Circular RNAs in colorectal cancer: From molecular mechanisms to therapeutic applications (Review)
- Authors:
- Yuxing He
- Can Luo
- Wei Du
- Debei Liu
- Lingshan Liao
- Siqian Wang
- Yanlin Cao
-
Affiliations: Clinical Laboratory Department, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415000, P.R. China, Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415000, P.R. China - Published online on: August 11, 2025 https://doi.org/10.3892/or.2025.8972
- Article Number: 139
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
Hilsden RJ, Heitman SJ, Lamidi M, Diallo MD, English J, Town S, Cartwright S, Maxwell C, McGillivray ME, McGregor E, et al: Cohort profile: The Forzani & MacPhail colon cancer screening centre biorepository, Calgary, Alberta. BMJ Open. 10:e0381192020. View Article : Google Scholar : PubMed/NCBI | |
Mochizuki K, Kudo SE, Kato K, Kudo K, Ogawa Y, Kouyama Y, Takashina Y, Ichimasa K, Tobo T, Toshima T, et al: Molecular and clinicopathological differences between depressed and protruded T2 colorectal cancer. PLoS One. 17:e02735662022. View Article : Google Scholar : PubMed/NCBI | |
Han B, Zheng R, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W and He J: Cancer incidence and mortality in China, 2022. J Natl Cancer Cent. 4:47–53. 2024.PubMed/NCBI | |
Yan S, Wang W, Feng Z, Xue J, Liang W, Wu X, Tan Z, Zhang X, Zhang S, Li X and Zhang C: Immune checkpoint inhibitors in colorectal cancer: Limitation and challenges. Front Immunol. 15:14035332024. View Article : Google Scholar : PubMed/NCBI | |
Jiang G, Zhang R, Yang X, Zhang W and Hou Y: Positive correlation between miR-570 and prognosis of colon cancer: Inhibition of cell proliferation and invasion. Clin Exp Med. 22:193–200. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wathoni N, Nguyen AN, Rusdin A, Umar AK, Mohammed AFA, Motoyama K, Joni IM and Muchtaridi M: Enteric-coated strategies in colorectal cancer nanoparticle drug delivery system. Drug Des Devel Ther. 14:4387–4405. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Ye F, Deng X, Tang Y, Liang JY, Huang X, Sun Y, Tang H, Lei J, Zheng S and Zou Y: Circular RNA: A promising new star of vaccine. J Transl Int Med. 11:372–381. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Xie J, Huang G, Zhang J, Song C, Luo Y, Tang H, Tang Y, Xiao X, Zhang C, et al: Isoliquiritigenin reduces brain metastasis by circNAV3-ST6GALNAC5-EGFR axis in triple-negative breast cancer. Cancer Lett. 624:2177342025. View Article : Google Scholar : PubMed/NCBI | |
Yi J, Li B, Yin X, Liu L, Song C, Zhao Y, Cai M, Tang H, Chen D and Lyu N: CircMYBL2 facilitates hepatocellular carcinoma progression by regulating E2F1 expression. Oncol Res. 32:1129–1139. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Ren H, Guo M, Qian J, Yang Y and Gu C: Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 19:910–928. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Peng Y, Fan X, Zhang X and Jin Z: Circular RNAs: Implications of signaling pathways and bioinformatics in human cancer. Cancer Biol Med. 20:104–128. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY and Kim HS: Exploring the key signaling pathways and ncRNAs in colorectal cancer. Int J Mol Sci. 25:45482024. View Article : Google Scholar : PubMed/NCBI | |
Song J, Liu Q, Han L, Song T, Huang S, Zhang X, He Q, Liang C, Zhu S and Xiong B: Hsa_circ_0009092/miR-665/NLK signaling axis suppresses colorectal cancer progression via recruiting TAMs in the tumor microenvironment. J Exp Clin Cancer Res. 42:3192023. View Article : Google Scholar : PubMed/NCBI | |
Song W, Miao L, Zhang K, Liu Y, Lin J, Li J, Huang Z, Cao D, Zhang Y and Hu C: Sevoflurane suppresses colorectal cancer malignancy by modulating β-catenin ubiquitination degradation via circSKA3. Cell Signal. 114:1109872024. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Yuan W, Han R, Zhong J, Yang X, Zheng M and Xie B: Exosomal CircRNAs in circulation serve as diagnostic biomarkers for acute myocardial infarction. Front Biosci (Landmark Ed). 29:1492024. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Jia Y, Liu Y, Wu B, Wang J, Ao X and Ding W: Novel insights into the N 6-methyladenosine modification on circRNA in cancer. Front Oncol. 15:15548882025. View Article : Google Scholar : PubMed/NCBI | |
Long BY, Wang Y, Hao SH and Shi G: Molecular significance of circRNAs in malignant lymphoproliferative disorders: Pathogenesis and novel biomarkers or therapeutic targets. Am J Cancer Res. 14:4633–4651. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang C and Zhang B: RNA therapeutics: Updates and future potential. Sci China Life Sci. 66:12–30. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Zhou S, Dain L, Mei L and Zhu G: Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Liu Y and Jiang Z: CircRNAs: A new perspective of biomarkers in the nervous system. Biomed Pharmacother. 128:1102512020. View Article : Google Scholar : PubMed/NCBI | |
Jagtap U, Anderson ES and Slack FJ: The emerging value of circular noncoding RNA research in cancer diagnosis and treatment. Cancer Res. 83:809–813. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Yang D, Zuo Y, Wang D and Li W: Emerging roles of circular RNAs in tuberculosis. Front Immunol. 13:9957012022. View Article : Google Scholar : PubMed/NCBI | |
Suciu TS, Feștilă D, Berindan-Neagoe I, Nutu A, Armencea G, Aghiorghiesei AI, Vulcan T and Băciuț M: Circular RNA-mediated regulation of oral tissue-derived stem cell differentiation: Implications for oral medicine and orthodontic applications. Stem Cell Rev Rep. 20:656–671. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Dang P, Guo Y, Liu S, Hu S, Sun H, Xu Y, Wang W, Chen C, Liu J, et al: Targeting CircAURKA prevents colorectal cancer progression via enhancing CTNNB1 protein degradation. Oncogene. 43:3388–3401. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun M and Yang Y: Biological functions and applications of circRNAs-next generation of RNA-based therapy. J Mol Cell Biol. 15:mjad0312023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wu C, Du Y, Li Z, Li M, Hou P, Shen Z, Chu S, Zheng J and Bai J: Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas. Mol Cancer. 21:132022. View Article : Google Scholar : PubMed/NCBI | |
Li K, Yang D and Liu D: Targeted nanophotoimmunotherapy potentiates cancer treatment by enhancing tumor immunogenicity and improving the immunosuppressive tumor microenvironment. Bioconjug Chem. 34:283–301. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Huang C, Pan J, Hu H, Liu X, Zhang K, Zhou F, Shi X, Wu J, Yu B, et al: circPLIN2 promotes clear cell renal cell carcinoma progression by binding IGF2BP proteins and miR-199a-3p. Cell Death Dis. 13:10302022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li ZW, You ZH, Huang DS and Wong L: MAGCDA: A Multi-hop attention graph neural networks method for CircRNA-disease association prediction. IEEE J Biomed Health Inform. 28:1752–1761. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu D and Fang L: Current research on circular RNAs and their potential clinical implications in breast cancer. Cancer Biol Med. 18:635–648. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ni L, Yamada T and Nakatani K: Utility of oligonucleotide in upregulating circular RNA production in a cellular model. Sci Rep. 14:80962024. View Article : Google Scholar : PubMed/NCBI | |
Kishore R, Garikipati VNS and Gonzalez C: Role of circular RNAs in cardiovascular disease. J Cardiovasc Pharmacol. 76:128–137. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao D: Reverse complementary matches simultaneously promote both back-splicing and exon-skipping. BMC Genomics. 22:5862021. View Article : Google Scholar : PubMed/NCBI | |
Saleh RO, Al-Hawary SIS, Jasim SA, Bokov DO, Hjazi A, Oudaha KH, Alnajar MJ, Jumaa SS, Alawadi A and Alsalamy A: A therapeutical insight into the correlation between circRNAs and signaling pathways involved in cancer pathogenesis. Med Oncol. 41:692024. View Article : Google Scholar : PubMed/NCBI | |
Wang Z and Lei X: Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture. Brief Bioinform. 22:bbab3422021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Lu C, Zeng M, Li Y and Wang J: CRMSS: Predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features. Brief Bioinform. 24:bbac5302023. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Chen H, Yang L, Li X and Wang Z: CircPLCE1 facilitates the malignant progression of colorectal cancer by repressing the SRSF2-dependent PLCE1 pre-RNA splicing. J Cell Mol Med. 25:7244–7256. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jia Z, An J, Liu Z and Zhang F: Non-coding RNAs in colorectal cancer: Their functions and mechanisms. Front Oncol. 12:7830792022. View Article : Google Scholar : PubMed/NCBI | |
Fu Y and Sun H: Biogenesis, cellular effects, and biomarker value of circHIPK3. Cancer Cell Int. 21:2562021. View Article : Google Scholar : PubMed/NCBI | |
Dal Molin A, Gaffo E, Difilippo V, Buratin A, Tretti Parenzan C, Bresolin S and Bortoluzzi S: CRAFT: A bioinformatics software for custom prediction of circular RNA functions. Brief Bioinform. 23:bbab6012022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Song H, Fang L and Wu T: EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 8:922022. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Wang S, Cao T, Huang T, Xu L, Wang J, Li Q, Wang Y, Qian L, Xu L, et al: Newly discovered mechanisms that mediate tumorigenesis and tumour progression: circRNA-encoded proteins. J Cell Mol Med. 27:1609–1620. 2023. View Article : Google Scholar : PubMed/NCBI | |
Meng E, Deng J, Jiang R and Wu H: CircRNA-encoded peptides or proteins as new players in digestive system neoplasms. Front Oncol. 12:9441592022. View Article : Google Scholar : PubMed/NCBI | |
Ning Q, Jin Q, Zhao L, Wang Y, Wang J, Yang L, Han Y, Zhi Q, Zheng J, Chen F and Dong D: Transcriptome-scale analysis of functional alternative back-splicing events in colorectal cancer. J Transl Med. 23:4682025. View Article : Google Scholar : PubMed/NCBI | |
An S, Cui J, Yang W, Zhang M, Yu H, Lu J, Tian Y, Qiao L, Wang X, Bao L and Zhao P: HAS-CIRCpedia-5280 Sponges miR-4712-5p inhibited colon cancer autophagyinduced by human beta-defensin-1. J Transl Med. 23:2812025. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang H, Chen Z, Wu G, Guo W and Li Y: MicroRNA-21: A potential therapeutic target in lung cancer (Review). Int J Oncol. 67:672025. View Article : Google Scholar : PubMed/NCBI | |
Mao L, Yang H, Huang N, Li Y, Sang Y and Zeng C: MiR-122 promotes metastasis of hepatoma cells by modulating RBM47-integrin alpha V-TGF-beta signaling. PLoS One. 20:e03279152025. View Article : Google Scholar : PubMed/NCBI | |
Bin JF, Chen LF, Wang Y, Ge H and Chen W: Bibliometric and visual analysis of global crc circular RNA research 2015–2023. Front Immunol. 16:15804052025. View Article : Google Scholar : PubMed/NCBI | |
Zhang LT, Zhou Y, Wang T, Chen B, Cai Z, Wang S and Tong G: Hsa_circ_0002238 promotes the malignant behavior of colorectal cancer. Front Pharmacol. 16:15418202025. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Cheng X and Gao X: Circ_0089761 accelerates colorectal cancer metastasis and immune escape via miR-27b-3p/PD-L1 axis. Physiol Rep. 12:e701372024. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Li H, Gao H, Zheng S, Wang Y, Wang Y, Chen Y, Zhu Z, Xia P, Shi H and Han A: Hsa_circ_0004194 suppresses colorectal cancer progression via hsa-miR-27a-3p. Heliyon. 10:e395492024. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Li C, Ji T, Yu K and Gao X: The biological function and mechanism of action of circRNA as a potential target in colorectal cancer. Crit Rev Oncol Hematol. 213:1048282025. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Luo J, Yang W and Ye WC: CircRNAs in colorectal cancer: Potential biomarkers and therapeutic targets. Cell Death Dis. 14:3532023. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Fan Q, Wang Y, Liu Y, Xu X, Liang Y, Xie J, Li J, Ai F, Cao Y, et al: CircRNAs in colorectal cancer: Potential roles, clinical applications, and natural product-based regulation. Front Oncol. 15:15257792025. View Article : Google Scholar : PubMed/NCBI | |
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M and Taheri M: Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol. 207:1046122025. View Article : Google Scholar : PubMed/NCBI | |
Hussain MS, Jakhmola V, Sultana A, Bisht AS and Khan G: Potential of circular RNAs (circRNAs) neoantigen vaccines in tumor immunotherapy. Curr Protein Pept Sci. May 26–2025.(Epub ahead of print). doi: 10.2174/0113892037389566250515094946. View Article : Google Scholar | |
Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, Zhang X and Dong W: CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett. 554:2160232023. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Liang H, Zhang Q, Shen Z, Sun Y, Zhao X, Gong J, Hou Z, Jiang K, Wang Q, et al: circPTEN1, a circular RNA generated from PTEN, suppresses cancer progression through inhibition of TGF-β/Smad signaling. Mol Cancer. 21:412022. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Su M and Qin B: CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal. Biochem Biophys Res Commun. 524:839–846. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shafaghat Z, Radmehr S, Saharkhiz S, Khosrozadeh A, Feiz K, Alkhathami AG, Taheripak G, Ramezani Farani M, Rahmati R, Zarimeidani F, et al: Circular RNA, A molecule with potential chemistry and applications in RNA-based cancer therapeutics: An insight into recent advances. Top Curr Chem (Cham). 383:212025. View Article : Google Scholar : PubMed/NCBI | |
Cui YB, Wang LJ, Xu JH, Nan HJ, Yang PY, Niu JW, Shi MY and Bai YL: Recent progress of CircRNAs in hematological malignancies. Int J Med Sci. 21:2544–2561. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bonizzato A, Gaffo E, Te Kronnie G and Bortoluzzi S: CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J. 6:e4832016. View Article : Google Scholar : PubMed/NCBI | |
Xiao MS and Wilusz JE: Purification of circular RNAs Using Poly(A) tailing followed by RNase R digestion. Methods Mol Biol. 2765:3–19. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fuchs S, Babin L, Andraos E, Bessiere C, Willier S, Schulte JH, Gaspin C and Meggetto F: Generation of full-length circular RNA libraries for Oxford Nanopore long-read sequencing. PLoS One. 17:e02732532022. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Shi Y, Dai Z, Wang P, Meng X and Yin B: Underlying metastasis mechanism and clinical application of exosomal circular RNA in tumors (Review). Int J Oncol. 58:289–297. 2021. View Article : Google Scholar : PubMed/NCBI | |
Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, Mirzaei HR, Bafrani HH, Savardashtaki A, Mirzaei H and Hamblin MR: Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol. 145:1028542020. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Liu Y, Cheng P, Wang C, Liu Y, Zhou W, Xu Y and Ji G: CircRNA_0000392 promotes colorectal cancer progression through the miR-193a-5p/PIK3R3/AKT axis. J Exp Clin Cancer Res. 39:2832020. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Xie X, Li M, Shi J, Zhou JJ, Knox KS, Wang T, Chen Q and Gu W: Rat BodyMap transcriptomes reveal unique circular RNA features across tissue types and developmental stages. RNA. 24:1443–1456. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang YS, Jie N, Zou KJ and Weng Y: Expression profile of circular RNAs in human gastric cancer tissues. Mol Med Rep. 16:2469–2476. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Wang W, Ye H, Wang J, Meng K and Yang T: A novel miRNA-based signature as predictive tool of survival outcome of colorectal cancer patients. Chem Biol Drug Design. 102:1024–1033. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao Q, Yu H, Zhong J, Liang C, Li G, Ding P and Luo J: An in-silico method with graph-based multi-label learning for large-scale prediction of circRNA-disease associations. Genomics. 112:3407–3415. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li H, Lv X, Yang Z, Gao M, Bi Y, Zhang Z, Wang S, Cui Z, Zhou B and Yin Z: Diagnostic performance of circular RNAs in human cancers: A systematic review and meta-analysis. Mol Genet Genomic Med. 7:e007492019. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Xie F, Lin J, Zhao Y, Zhang Q, Liao Z and Wei P: Diagnostic and prognostic value of circulating CircRNAs in cancer. Front Med. 8:6493832021. View Article : Google Scholar : PubMed/NCBI | |
Mohammadi D, Zafari Y, Estaki Z, Mehrabi M and Moghbelinejad S: Evaluation of plasma circ_0006282 as a novel diagnostic biomarker in colorectal cancer. J Clin Lab Anal. 36:e241472022. View Article : Google Scholar : PubMed/NCBI | |
Malviya A and Bhuyan R: Circular RNAs in cancer: Roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas. Discover Oncol. 16:52025. View Article : Google Scholar | |
Ng WL, Mohd Mohidin TB and Shukla K: Functional role of circular RNAs in cancer development and progression. RNA Biol. 15:995–1005. 2018.PubMed/NCBI | |
Hussen BM, Abdullah SR, Mohammed AA, Rasul MF, Hussein AM, Eslami S, Glassy MC and Taheri M: Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol Res Pract. 260:1554022024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li C, Liu X, Wang Y, Zhao R, Yang Y, Zheng X, Zhang Y and Zhang X: circHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637. EBioMedicine. 48:277–288. 2019. View Article : Google Scholar : PubMed/NCBI | |
He AT, Liu J, Li F and Yang BB: Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct Target Ther. 6:1852021. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Li Z, Cao C, Ge J, Shen X, Sun W and Guo J and Guo J: A novel DNA binding protein encoded by circZNF131 inhibits the growth of gastric cancer by suppressing CTBP2 transcription. Int J Biol Macromol. 314:1442362025. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Zhang X, Qin Y, Chen Y, Feng X, Deng S, Hu F, Yuan Y, Luo X, Du K, et al: Circular RNA circATM binds PARP1 to suppress Wnt/β-catenin signaling and induce cell cycle arrest in gastric cancer cells. J Adv Res. Apr 25–2025.(Epub ahead of print). doi: 10.1016/j.jare.2025.04.033. View Article : Google Scholar | |
Lian QX and Song Y, Han L, Wang Z and Song Y: Development of a circHIPK3-based ceRNA network and identification of mRNA signature in breast cancer patients harboring BRCA mutation. PeerJ. 11:e155722023. View Article : Google Scholar : PubMed/NCBI | |
d'Angelo DM, Attanasi M, Di Donato G, Lapergola G, Flacco M, Chiarelli F, Altobelli E and Breda L: The role of serum calprotectin in defining disease outcomes in non-systemic juvenile idiopathic arthritis: A pilot study. Int J Mol Sci. 24:16712023. View Article : Google Scholar : PubMed/NCBI | |
Weidle UH and Nopora A: Up-regulated circular RNAs in colorectal cancer: New entities for therapy and tools for identification of therapeutic targets. Cancer Genomics Proteomics. 20:132–153. 2023. View Article : Google Scholar : PubMed/NCBI | |
Karmacharya P, Patil BR and Kim JO: Recent advancements in lipid-mRNA nanoparticles as a treatment option for cancer immunotherapy. J Pharm Investig. 52:415–426. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Xie Y, Liu Y, Xu J, Yuan F, Li C, Qin T, Lu H, Duan C and Hu J: Targeted delivery of CD163+ macrophage-derived small extracellular vesicles via RGD peptides promote vascular regeneration and stabilization after spinal cord injury. J Control Release. 361:750–765. 2023. View Article : Google Scholar : PubMed/NCBI | |
Okholm TLH, Kamstrup AB, Nielsen MM, Hollensen AK, Graversgaard ML, Sørensen MH, Kristensen LS, Vang S, Park SS, Yeo E, et al: circHIPK3 nucleates IGF2BP2 and functions as a competing endogenous RNA. eLife. 13:RP917832024. View Article : Google Scholar : PubMed/NCBI | |
Jadhav V, Vaishnaw A, Fitzgerald K and Maier MA: RNA interference in the era of nucleic acid therapeutics. Nat Biotechnol. 42:394–405. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qiu S, Adema CM and Lane T: A computational study of off-target effects of RNA interference. Nucleic Acids Res. 33:1834–1847. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tang Q and Khvorova A: RNAi-based drug design: Considerations and future directions. Nat Rev Drug Discov. 23:341–364. 2024. View Article : Google Scholar : PubMed/NCBI | |
He J, Biswas R, Bugde P, Li J, Liu DX and Li Y: Application of CRISPR-Cas9 system to study biological barriers to drug delivery. Pharmaceutics. 14:8942022. View Article : Google Scholar : PubMed/NCBI | |
Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH and Ke AW: Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 21:572022. View Article : Google Scholar : PubMed/NCBI | |
Schlicher L, Green LG, Romagnani A and Renner F: Small molecule inhibitors for cancer immunotherapy and associated biomarkers-the current status. Front Immunol. 14:12971752023. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi H, Hsu JM, Yang WH and Hung MC: Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol. 19:287–305. 2022. View Article : Google Scholar : PubMed/NCBI | |
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wu Y, Hu Y, Li X, Zhao M and Lv Z: Targeted nanoparticle drug delivery system for the enhancement of cancer immunotherapy. J Biomed Nanotechnol. 15:1839–1866. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mainini F and Eccles MR: Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 25:26922020. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, Xu Y, Shao J, Wang W and Cai Z: Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int J Nanomedicine. 16:5811–5829. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y and Wong G: The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform. 22:1706–1728. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chander S, Bhatt S, Dua K and Jadhav H: Editorial: Recent trends and spotlight on nucleotide-based drugs: Novel targets, their design, delivery, and clinical potential. Front Pharmacol. 14:12458092023. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Lyu Z, Feng H, Xie H, Peng J, Zhang W, Zheng J, Zheng J, Pan Z, Li Y, et al: CircPDIA3/miR-449a/XBP1 feedback loop curbs pyroptosis by inhibiting palmitoylation of the GSDME-C domain to induce chemoresistance of colorectal cancer. Drug Resist Updat. 76:1010972024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Gao Y, Peng Y, Cai C, Han Y, Chen Y, Deng G, Ouyang Y, Shen H, Zeng S, et al: QKI-induced circ_0001766 inhibits colorectal cancer progression and rapamycin resistance by miR-1203/PPP1R3C/mTOR/Myc axis. Cell Death Discov. 11:1922025. View Article : Google Scholar : PubMed/NCBI | |
Molaei P, Mahdavinezhad A, Najafi R, Hashemi M, Tapak L and Afshar S: Role of hsa_Circ_0001821 in colorectal cancer pathogenesis and response to 5-fluorouracil through miR-203a-3p/FGF-2 Axis. Iran Biomed J. 29:82–89. 2025.PubMed/NCBI | |
Prajapati RN, Bhushan B, Singh K, Chopra H, Kumar S, Agrawal M, Pathak D and Chanchal DK: Laxmikant: Recent advances in pharmaceutical design: Unleashing the potential of novel therapeutics. Curr Pharm Biotechnol. 25:2060–2077. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ratajczak K, Grel H, Olejnik P, Jakiela S and Stobiecka M: Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron. 240:1156442023. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Zhao F and Zhang J: circAtlas 3.0: A gateway to 3 million curated vertebrate circular RNAs based on a standardized nomenclature scheme. Nucleic Acids Res. 52:D52–D60. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hu D, Zhang P and Chen M: Database resources for functional circular RNAs. Methods Mol Biol. 2284:457–466. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P, Qian X, Wang M, He X, Wang T, et al: Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. Imeta. 1:e362022. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Ji P and Zhao F: CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 21:1012020. View Article : Google Scholar : PubMed/NCBI | |
Chaabane M, Andreeva K, Hwang JY, Kook TL, Park JW and Cooper NGF: seekCRIT: Detecting and characterizing differentially expressed circular RNAs using high-throughput sequencing data. PLoS Comput Biol. 16:e10083382020. View Article : Google Scholar : PubMed/NCBI | |
Hou L, Zhang J and Zhao F: Full-length circular RNA profiling by nanopore sequencing with CIRI-long. Nat Protoc. 18:1795–1813. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Chen B, Xu Y, Zhou A and Wu B: Identification of potential diagnostic biomarkers and immune infiltration features in diabetic foot ulcer by bioinformatics analysis and validation. Cell Mol Biol (Noisy-le-Grand). 69:180–188. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Cao F, Liu F, Liu S, Meng L, Gu L, Zhao H, Sang M and Shan B: Identification of potential circular RNA biomarkers in lung adenocarcinoma: A bioinformatics analysis and retrospective clinical study. Oncol Lett. 23:1442022. View Article : Google Scholar : PubMed/NCBI | |
Song H, Sun J, Kong W, Ji Y, Xu D and Wang J: Construction of a circRNA-related ceRNA prognostic regulatory network in breast cancer. Onco Targets Ther. 13:8347–8358. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kohansal M, Alghanimi YK, Banoon SR, Ghasemian A, Afkhami H, Daraei A, Wang Z, Nekouian N, Xie J, Deng X and Tang H: CircRNA-associated ceRNA regulatory networks as emerging mechanisms governing the development and biophysiopathology of epilepsy. CNS Neurosci Ther. 30:e147352024. View Article : Google Scholar : PubMed/NCBI | |
Humphreys DT, Fossat N, Demuth M, Tam PPL and Ho JWK: Ularcirc: Visualization and enhanced analysis of circular RNAs via back and canonical forward splicing. Nucleic Acids Res. 47:e1232019. View Article : Google Scholar : PubMed/NCBI | |
Zhong S and Feng J: CircPrimer 2.0: A Software for annotating circRNAs and predicting translation potential of circRNAs. BMC Bioinformatics. 23:2152022. View Article : Google Scholar : PubMed/NCBI | |
Sharko F, Rbbani G, Siriyappagouder P, Raeymaekers JAM, Galindo-Villegas J, Nedoluzhko A and Fernandes JMO: CircPrime: A web-based platform for design of specific circular RNA primers. BMC Bioinformatics. 24:2052023. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhang J and Zhao F: Circular RNA identification based on multiple seed matching. Brief Bioinform. 19:803–810. 2018. View Article : Google Scholar : PubMed/NCBI | |
Glažar P, Papavasileiou P and Rajewsky N: circBase: A database for circular RNAs. RNA. 20:1666–1670. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Hu D, Zhang P, Chen Q and Chen M: CircFunBase: A database for functional circular RNAs. Database (Oxford). 2019:baz0032019. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Lei X, Tie J, Zhang Y, Wu FX and Pan Y: CircR2Disease v2.0: An updated web server for experimentally validated circRNA-disease associations and its application. Genomics Proteomics Bioinformatics. 20:435–445. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun ZY, Yang CL, Huang LJ, Mo ZC, Zhang KN, Fan WH, Wang KY, Wu F, Wang JG, Meng FL, et al: circRNADisease v2.0: An updated resource for high-quality experimentally supported circRNA-disease associations. Nucleic Acids Res. 52:D1193–D1200. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Zhao J, Shen Z, Zhang Q, Geng Y, Zheng CH and Huang DS: iCircDA-NEAE: Accelerated attribute network embedding and dynamic convolutional autoencoder for circRNA-disease associations prediction. PLoS Comput Biol. 19:e10113442023. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Lei X, Fang Z, Jiang Q and Wu FX: CircR2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases. Database (Oxford). 2018:bay0442018. View Article : Google Scholar : PubMed/NCBI | |
Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS and Chakraborty C: Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (Review). Int J Oncol. 60:562022. View Article : Google Scholar : PubMed/NCBI | |
Utley D, Edwards B, Budnick A, Grotewold E and Sederoff H: Camelina circRNA landscape: Implications for gene regulation and fatty acid metabolism. Plant Genome. 18:e205372025. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Su R, Qing C, Peng Y, Luo Q and Li J: Plasma circular RNAs hsa_circ_0001953 and hsa_circ_0009024 as diagnostic biomarkers for active tuberculosis. Front Microbiol. 9:20102018. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Tan J and Yang C: Recent advances and application value of circRNA in neuroblastoma. Front Oncol. 13:11803002023. View Article : Google Scholar : PubMed/NCBI | |
Drula R, Braicu C and Neagoe IB: Current advances in circular RNA detection and investigation methods: Are we running in circles? Wiley Interdiscip Rev RNA. 15:e18502024. View Article : Google Scholar : PubMed/NCBI | |
Chen I, Chen CY and Chuang TJ: Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA. 6:563–579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Szabo L and Salzman J: Detecting circular RNAs: Bioinformatic and experimental challenges. Nat Rev Genet. 17:679–692. 2016. View Article : Google Scholar : PubMed/NCBI | |
Farina FM, Weber C and Santovito D: The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis. 374:74–86. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li S, Wang X, Chen Q, He Z, Luo C and Sun J: Smart transformable nanomedicines for cancer therapy. Biomaterials. 271:1207372021. View Article : Google Scholar : PubMed/NCBI | |
Kim T, Nam K, Kim YM, Yang K and Roh YH: DNA-assisted smart nanocarriers: Progress, challenges, and opportunities. ACS Nano. 15:1942–1951. 2021. View Article : Google Scholar : PubMed/NCBI | |
He L, Man C, Xiang S, Yao L, Wang X and Fan Y: Circular RNAs' cap-independent translation protein and its roles in carcinomas. Mol Cancer. 20:1192021. View Article : Google Scholar : PubMed/NCBI | |
Martins DC, Babajide O, Maani N, Abdalla SM, Gómez EJ, Pongsiri MJ, Tlou S, Leung GM, Benjamin GC, Goosby E, et al: Integrating social determinants in Decision-making processes for health: Insights from conceptual Frameworks-the 3-D commission. J Urban Health. 98:51–59. 2021. View Article : Google Scholar : PubMed/NCBI | |
Drula R, Pirlog R, Trif M, Slaby O, Braicu C and Berindan-Neagoe I: circFOXO3: Going around the mechanistic networks in cancer by interfering with miRNAs regulatory networks. Biochim Biophys Acta Mol Basis Dis. 1867:1660452021. View Article : Google Scholar : PubMed/NCBI | |
Shoda K, Kuwano Y, Ichikawa D and Masuda K: circRNA: A new biomarker and therapeutic target for esophageal cancer. Biomedicines. 10:16432022. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Velema WA, Lee Y, Xiao L, Mohsen MG, Kietrys AM and Kool ET: Pervasive transcriptome interactions of protein-targeted drugs. Nat Chem. 15:1374–1383. 2023. View Article : Google Scholar : PubMed/NCBI | |
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, Li X and Lin C: Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer. 20:262021. View Article : Google Scholar : PubMed/NCBI | |
Mao J and Lu Y: Roles of circRNAs in the progression of colorectal cancer: Novel strategies for detection and therapy. Cancer Gene Ther. 31:831–841. 2024. View Article : Google Scholar : PubMed/NCBI | |
Costa MC, Calderon-Dominguez M, Mangas A, Campuzano O, Sarquella-Brugada G, Ramos M, Quezada-Feijoo M, Pinilla JMG, Robles-Mezcua A, Del Aguila Pacheco-Cruz G, et al: Circulating circRNA as biomarkers for dilated cardiomyopathy etiology. J Mol Med (Berl). 99:1711–1725. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wang Y, Piao H, Li B, Huang M, Zhu Z, Li D, Wang T, Xu R and Liu K: Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ. 7:e68312019. View Article : Google Scholar : PubMed/NCBI | |
Weidle UH and Birzele F: Deregulated circRNAs in epithelial ovarian cancer with activity in preclinical in vivo models: Identification of targets and new modalities for therapeutic intervention. Cancer Genomics Proteomics. 21:213–237. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wen G, Zhou T and Gu W: The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 12:911–946. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, Zhang Y, Wang Q, Liu J and Wang K: A comprehensive review of circRNA: From purification and identification to disease marker potential. PeerJ. 6:e55032018. View Article : Google Scholar : PubMed/NCBI | |
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Nisticò R and Magrelli A: Revolutionizing CAR T-cell therapies: Innovations in genetic engineering and manufacturing to enhance efficacy and accessibility. Int J Mol Sci. 25:103652024. View Article : Google Scholar : PubMed/NCBI | |
Rocchi S, Scherer E, White PL, Guitton A, Alanio A, Botterel F, Bougnoux ME, Buitrago MJ, Cogliati M, Cornu M, et al: Interlaboratory assays from the fungal PCR initiative and the Modimucor Study Group to improve qPCR detection of Mucorales DNA in serum: One more step toward standardization. J Clin Microbiol. 63:e01525242025. View Article : Google Scholar : PubMed/NCBI | |
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M and Calin GA: Going circular: History, present, and future of circRNAs in cancer. Oncogene. 42:2783–2800. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Hou L, Zuo Z, Ji P, Zhang X, Xue Y and Zhao F: Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat Biotechnol. 39:836–845. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni SR, Dieterich C and Jakobi T: Extending scope and power of circular RNA research with circtools 2.0. bioRxiv. Feb 19–2025.(Epub ahead of print). doi: 10.1101/2025.02.16.638209. | |
Bustin SA, Ruijter JM, van den Hoff MJB, Kubista M, Pfaffl MW, Shipley GL, Tran N, Rödiger S, Untergasser A, Mueller R, et al: MIQE 2.0: Revision of the minimum information for publication of quantitative Real-time PCR experiments guidelines. Clin Chem. Apr 24–2025.(Epub ahead of print). doi: 10.1093/clinchem/hvaf043. View Article : Google Scholar : PubMed/NCBI | |
Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, Kadener S, Kristensen LS, Legnini I, Morlando M, et al: Best practice standards for circular RNA research. Nat Methods. 19:1208–1220. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wilson DB, Steinman L and Gold DP: The V-region disease hypothesis: New evidence suggests it is probably wrong. Immunol Today. 14:376–382. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Xu Y, Si C, Wu X, Guo Y, Chen C and Wang C: Targeting m7G-enriched circKDM1A prevents colorectal cancer progression. Mol Cancer. 23:1792024. View Article : Google Scholar : PubMed/NCBI | |
Chen RX, Xu SD, Deng MH, Hao SH, Chen JW, Ma XD, Zhuang WT, Cao JH, Lv YR, Lin JL, et al: Mex-3 RNA binding family member A (MEX3A)/circMPP6 complex promotes colorectal cancer progression by inhibiting autophagy. Signal Transduct Target Ther. 9:802024. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Xie Y, Tan W, Ye Y, Ou X, Zou X, He Z, Wu J, Deng X, Tang H, et al: Deciphering the role of ELAVL1: Insights from pan-cancer multiomics analyses with emphasis on nasopharyngeal carcinoma. J Transl Int Med. 13:138–155. 2025. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Li B, Jin Y, Cheng J, Tian W, Ying L, Hong L, Xin S, Lin B, Liu C, et al: Spatial multi-omics profiling of breast cancer oligo-recurrent lung metastasis. Oncogene. 44:2268–2282. 2025. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wang J, Qiu L, Fu G, Li Y, Su Q, Zhu Y, Zhao F, Tian J, Huang J, et al: Comprehensive circular RNA profiling provides insight into colorectal cancer pathogenesis and reveals diagnostically relevant biomarkers. Clin Transl Med. 14:e700492024. View Article : Google Scholar : PubMed/NCBI |