholar : PubMed/NCBI |
|
Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, et al: Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 366:925–931. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Formenti SC and Demaria S: Combining radiotherapy and cancer immunotherapy: A paradigm shift. J Natl Cancer Inst. 105:256–265. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Sharabi AB, Lim M, DeWeese TL and Drake CG: Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 16:e498–e509. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Wang Y, Liu ZG, Yuan H, Deng W, Li J, Huang Y, Kim BYS, Story MD and Jiang W: The reciprocity between radiotherapy and cancer immunotherapy. Clin Cancer Res. 25:1709–1717. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Procureur A, Simonaggio A, Bibault JE, Oudard S and Vano YA: Enhance the immune checkpoint inhibitors efficacy with radiotherapy induced immunogenic cell death: A comprehensive review and latest developments. Cancers (Basel). 13:6782021. View Article : Google Scholar : PubMed/NCBI |
|
Levy A, Massard C, Soria JC and Deutsch E: Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: Single centre subset analysis from a phase 1/2 trial. Eur J Cancer. 68:156–162. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Theelen WSME, Chen D, Verma V, Hobbs BP, Peulen HMU, Aerts JGJV, Bahce I, Niemeijer ALN, Chang JY, de Groot PM, et al: Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet Respir Med. 9:467–475. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Bestvina CM, Pointer KB, Karrison T, Al-Hallaq H, Hoffman PC, Jelinek MJ, Juloori A, Melotek JM, Murgu S, Partouche J, et al: A phase 1 trial of concurrent or sequential ipilimumab, nivolumab, and stereotactic body radiotherapy in patients with stage IV NSCLC study. J Thorac Oncol. 17:130–140. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I and Galluzzi L: Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol. 21:120–134. 2020. View Article : Google Scholar : PubMed/NCBI |
|
McLaughlin M, Patin EC, Pedersen M, Wilkins A, Dillon MT, Melcher AA and Harrington KJ: Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat Rev Cancer. 20:203–217. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Cytlak UM, Dyer DP, Honeychurch J, Williams KJ, Travis MA and Illidge TM: Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat Rev Immunol. 22:124–138. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Johnson CB and Jagsi R: The promise of the abscopal effect and the future of trials combining immunotherapy and radiation therapy. Int J Radiat Oncol Biol Phys. 95:1254–1256. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Huang RX and Zhou PK: DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 5:602020. View Article : Google Scholar : PubMed/NCBI |
|
Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, et al: Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 203:1259–1271. 2006. View Article : Google Scholar : PubMed/NCBI |
|
Lhuillier C, Rudqvist NP, Yamazaki T, Zhang T, Charpentier M, Galluzzi L, Dephoure N, Clement CC, Santambrogio L, Zhou XK, et al: Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J Clin Invest. 131:e1387402021. View Article : Google Scholar : PubMed/NCBI |
|
Zhou J, Wang G, Chen Y, Wang H, Hua Y and Cai Z: Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med. 23:4854–4865. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Zhou H, Tu C, Yang P, Li J, Kepp O, Li H, Zhang L, Zhang L, Zhao Y, Zhang T, et al: Carbon ion radiotherapy triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy in mice. Oncoimmunology. 11:20578922022. View Article : Google Scholar : PubMed/NCBI |
|
Garg AD, Vandenberk L, Fang S, Fasche T, Van Eygen S, Maes J, Van Woensel M, Koks C, Vanthillo N, Graf N, et al: Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ. 24:832–843. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M, Stewart R, et al: Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74:5458–5468. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Barker HE, Paget JT, Khan AA and Harrington KJ: The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer15. 409–425. 2015. View Article : Google Scholar |
|
Chakravarthy A, Furness A, Joshi K, Ghorani E, Ford K, Ward MJ, King EV, Lechner M, Marafioti T, Quezada SA, et al: Pan-cancer deconvolution of tumour composition using DNA methylation. Nat Commun. 9:32202018. View Article : Google Scholar : PubMed/NCBI |
|
Jarosz-Biej M, Smolarczyk R, Cichoń T and Kułach N: Tumor microenvironment as A ‘game changer’ in cancer radiotherapy. Int J Mol Sci. 20:32122019. View Article : Google Scholar : PubMed/NCBI |
|
Demaria S, Coleman CN and Formenti SC: Radiotherapy: Changing the game in immunotherapy. Trends Cancer. 2:286–294. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Abuodeh Y, Venkat P and Kim S: Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 40:25–37. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC and Demaria S: Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 15:5379–5388. 2009. View Article : Google Scholar : PubMed/NCBI |
|
Mosely SIS, Prime JE, Sainson RCA, Koopmann JO, Wang DYQ, Greenawalt DM, Ahdesmaki MJ, Leyland R, Mullins S, Pacelli L, et al: Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol Res. 5:29–41. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, et al: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 520:373–377. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, Deweese TL and Drake CG: Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res. 3:345–355. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Gong X, Li X, Jiang T, Xie H, Zhu Z, Zhou F and Zhou C: Combined radiotherapy and anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J Thorac Oncol. 12:1085–1097. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Herter-Sprie GS, Koyama S, Korideck H, Hai J, Deng J, Li YY, Buczkowski KA, Grant AK, Ullas S, Rhee K, et al: Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight. 1:e874152016. View Article : Google Scholar : PubMed/NCBI |
|
Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC and Demaria S: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 8:156182017. View Article : Google Scholar : PubMed/NCBI |
|
Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, et al: STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 41:843–852. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Cai X, Chiu YH and Chen ZJ: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. 54:289–296. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et al: Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 379:2342–2350. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Gray JE, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, Cho BC, et al: Three-year overall survival with durvalumab after chemoradiotherapy in stage III NSCLC-update from PACIFIC. J Thorac Oncol. 15:288–293. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Jabbour SK, Berman AT, Decker RH, Lin Y, Feigenberg SJ, Gettinger SN, Aggarwal C, Langer CJ, Simone CB II, Bradley JD, et al: Phase 1 trial of pembrolizumab administered concurrently with chemoradiotherapy for locally advanced non-small cell lung cancer: A nonrandomized controlled trial. JAMA Oncol. 6:848–855. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Gerber DE, Urbanic JJ, Langer C, Hu C, Chang IF, Lu B, Movsas B, Jeraj R, Curran WJ and Bradley JD: Treatment design and rationale for a randomized trial of cisplatin and etoposide plus thoracic radiotherapy followed by nivolumab or placebo for locally advanced non-small-cell lung cancer (RTOG 3505). Clin Lung Cancer. 18:333–339. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Theelen WSME, Peulen HMU, Lalezari F, van der Noort V, de Vries JF, Aerts JGJV, Dumoulin DW, Bahce I, Niemeijer AN, de Langen AJ, et al: Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: Results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 5:1276–1282. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Kataoka Y, Ebi N, Fujimoto D, Hara S, Hirano K, Narabayashi T, Tanaka T, Tomii K and Yoshioka H: Prior radiotherapy does not predict nivolumab response in non-small-cell lung cancer: A retrospective cohort study. Ann Oncol. 28:14022017. View Article : Google Scholar : PubMed/NCBI |
|
Scoccianti S, Olmetto E, Pinzi V, Osti MF, Di Franco R, Caini S, Anselmo P, Matteucci P, Franceschini D, Mantovani C, et al: Immunotherapy in association with stereotactic radiotherapy for non-small cell lung cancer brain metastases: Results from a multicentric retrospective study on behalf of AIRO. Neuro Oncol. 23:1750–1764. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Xia WY, Feng W, Zhang CC, Shen YJ, Zhang Q, Yu W, Cai XW and Fu XL: Radiotherapy for non-small cell lung cancer in the immunotherapy era: The opportunity and challenge-a narrative review. Transl Lung Cancer Res. 9:2120–2136. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Aliru ML, Schoenhals JE, Venkatesulu BP, Anderson CC, Barsoumian HB, Younes AI, K Mahadevan LS, Soeung M, Aziz KE, Welsh JW and Krishnan S: Radiation therapy and immunotherapy: What is the optimal timing or sequencing? Immunotherapy. 10:299–316. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Gunderson AJ and Young KH: Exploring optimal sequencing of radiation and immunotherapy combinations. Adv Radiat Oncol. 3:494–505. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Lehrer EJ, Peterson J, Brown PD, Sheehan JP, Quiñones-Hinojosa A, Zaorsky NG and Trifiletti DM: Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: An international meta-analysis of individual patient data. Radiother Oncol. 130:104–112. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Young KH, Baird JR, Savage T, Cottam B, Friedman D, Bambina S, Messenheimer DJ, Fox B, Newell P, Bahjat KS, et al: Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS One. 11:e01571642016. View Article : Google Scholar : PubMed/NCBI |
|
Geng Y, Zhang Q, Feng S, Li C, Wang L, Zhao X, Yang Z, Li Z, Luo H, Liu R, et al: Safety and Efficacy of PD-1/PD-L1 inhibitors combined with radiotherapy in patients with non-small-cell lung cancer: A systematic review and meta-analysis. Cancer Med. 10:1222–1239. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, et al: DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 8:17512017. View Article : Google Scholar : PubMed/NCBI |
|
Choe EA, Cha YJ, Kim JH, Pyo KH, Hong MH, Park SY, Shim HS, Jung I, Lee CY, Cho BC and Kim HR: Dynamic changes in PD-L1 expression and CD8+ T cell infiltration in non-small cell lung cancer following chemoradiation therapy. Lung Cancer. 136:30–36. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Durm GA, Jabbour SK, Althouse SK, Liu Z, Sadiq AA, Zon RT, Jalal SI, Kloecker GH, Williamson MJ, Reckamp KL, et al: A phase 2 trial of consolidation pembrolizumab following concurrent chemoradiation for patients with unresectable stage III non-small cell lung cancer: Hoosier cancer research network LUN 14–179. Cancer. 126:4353–4361. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Wegner RE, Abel S, Hasan S, White R, Finley GG, Monga D, Colonias A and Verma V: Time from stereotactic body radiotherapy to immunotherapy as a predictor for outcome in metastatic non small cell lung cancer. J Clin Oncol. 37 (15 Suppl):S90242019. View Article : Google Scholar |
|
Peters S, Felip E, Dafni U, Belka C, Guckenberger M, Irigoyen A, Nadal E, Becker A, Vees H, Pless M, et al: Safety evaluation of nivolumab added concurrently to radiotherapy in a standard first line chemo-radiotherapy regimen in stage III non-small cell lung cancer-the ETOP NICOLAS trial. Lung Cancer. 133:83–87. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Bradley JD, Nishio M, Okamoto I, Newton MD, Trani L, Shire NJ, Gu Y, Dennis PA and Lee KH: PACIFIC-2: Phase 3 study of concurrent durvalumab and platinum-based chemoradiotherapy in patients with unresectable, stage III NSCLC. J Clin Oncol. 37 (15 Suppl):TPS85732019. View Article : Google Scholar |
|
Chen Y, Gao M, Huang Z, Yu J and Meng X: SBRT combined with PD-1/PD-L1 inhibitors in NSCLC treatment: A focus on the mechanisms, advances, and future challenges. J Hematol Oncol. 13:1052020. View Article : Google Scholar : PubMed/NCBI |
|
Zayed S, Louie AV, Breadner DA, Palma DA and Correa RJM: Radiation and immune checkpoint inhibitors in the treatment of oligometastatic non-small-cell lung cancer: A practical review of rationale, recent data, and research questions. Ther Adv Med Oncol. 15:175883592311836682023. View Article : Google Scholar : PubMed/NCBI |
|
Weichselbaum RR, Liang H, Deng L and Fu YX: Radiotherapy and immunotherapy: A beneficial liaison? Nat Rev Clin Oncol. 14:365–379. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Nishikawa H and Sakaguchi S: Regulatory T cells in tumor immunity. Int J Cancer. 127:759–767. 2010. View Article : Google Scholar : PubMed/NCBI |
|
Buchwald ZS, Wynne J, Nasti TH, Zhu S, Mourad WF, Yan W, Gupta S, Khleif SN and Khan MK: Radiation, immune checkpoint blockade and the abscopal effect: A critical review on timing, dose and fractionation. Front Oncol. 8:6122018. View Article : Google Scholar : PubMed/NCBI |
|
Faivre-Finn C, Spigel DR, Senan S, Langer C, Perez BA, Özgüroğlu M, Daniel D, Villegas A, Vicente D, Hui R, et al: Impact of prior chemoradiotherapy-related variables on outcomes with durvalumab in unresectable stage III NSCLC (PACIFIC). Lung Cancer. 151:30–38. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Bernstein MB, Krishnan S, Hodge JW and Chang JY: Immunotherapy and stereotactic ablative radiotherapy (ISABR): A curative approach? Nat Rev Clin Oncol. 13:516–524. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Welsh J, Menon H, Chen D, Verma V, Tang C, Altan M, Hess K, de Groot P, Nguyen QN, Varghese R, et al: Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: A randomized phase I/II trial. J Immunother Cancer. 8:e0010012020. View Article : Google Scholar : PubMed/NCBI |
|
Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Frank MJ, Reagan PM, Bartlett NL, Gordon LI, Friedberg JW, Czerwinski DK, Long SR, Hoppe RT, Janssen R, Candia AF, et al: In situ vaccination with a TLR9 agonist and local low-dose radiation induces systemic responses in untreated indolent lymphoma. Cancer Discov. 8:1258–1269. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Nadella V, Singh S, Jain A, Jain M, Vasquez KM, Sharma A, Tanwar P, Rath GK and Prakash H: Low dose radiation primed iNOS + M1macrophages modulate angiogenic programming of tumor derived endothelium. Mol Carcinog. 57:1664–1671. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Jing W, Gershan JA, Weber J, Tlomak D, McOlash L, Sabatos-Peyton C and Johnson BD: Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 3:22015. View Article : Google Scholar : PubMed/NCBI |
|
Venkatesulu BP, Mallick S, Lin SH and Krishnan S: A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit Rev Oncol Hematol. 123:42–51. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, Garon EB and Lee P: Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 18:895–903. 2017. View Article : Google Scholar : PubMed/NCBI |
|
De Ruysscher D: Radiotherapy and PD-L1 inhibition in metastatic NSCLC. Lancet Oncol. 18:840–842. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Lan J, Li R, Yin LM, Deng L, Gui J, Chen BQ, Zhou L, Meng MB, Huang QR, Mo XM, et al: Targeting myeloid-derived suppressor cells and programmed death ligand 1 confers therapeutic advantage of ablative hypofractionated radiation therapy compared with conventional fractionated radiation therapy. Int J Radiat Oncol Biol Phys. 101:74–87. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Luke JJ, Lemons JM, Karrison TG, Pitroda SP, Melotek JM, Zha Y, Al-Hallaq HA, Arina A, Khodarev NN, Janisch L, et al: Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J Clin Oncol. 36:1611–1618. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Kang J, Demaria S and Formenti S: Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer. 4:512016. View Article : Google Scholar : PubMed/NCBI |
|
Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017. View Article : Google Scholar : PubMed/NCBI |
|
O'Donnell JS, Smyth MJ and Teng MW: Acquired resistance to anti-PD1 therapy: Checkmate to checkpoint blockade? Genome Med. 8:1112016. View Article : Google Scholar : PubMed/NCBI |
|
Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G and Zitvogel L: Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors. Immunity. 44:1255–1269. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al: Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 36:633–641. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Thommen DS and Schumacher TN: T cell dysfunction in cancer. Cancer Cell. 33:547–562. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Hu W, Li X, Zhang C, Yang Y, Jiang J and Wu C: Tumor-associated macrophages in cancers. Clin Transl Oncol. 18:251–258. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF, Choo KS, Staab TA, Bouchard RJ, Merrick DT, et al: Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol. 5:5872014. View Article : Google Scholar : PubMed/NCBI |
|
Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, et al: Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3:1355–1363. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Gettinger SN, Wurtz A, Goldberg SB, Rimm D, Schalper K, Kaech S, Kavathas P, Chiang A, Lilenbaum R, Zelterman D, et al: Clinical features and management of acquired resistance to PD-1 axis inhibitors in 26 patients with advanced non-small cell lung cancer. J Thorac Oncol. 13:831–839. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Golden EB, Pellicciotta I, Demaria S, Barcellos-Hoff MH and Formenti SC: The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol. 2:882012. View Article : Google Scholar : PubMed/NCBI |
|
van Gulijk M, Dammeijer F, Aerts JGJV and Vroman H: Combination strategies to optimize efficacy of dendritic cell-based immunotherapy. Front Immunol. 9:27592018. View Article : Google Scholar : PubMed/NCBI |
|
Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, Tracey KJ and Chiorazzi N: High mobility group box protein 1: An endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol. 173:307–313. 2004. View Article : Google Scholar : PubMed/NCBI |
|
Demaria S, Golden EB and Formenti SC: Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 1:1325–1332. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Galluzzi L, Zitvogel L and Kroemer G: Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunol Res. 4:895–902. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Siva S, MacManus MP, Martin RF and Martin OA: Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 356:82–90. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Herrera FG, Bourhis J and Coukos G: Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin. 67:65–85. 2017.PubMed/NCBI |
|
Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC and Demaria S: Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol. 39:644–655. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Li A, Yi M, Qin S, Song Y, Chu Q and Wu K: Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 12:352019. View Article : Google Scholar : PubMed/NCBI |
|
Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C and Illidge T: Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: Building better translational research platforms. Ann Oncol. 29:301–310. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR and Fu YX: Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 124:687–695. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Iyengar P, Hu C, Gomez DR, Timmerman RD, Simone CB, Robinson CG, Gerber DE, Waqar SN, Donington J, Swisher S, et al: NRG-LU002: Randomized phase II/III trial of maintenance systemic therapy versus local consolidative therapy (LCT) plus maintenance systemic therapy for limited metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 42 (16 Suppl):S85062024. View Article : Google Scholar |
|
Chang JY, Lin SH, Dong W, Liao Z, Gandhi SJ, Gay CM, Zhang J, Chun SG, Elamin YY, Fossella FV, et al: Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: An open-label, randomised, phase 2 trial. Lancet. 402:871–881. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Zou Y, Hu X, Zheng S, Yang A, Li X, Tang H, Kong Y and Xie X: Discordance of immunotherapy response predictive biomarkers between primary lesions and paired metastases in tumours: A systematic review and meta-analysis. EBioMedicine. 63:1031372021. View Article : Google Scholar : PubMed/NCBI |
|
Schoenfeld AJ, Rizvi H, Bandlamudi C, Sauter JL, Travis WD, Rekhtman N, Plodkowski AJ, Perez-Johnston R, Sawan P, Beras A, et al: Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas. Ann Oncol. 31:599–608. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 348:124–128. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, Sosman JA, Schalper KA, Anders RA, Wang H, et al: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: A systematic review and meta-analysis. JAMA Oncol. 5:1195–1204. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Ko EC and Formenti SC: Radiotherapy and checkpoint inhibitors: A winning new combination? Therap Adv Med Oncol. 10:17588359187682402018. View Article : Google Scholar : PubMed/NCBI |
|
Takeshima T, Pop LM, Laine A, Iyengar P, Vitetta ES and Hannan R: Key role for neutrophils in radiation-induced antitumor immune responses: Potentiation with G-CSF. Proc Natl Acad Sci USA. 113:11300–11305. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Deng L, Liang H, Burnette B, Weicheslbaum RR and Fu YX: Radiation and anti-PD-L1 antibody combinatorial therapy induces T cell-mediated depletion of myeloid-derived suppressor cells and tumor regression. OncoImmunology. 3:e284992014. View Article : Google Scholar : PubMed/NCBI |
|
Guberina N, Wirsdörfer F, Stuschke M and Jendrossek V: Combined radiation- and immune checkpoint-inhibitor-induced pneumonitis-the challenge to predict and detect overlapping immune-related adverse effects from evolving laboratory biomarkers and clinical imaging. Neoplasia. 39:1008922023. View Article : Google Scholar : PubMed/NCBI |
|
Study of Durvalumab Given With Chemoradiation Therapy in Patients With Unresectable Non-small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT03519971?cond=NCT03519971&rank=1 |
|
Durvalumab and Low-dose PCI vs Durvalumab and Observation in Radically Treated Patients With Stage III NSCLC (NVALT28) (NVALT28). https://clinicaltrials.gov/study/NCT04597671?cond=NCT04597671&rank=1 |
|
Testing the Safety of Adding Either Monalizumab (IPH2201) or Oleclumab (MEDI9447) to Durvalumab (MEDI4736) Plus Standard Radiation Therapy for Locally Advanced Non-small Cell Lung Cancer (NSCLC), ARCHON-1 Trial. https://clinicaltrials.gov/study/NCT03801902?cond=NCT03801902&rank=1 |
|
Local Consolidative Therapy and Durvalumab for Oligoprogressive and Polyprogressive Stage III NSCLC After Chemoradiation and Anti-PD-L1 Therapy. https://clinicaltrials.gov/study/NCT04892953?cond=NCT04892953&rank=1 |
|
Ipilimumab and Nivolumab in Combination With Radiation Therapy in Treating Patients With Stage 2–3 Non-small. Lung Cancer. https://clinicaltrials.gov/study/NCT04013542?cond=NCT04013542&rank=1 |
|
Proton Based Cardiac Sparing Accelerated Fractionated RadioTherapy in Unresectable NSCLC. https://clinicaltrials.gov/study/NCT03818776?cond=NCT03818776&rank=1 |
|
Durvalumab and Chemotherapy Induction Followed by Durvalumab and Radiotherapy in Large Volume Stage III NSCLC (BRIDGE). https://clinicaltrials.gov/study/NCT04765709?cond=NCT04765709&rank=1 |
|
Radiation and Chemotherapy With Ipilimumab Followed by Nivolumab for Patients With Stage III Unresectable Non-Small Cell Lung Cancer (NSCLC). https://clinicaltrials.gov/study/NCT03663166?cond=NCT03663166&rank=1 |
|
Accelerated Radio-Immunotherapy for Lung Cancer (AIRING). https://clinicaltrials.gov/study/NCT04577638?cond=NCT04577638&rank=1 |
|
A Trial of Pembrolizumab in Combination With Chemotherapy and Radiotherapy in Stage III NSCLC (KEYNOTE-799, MK-3475-799) (KEYNOTE-799). https://clinicaltrials.gov/study/NCT03631784?cond=NCT03631784&rank=1 |
|
Durvalumab and Consolidation SBRT Following Chemoradiation for Locally Advanced Stage III Non-Small Cell Lung (358). https://clinicaltrials.gov/study/NCT03589547?cond=NCT03589547&rank=1 |
|
Intensified Chemo-immuno-radiotherapy With Durvalumab for Stage III Non-Small Cell Lung Cancers (PACIFIC BRAZIL). https://clinicaltrials.gov/study/NCT04230408?cond=NCT04230408&rank=1 |
|
Phase II Concurrent Durvalumab and Radiotherapy for for Stage III Non-Small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT04003246?cond=NCT04003246&rank=1 |
|
Determining Whether Durvalumab in Combination With Radiation Therapy Can Prevent the Progression of Non-Small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT03999710?cond=NCT03999710&rank=1 |
|
The Selective Personalized Radio-Immunotherapy for Locally Advanced NSCLC Trial (SPRINT). https://clinicaltrials.gov/study/NCT03523702?cond=NCT03523702&rank=1 |
|
Multimodality Treatment in Stage III Non-small Cell Lung Cancer (NSCLC). https://clinicaltrials.gov/study/NCT04245514?cond=NCT04245514&rank=1 |
|
Unresectable Stage IIIA/ IIIB Non-small Cell Lung Cancer (NSCLC). https://clinicaltrials.gov/study/NCT03285321?cond=NCT03285321&rank=1 |
|
A Study to Determine Safety of Durvalumab After Sequential Chemo Radiation in Patients With Unresectable Stage III Non-Small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT03693300?cond=NCT03693300&rank=1 |
|
Study of Nivolumab for Non-Small Cell Lung Cancer (Stage III) Following Neoadjuvant Chemotherapy Plus Nivolumab and Definitive Concurrent Chemoradiation Therapy. https://clinicaltrials.gov/study/NCT04085250?cond=NCT04085250&rank=1 |
|
A Study of Durvalumab as Consolidation Therapy in Non-Small Cell Lung Cancer Patients (PACIFIC-5). https://clinicaltrials.gov/study/NCT03706690?cond=NCT03706690&rank=1 |
|
A Study of Nivolumab and Ipilimumab in Untreated Participants With Stage 3 Non-small Cell Lung Cancer (NSCLC) That is Unable or Not Planned to be Removed by Surgery (CheckMate73L). https://clinicaltrials.gov/study/NCT04026412?cond=NCT04026412&rank=1 |
|
NIvolumab COmbination With Standard First-line Chemotherapy and Radiotherapy in Locally Advanced Stage IIIA/ B Non-Small Cell Lung Carcinoma (NICOLAS). https://clinicaltrials.gov/study/NCT02434081?cond=NCT02434081&rank=1 |
|
Chemo-immunotherapy, Hypo-fractionated RT and Maintenance Immunotherapy for Stage III NSCLC. (DEDALUS). https://clinicaltrials.gov/study/NCT05128630?cond=NCT05128630&rank=1 |
|
Use of High Dose Radiation Followed by Chemotherapy and Radiation to Treat Locally Advanced NSCLC. https://clinicaltrials.gov/study/NCT03141359?cond=NCT03141359&rank=1 |
|
Pembrolizumab After SBRT Versus Pembrolizumab Alone in Advanced NSCLC (PEMBRO-RT). https://clinicaltrials.gov/study/NCT02492568?cond=NCT02492568&rank=1 |
|
SBRT in Multi-metastatic NSCLC Patients Which Are Pan-negative for Driver Mutations. https://clinicaltrials.gov/study/NCT02940990?cond=NCT02940990&rank=1 |
|
UCDCC#270, . Avelumab and Stereotactic Ablative Radiotherapy in Non-responding and Progressing NSCLC Patients. https://clinicaltrials.gov/study/NCT03158883?cond=NCT03158883&rank=1 |
|
Immunotherapy With or Without SBRT in Patients With Stage IV Non-small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT03867175?cond=NCT03867175&rank=1 |
|
Pembrolizumab and Stereotactic Body Radiation Therapy or Non-Stereotactic Wide-Field Radiation Therapy in Treating Patients With Non-small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT02444741?cond=NCT02444741&rank=1 |
|
PD-1 Inhibitor and Chemotherapy With Concurrent Irradiation at Varied Tumour Sites in Advanced Non-small Cell Lung Cancer (NIRVANA-LUNG). https://clinicaltrials.gov/study/NCT03774732?cond=NCT03774732&rank=1 |
|
Nivolumab and Ipilimumab With or Without Local Consolidation Therapy in Treating Patients With Stage IV Non-Small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT03391869?cond=NCT03391869&rank=1 |
|
Radiation and Immune Checkpoints Blockade in Metastatic NSCLC (BMS # CA209-632). https://clinicaltrials.gov/study/NCT03168464?cond=NCT03168464&rank=1 |
|
Atezolizumab and Varlilumab in Combination With Radiation Therapy for NSCLC. https://clinicaltrials.gov/study/NCT04081688?cond=NCT04081688&rank=1 |
|
Radical-Dose Image Guided Radiation Therapy in Treating Patients With Metastatic Non-small Cell Lung Cancer Undergoing Immunotherapy. https://clinicaltrials.gov/study/NCT03176173?cond=NCT03176173&rank=1 |
|
Nivolumab and Radiation Therapy With or Without Ipilimumab in Treating Patients With Brain Metastases From Non-small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT02696993?cond=NCT02696993&rank=1 |
|
Immunotherapy SBRT Sensitization of the Programmed Death-1 (PD-1) Effect (I-SABR). https://clinicaltrials.gov/study/NCT03825510?cond=NCT03825510&rank=1 |
|
Safety and Tolerability Evaluation of Sintilimab in Combination With Radiation in Stage IV NSCLC Patients. https://clinicaltrials.gov/study/NCT03812549?cond=NCT03812549&rank=1 |
|
Testing the Addition of Radiation Therapy to the Usual Treatment (Immunotherapy With or Without Chemotherapy) for Advanced Stage Non-small Cell Lung Cancer Patients Who Are PD-L1 Negative. https://clinicaltrials.gov/study/NCT04929041?cond=NCT04929041&rank=1 |
|
Palliative Thoracic ImmunoRT. https://clinicaltrials.gov/study/NCT03705806?cond=NCT03705806&rank=1 |
|
Efficacy and Safety of Sintilimab With or Without Radiotherapy in Patients With Recurrent or IV NSCLC (EGFR-ALK-) After Failure of Platinum-based Chemotherapy. A Randomized, Open Labled, Phase II Clinical Study. https://clinicaltrials.gov/study/NCT04513301?cond=NCT04513301&rank=1 |
|
PRIME_LUNG. Primary Radiotherapy In MEtastatic Lung Cancer-A Pilot Study (PRIME_LUNG). https://clinicaltrials.gov/study/NCT05222087?cond=NCT05222087&rank=1 |
|
Concurrent or Sequential Immunotherapy and Radiation Therapy in Patients With Metastatic Lung Cancer (COSINR). https://clinicaltrials.gov/study/NCT03223155?cond=NCT03223155&rank=1 |
|
Camrelizumab Combined With Local Treatment in NSCLC Patients With BM. https://clinicaltrials.gov/study/NCT04291092?cond=NCT04291092&rank=1 |
|
SinTilimab After Radiation (STAR Study) (STAR). https://clinicaltrials.gov/study/NCT04167657?cond=NCT04167657&rank=1 |
|
NBTXR3 Activated by Radiotherapy for Patients with Advanced Cancers Treated with an Anti-PD-1 Therapy. https://clinicaltrials.gov/study/NCT03589339?cond=NCT03589339&rank=1 |
|
Immunotherapy, Chemotherapy, Radiotherapy and Surgery for Synchronous Oligo-metastatic NSCLC (CHESS). https://clinicaltrials.gov/study/NCT03965468?cond=NCT03965468&rank=1 |
|
Hypofractionated Radiation Therapy to Improve Immunotherapy Response in Non-Small Cell Lung Cancer. https://clinicaltrials.gov/study/NCT03035890?cond=NCT03035890&rank=1 |
|
Atezolizumab Plus 8 Gy Single-fraction Radiotherapy for Advanced Oligoprogressive NSCLC. https://clinicaltrials.gov/study/NCT04549428?cond=NCT04549428&rank=1 |
|
Phase Ib Study of Stereotactic Body Radiotherapy (SBRT) in Oligometastatic Non-small Lung Cancer (NSCLC) With Dual Immune Checkpoint Inhibition. https://clinicaltrials.gov/study/NCT03275597?cond=NCT03275597&rank=1 |
|
Study of Stereotactic Ablative Radiotherapy(SBRT) Followed by Atezolizumab/Tiragolumab in Treatment-naive Patients With Metastatic Non-small Cell Lung Cancer (SKYROCKET). https://clinicaltrials.gov/study/NCT05034055?cond=NCT05034055&rank=1 |
|
Durvalumab (MEDI4736) and Radiosurgery (fSRT vs. PULSAR) for the Treatment of Non-Small Cell Lung Cancer Brain Metastases. https://clinicaltrials.gov/study/NCT04889066?cond=NCT04889066&rank=1 |
|
Durvalumab and Stereotactic Radiotherapy for Advanced NSCLC. https://clinicaltrials.gov/study/NCT04786093?cond=NCT04786093&rank=1 |
|
Radiomic Signature as Predictive Marker of Response to Chemoradiation and Durvalumab in Stage III NSCLC. https://clinicaltrials.gov/study/NCT04364776?cond=NCT04364776&rank=1 |
|
Clinical Trial Assessing the Efficacy of Abscopal Effect Induced by SBRT and Immunotherapy in Advanced NSCLC. https://clinicaltrials.gov/study/NCT04238169?cond=NCT04238169&rank=1 |