
Emerging dual role of ferroptosis in lung cancer (Review)
- Authors:
- Anqi Wu
- Yingchen Ni
- Youlang Zhou
- Jiahai Shi
-
Affiliations: Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China - Published online on: August 21, 2025 https://doi.org/10.3892/or.2025.8974
- Article Number: 141
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI | |
Oser MG, Niederst MJ, Sequist LV and Engelman JA: Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 16:e165–e172. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zappa C and Mousa SA: Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 5:288–300. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Herbst RS and Boshoff C: Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 27:1345–1356. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hirschhorn T and Stockwell BR: The development of the concept of ferroptosis. Free Radic Biol Med. 133:130–143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Banerjee R, Bintee B, Manickasamy MK, Jha S, Alqahtani MS, Abbas M, Goel A, Sethi G, Ma Z and Kunnumakkara AB: The solute carrier family 11 transporters: A bridge between iron homeostasis and tumor biology. Cell Commun Signal. 23:3322025. View Article : Google Scholar : PubMed/NCBI | |
Li M, Yu X, Liu Y, Ouyang S, Wu L, Chen X, Yu H, Chen H, Lian S, Li Z, et al: KRAS/ABHD17C/ALOX15B axis promotes pancreatic cancer progression via ferroptosis evasion. Adv Sci (Weinh). Jun 26–2025.(Epub ahead of print). | |
Hu X, Chang H, Guo Y, Yu L, Li J, Zhang B, Zhao H, Xu J, Pan G, Zhang K, et al: Mori Folium ethanol extracts induce ferroptosis and suppress gastric cancer progression by inhibiting the AKT/GSK3β/NRF2 axis. Phytomedicine. 142:1567892025. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Xiao N, Zhang C, Li Y, Zhao X, Zhang R, Bai L, Kang Q, Wan J and Liu H: JMJD6 K375 acetylation restrains lung cancer progression by enhancing METTL14/m6A/SLC3A2 axis mediated cell ferroptosis. J Transl Med. 23:2332025. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Guo Y, Qian Y, Liu X, Li G, Wang J, Yang X, Wu M, Fan Y, Luo H, et al: Ferroptosis-inducing compounds synergize with docetaxel to overcome chemoresistance in docetaxel-resistant non-small cell lung cancer cells. Eur J Med Chem. 276:1166702024. View Article : Google Scholar : PubMed/NCBI | |
Daum AK, Schlicker L, Schneider MA, Muley T, Klingmüller U, Schulze A, Thomas M, Christopoulos P and Sültmann H: Cancer-associated fibroblasts promote drug resistance in ALK-driven lung adenocarcinoma cells by upregulating lipid biosynthesis. Cancer Metab. 13:282025. View Article : Google Scholar : PubMed/NCBI | |
Tai F, Zhai R, Ding K, Zhang Y, Yang H, Li H, Wang Q, Cao Z, Ge C, Fu H, et al: Long non-coding RNA lung cancer-associated transcript 1 regulates ferroptosis via microRNA-34a-5p-mediated GTP cyclohydrolase 1 downregulation in lung cancer cells. Int J Oncol. 64:642024. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lu W, Yin F, Zeng P, Li H and Huang A: Overexpression of TNFSF11 reduces GPX4 levels and increases sensitivity to ferroptosis inducers in lung adenocarcinoma. J Transl Med. 22:3402024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Christie WW and Harwood JL: Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem. 64:401–421. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wiktorowska-Owczarek A, Berezińska M and Nowak JZ: PUFAs: Structures, metabolism and functions. Adv Clin Exp Med. 24:931–941. 2015. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reed A, Ichu TA, Milosevich N, Melillo B, Schafroth MA, Otsuka Y, Scampavia L, Spicer TP and Cravatt BF: LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. ACS Chem Biol. 17:1607–1618. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma XH, Liu JH, Liu CY, Sun WY, Duan WJ, Wang G, Kurihara H, He RR, Li YF, Chen Y and Shang H: ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther. 7:2882022. View Article : Google Scholar : PubMed/NCBI | |
Nielsen JE, Jensen LN and Krabbe K: Hereditary haemochromatosis: A case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome. J Neurol Neurosurg Psychiatry. 59:318–321. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Liu L, Li X, Li Q, Wang Y and Feng X: cDTL contributes to breast cancer progression through regulating redox homeostasis via affecting the function of system xc. Biochem Biophys Res Commun. 744:1511962025. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Chen Y, Jing L, Zhai C and Shen L: The link between ferroptosis and cardiovascular diseases: A novel target for treatment. Front Cardiovasc Med. 8:7109632021. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Yan Y, Qi C, Liu J, Li L and Wang J: The role of ferroptosis in cardiovascular disease and its therapeutic significance. Front Cardiovasc Med. 8:7332292021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xin L, Xiang M, Shang C, Wang Y, Wang Y, Cui X and Lu Y: The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 145:1124232022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P, Wang J, Wu Q, Fang X, Duan L, et al: Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood. 136:726–739. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Ardehali H, Min J and Wang F: The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Li X, Zhang X, Kang R and Tang D: CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 478:838–844. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim EH, Shin D, Lee J, Jung AR and Roh JL: CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett. 432:180–190. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sies H: Glutathione and its role in cellular functions. Free Radic Biol Med. 27:916–921. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Fang YZ, Yang S, Lupton JR and Turner ND: Glutathione metabolism and its implications for health. J Nutr. 134:489–492. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pompella A, Visvikis A, Paolicchi A, De Tata V and Casini AF: The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 66:1499–1503. 2003. View Article : Google Scholar : PubMed/NCBI | |
Paul BD, Sbodio JI and Snyder SH: Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol Sci. 39:513–524. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Desideri E, Ciccarone F and Ciriolo MR: Targeting glutathione metabolism: Partner in crime in anticancer therapy. Nutrients. 11:19262019. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Forouhar F, Lin AJ, Wang Q, Polychronidou V, Soni RK, Xia X and Stockwell BR: Small-molecule allosteric inhibitors of GPX4. Cell Chem Biol. 29:1680–1693.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao Y, Wang H, Zhang C, Wang M, Yang Y, Xu X and Hu Z: Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio. 10:637–643. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang C, Hu W and Feng Z: Tumor suppressor p53 and metabolism. J Mol Cell Biol. 11:284–292. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kastenhuber ER and Lowe SW: Putting p53 in Context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA and Ratan RR: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 48:1033–1043. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Kroemer G and Tang D: The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 133:162–168. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hou MJ, Huang X and Zhu BT: Mechanism of RSL3-induced ferroptotic cell death in HT22 cells: Crucial role of protein disulfide isomerase. Acta Biochim Biophys Sin (Shanghai). 57:616–632. 2024. View Article : Google Scholar : PubMed/NCBI | |
Torres Á, Quintanilla F, Barnafi E, Sánchez C, Acevedo F, Walbaum B and Merino T: Dietary interventions for cancer prevention: An update to ACS international guidelines. Nutrients. 16:28972024. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Cao D, Chen Z, Chen B, Li J, Guo J, Dong Q, Liu L and Wei Q: Red and processed meat consumption and cancer outcomes: Umbrella review. Food Chem. 356:1296972021. View Article : Google Scholar : PubMed/NCBI | |
Mahabir S, Forman MR, Dong YQ, Park Y, Hollenbeck A and Schatzkin A: Mineral intake and lung cancer risk in the NIH-American association of retired persons diet and health study. Cancer Epidemiol Biomarkers Prev. 19:1976–1983. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Park S, Liu G, Miller DP, Wang LI, Pothier L, Wain JC, Lynch TJ, Giovannucci E and Christiani DC: Dietary iron, zinc, and calcium and the risk of lung cancer. Epidemiology. 16:772–779. 2005. View Article : Google Scholar : PubMed/NCBI | |
Walter PB, Knutson MD, Paler-Martinez A, Lee S, Xu Y, Viteri FE and Ames BN: Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci USA. 99:2264–2269. 2002. View Article : Google Scholar : PubMed/NCBI | |
Altieri F, Grillo C, Maceroni M and Chichiarelli S: DNA damage and repair: From molecular mechanisms to health implications. Antioxid Redox Signal. 10:891–938. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Cheng L, Amos CI, Wang LE, Guo Z, Hong WK and Spitz MR: Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: A molecular epidemiologic study. J Natl Cancer Inst. 92:1764–1772. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ohno M, Miura T, Furuichi M, Tominaga Y, Tsuchimoto D, Sakumi K and Nakabeppu Y: A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome. Genome Res. 16:567–575. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sung HK, Murugathasan M, Abdul-Sater AA and Sweeney G: Autophagy deficiency exacerbates iron overload induced reactive oxygen species production and apoptotic cell death in skeletal muscle cells. Cell Death Dis. 14:2522023. View Article : Google Scholar : PubMed/NCBI | |
Shibata Y, Yasui H, Higashikawa K, Miyamoto N and Kuge Y: Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLoS One. 14:e02259312019. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Fillebeen C, Wang J and Pantopoulos K: Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts. Carcinogenesis. 28:785–791. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Zheng C, Zhang Y, Chang YZ, Qian ZM and Shen X: Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake. Int J Biochem Cell Biol. 38:1402–1416. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Dai J and Zeng Z: Potential relationship between the selenoproteome and cancer. Mol Clin Oncol. 13:832020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu Y, Guo Y and Zhao Q: GPX8 promotes migration and invasion by regulating epithelial characteristics in non-small cell lung cancer. Thorac Cancer. 11:3299–3308. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ishida T, Takahashi T, Kurokawa Y, Nishida T, Hirota S, Serada S, Fujimoto M, Naka T, Teranishi R, Saito T, et al: Targeted therapy for drug-tolerant persister cells after imatinib treatment for gastrointestinal stromal tumours. Br J Cancer. 125:1511–1522. 2021. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Wu D, Li L, Liu T, Zhang T, Li J, Yu Y, He M, Zhao YY, Han R and Xu Y: miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun. 549:54–60. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Ding H, Liang M, Chen X, Yan Y, Wan N, Chen Q, Zhang J and Cao J: Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer. 12:1219–1230. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Xi S, Weng H, Guo MM, Zhang JH, Yu ZP, Zhang H, Yu Z, Xing Z, Liu MY, et al: YTHDC1 as a tumor progression suppressor through modulating FSP1-dependent ferroptosis suppression in lung cancer. Cell Death Differ. 30:2477–2490. 2023. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen YM, Lai CH, Lin CY, Tsai YH, Chang YC, Chen HC, Tseng CC, Chang HC, Huang KT, Chen YC, et al: Body mass index, weight loss, and mortality risk in advanced-stage non-small cell lung cancer patients: A focus on EGFR mutation. Nutrients. 13:37612021. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Sun B, Zhong C, Xu K, Wang Z, Hofman P, Nagano T, Legras A, Breadner D, Ricciuti B, et al: Targeting histone deacetylase enhances the therapeutic effect of Erastin-induced ferroptosis in EGFR-activating mutant lung adenocarcinoma. Transl Lung Cancer Res. 10:1857–1872. 2021. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim R, Taylor D, Vonderheide RH and Gabrilovich DI: Ferroptosis of immune cells in the tumor microenvironment. Trends Pharmacol Sci. 44:542–552. 2023. View Article : Google Scholar : PubMed/NCBI | |
Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C, Bachert C, Coppieters F, et al: Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 8:e0013692020. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Angeli JP, Krysko DV and Conrad M: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 19:405–414. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Choi B, Li W and Kim DH: Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat Commun. 11:36372020. View Article : Google Scholar : PubMed/NCBI | |
Turubanova VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibak R, Peskova NN, Efimova I, Bachert C, Mitroshina EV, Krysko O, et al: Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J Immunother Cancer. 7:3502019. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, Li X, Wan S, Ji S, Wang Q, Hu S, Chen P, Wang B, Ge T, Zhang J, et al: Copper-doped polydopamine nanoparticles-mediated GSH/GPX4-depleted ferroptosis and cuproptosis sensitizes lung tumor to checkpoint blockade immunotherapy. Small. 21:e25032082025. View Article : Google Scholar : PubMed/NCBI | |
Mao S, Li Q, Yang Y, Liu Z and Zhang L: Potential crosstalk between ANXA1+ epithelial cells and FABP4+ TAM cells of ferroptosis-related molecular clusters promotes an immunosuppressive microenvironment in non-small cell lung cancer. Mol Carcinog. 64:936–950. 2025. View Article : Google Scholar : PubMed/NCBI | |
Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R, Bai L and Tang D: Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun. 11:63392020. View Article : Google Scholar : PubMed/NCBI | |
Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, Hashimoto A, Kapralov A, Amoscato A, Angelini R, et al: Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 8:21222017. View Article : Google Scholar : PubMed/NCBI | |
Polonelli L, Dettori G, Morace G, Rosa R, Castagnola M and Schipper MAA: Antigenic studies on Rhizopus microsporus, Rh. rhizopodiformis, progeny and intermediates (Rh. Chinensis). Antonie van Leeuwenhoek. 54:5–17. 1988. View Article : Google Scholar : PubMed/NCBI | |
Rothe T, Gruber F, Uderhardt S, Ipseiz N, Rössner S, Oskolkova O, Blüml S, Leitinger N, Bicker W, Bochkov VN, et al: 12/15-lipoxygenase-mediated enzymatic lipid oxidation regulates DC maturation and function. J Clin Invest. 125:1944–1954. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ramakrishnan R, Tuyrin VA, Veglia F, Condamine T, Amoscato A, Mohammadyani D, Johnson JJ, Zhang LM, Klein-Seetharaman J, Celis E, et al: Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 192:2920–2931. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, St Croix CM, Mikulska-Ruminska K, Liu B, Shrivastava IH, et al: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 16:278–290. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Dar HH, Deng Y, St Croix CM, Li Z, Minami Y, Shrivastava IH, Tyurina YY, Etling E, Rosenbaum JC, et al: PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. Proc Natl Acad Sci USA. 117:14376–14385. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Yang H, Cao Y, Wang Y, Wu M, He B, Xu J, Su Z, Luo W, Liu Y and Hu W: A survival model for prognostic prediction based on ferroptosis-associated genes and the association with immune infiltration in lung squamous cell carcinoma. PLoS One. 18:e02828882023. View Article : Google Scholar : PubMed/NCBI | |
Ouyang X, Zhu R, Lin L, Wang X, Zhuang Q and Hu D: GAPDH Is a novel ferroptosis-related marker and correlates with immune microenvironment in lung adenocarcinoma. Metabolites. 13:1422023. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Yang Z, Wang J, Lu W, Wang S, Yang M, Sun P, Hu W, Yang L and Li H: Naringin attenuates myocardial ischemia-reperfusion injury by promoting mitochondrial translocation of NDUFS1 and suppressing cardiac microvascular endothelial cell ferroptosis. J Nutr Biochem. Jul 3–2025.(Epub ahead of print). View Article : Google Scholar | |
Wang X, Liu T, Fei Y, Zhang S, Yang Y, Chen Z, Zhu R, Deng S, Zhang T, Wu D and Xu Y: RTA-408 overcomes cisplatin-resistant lung cancer by inhibiting WWP1-mediated NCOA4 ubiquitination to induce ferritinophagy and ferroptosis. Free Radical Biol Med. 238:595–610. 2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, Barros PL, Levy D and Bydlowski SP: Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci. 21:87652020. View Article : Google Scholar : PubMed/NCBI | |
Zou P, He Q, Xia H and Zhong W: Ferroptosis and its impact on common diseases. PeerJ. 12:e187082024. View Article : Google Scholar : PubMed/NCBI | |
Lu B, Chen XB, Ying MD, He QJ, Cao J and Yang B: The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 8:9922018. View Article : Google Scholar : PubMed/NCBI | |
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, et al: Broadening horizons: The multifaceted role of ferroptosis in breast cancer. Front Immunol. 15:14557412024. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Chen X and Yan C: Ferroptosis: An emerging therapeutic opportunity for cancer. Genes Dis. 9:334–346. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pei M, Guan X, Hou X, Niu Z, Lyu Q, Wang K, Wang S, Zhang J, Ke Y, Zhuang S, et al: A GSH-consuming polymeric nanoparticles drives ferroptosis amplification and combines chemotherapy to amplify breast cancer treatment. J Nanobiotechnol. 23:4972025. View Article : Google Scholar | |
Chen X, Cui H, Qin L, Liu R, Fang F and Wang Z: Soybean lecithin-gallic acid complex sensitizes lung cancer cells to radiation through ferroptosis regulated by Nrf2/SLC7A11/GPX4 pathway. Nutrients. 17:12622025. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Gu F, Lin W, Shao H, Jiang A and Guan X: Boosting cancer immunotherapy: Drug delivery systems leveraging ferroptosis and immune checkpoint blockade. Front Immunol. 16:16112992025. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Li Y, Huang H, Huang H, Duan Y, Yuan Z, Zhu W, Mei Z, Luo L and Yan P: Isoorientin reverses lung cancer drug resistance by promoting ferroptosis via the SIRT6/Nrf2/GPX4 signaling pathway. Eur J Pharmacol. 954:1758532023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yan H, Xu X, Liu H, Wu C and Zhao L: Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett. 19:323–333. 2020.PubMed/NCBI | |
Yan WY, Cai J, Wang JN, Gong YS and Ding XB: Co-treatment of betulin and gefitinib is effective against EGFR wild-type/KRAS-mutant non-small cell lung cancer by inducing ferroptosis. Neoplasma. 69:648–6569. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Zhong B, Zhao L, Hou Y, Ai N, Lu JJ, Ge W and Chen X: Fighting drug-resistant lung cancer by induction of NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated ferroptosis. Drug Resist Updat. 70:1009772023. View Article : Google Scholar : PubMed/NCBI | |
Lin Q, Hou S, Dai Y, Jiang N and Lin Y: Monascin exhibits neuroprotective effects in rotenone model of Parkinson's disease via antioxidation and anti-neuroinflammation. Neuroreport. 31:637–643. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Liu P, Jin Y, Ning Z, Yang Y and Gao H: Ferroptosis-related small-molecule compounds in cancer therapy: Strategies and applications. Eur J Med Chem. 244:1148612022. View Article : Google Scholar : PubMed/NCBI | |
Koeberle SC, Kipp AP, Stuppner H and Koeberle A: Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med Res Rev. 43:614–682. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and Stockwell BR: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503. 2016. View Article : Google Scholar : PubMed/NCBI | |
Golbashirzadeh M, Heidari HR, Talebi M and Yari Khosroushahi A: Ferroptosis as a potential cell death mechanism against cisplatin-resistant lung cancer cell line. Adv Pharm Bull. 13:176–187. 2023.PubMed/NCBI | |
Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S and Zheng X: Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235:3425–3437. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Cheng CS, Lu Y, Ding X, Zhu M, Miao C and Chen J: Novel findings of anti-cancer property of propofol. Anticancer Agents Med Chem. 18:156–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Pan X, Wang C and Wang L: The benefits of propofol on cancer treatment: Decipher its modulation code to immunocytes. Front Pharmacol. 13:9196362022. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Lei L and Liu Y: Propofol improves sensitivity of lung cancer cells to cisplatin and its mechanism. Med Sci Monit. 26:e9197862020.PubMed/NCBI | |
Ling Q, Wu S, Liao X, Liu C and Chen Y: Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer. 22:7652022. View Article : Google Scholar : PubMed/NCBI | |
Quan Y, Li S, Wang Y, Liu G, Lv Z and Wang Z: Propofol and sevoflurane alleviate malignant biological behavior and cisplatin resistance of xuanwei lung adenocarcinoma by modulating the Wnt/β-catenin pathway and PI3K/AKT pathway. Anticancer Agents Med Chem. 22:2098–2108. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Sun Y, Bai L, Zhi L, Yang Y, Zhao Q, Chen C, Qi Y, Gao W, He W, et al: RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest. 131:e1520672021. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Yamamoto J, Toh K and Miyaoka R: 5-aminiolevulinic acid induces a radiodynamic effect with enhanced delayed reactive oxygen species production under hypoxic conditions in lymphoma cells: An in vitro study. Exp Ther Med. 26:3602023. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Jin HO, Jang SK, Ahn SH, Kim G, Kim H, Lee TG, Kim CH and Park IC: Iron overload enhances the susceptibility to cysteine deprivation-induced ferroptosis in non-small cell lung cancer cells. Med Oncol. 42:2012025. View Article : Google Scholar : PubMed/NCBI | |
Liu X, He J, Ying H, Chen C, Zheng C, Luo P, Zhu W, Wei T, Tang B and Zhang J: Targeting PFKFB4 biomimetic codelivery system synergistically enhances ferroptosis to suppress small cell lung cancer and augments the efficacy of anti-PD-L1 immunotherapy. Adv Sci (Weinh). 12:e24173742025. View Article : Google Scholar : PubMed/NCBI | |
Neitzel LR, Fuller DT, Cornell J, Rea S, de Aguiar Ferreira C, Williams CH and Hong CC: Inhibition of GPR68 induces ferroptosis and radiosensitivity in diverse cancer cell types. Sci Rep. 15:40742025. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, et al: A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun. 13:22062022. View Article : Google Scholar : PubMed/NCBI | |
Aubrun C, Doussineau T, Carmès L, Meyzaud A, Boux F, Dufort S, Delfour A, De Beaumont O, Mirjolet C and Le Duc G: Mechanisms of action of AGuIX as a pan-cancer nano-radiosensitizer: A comprehensive review. Pharmaceuticals (Basel). 18:5192025. View Article : Google Scholar : PubMed/NCBI | |
Aishajiang R, Liu Z, Liang Y, Du P, Wei Y, Zhuo X, Liu S, Lei P, Wang T and Yu D: Concurrent amplification of ferroptosis and immune system activation via nanomedicine-mediated radiosensitization for triple-negative breast cancer therapy. Adv Sci (Weinh). 12:e24078332025. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Wang Y, Zang X, Liu H, Su J and Zhou Y: FePt/MnO2@PEG nanoparticles as multifunctional radiosensitizers for enhancing ferroptosis and alleviating hypoxia in osteosarcoma therapy. IEEE Trans Nanobioscience. 24:180–190. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu X, Zeng L, Zhao X, Chen Q, Pan Y, Bai Y, Shao C and Zhang J: Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br J Cancer. 127:1760–1772. 2022. View Article : Google Scholar : PubMed/NCBI | |
Salomone F, Nuccio A and Ferrara R: PD-L1-overexpressing NSCLC: Overcoming all-comer approach and network effect to weather the ‘winter’ of cancer immunotherapy. J Thorac Oncol. 20:834–838. 2025. View Article : Google Scholar : PubMed/NCBI | |
Marrone MT, Reuss JE, Crawford A, Neelon B, Liu JO, Brahmer JR and Platz EA: Statin use with immune checkpoint inhibitors and survival in nonsmall cell lung cancer. Clin Lung Cancer. 26:201–209. 2025. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Lim SO, Yan M, Hsu JL, Yao J, Wei Y, Chang SS, Yamaguchi H, Lee HH, Ke B, et al: TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J Clin Invest. 131:e1394342021. View Article : Google Scholar : PubMed/NCBI | |
Mao W, Cai Y, Chen D, Jiang G, Xu Y, Chen R, Wang F, Wang X, Zheng M, Zhao X and Mei J: Statin shapes inflamed tumor microenvironment and enhances immune checkpoint blockade in non-small cell lung cancer. JCI Insight. 7:e1619402022. View Article : Google Scholar : PubMed/NCBI | |
Zhao YY, Yang YQ, Sheng HH, Tang Q, Han L, Wang SM and Wu WY: GPX4 plays a crucial role in fuzheng kang'ai decoction-induced non-small cell lung cancer cell ferroptosis. Front Pharmacol. 13:8516802022. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Sun L, Guo J and Ma J: The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy. Cancer Commun (Lond). 43:1071–1096. 2023. View Article : Google Scholar : PubMed/NCBI | |
Alavinejad M, Shirzad M, Javid-Naderi MJ, Rahdar A, Fathi-karkan S and Pandey S: Smart nanomedicines powered by artificial intelligence: A breakthrough in lung cancer diagnosis and treatment. Med Oncol. 42:1342025. View Article : Google Scholar : PubMed/NCBI | |
Yadav B, Chauhan M, Singh RP, Sonali and Shekhar S: Recent progress and challenges in clinical translation of nanomedicines in diagnosis and treatment of lung cancer. Curr Drug Targets. 25:12–24. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Yang P, Jin Z, Jiang Q, Guo R, Xie R, He Q and Yang W: Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis. Biomaterials. 197:268–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Ke L, Gao S, Karges J, Wang J, Chen Y, Ji L and Chao H: In situ oxidative polymerization of platinum(iv) prodrugs in pore-confined spaces of CaCO3nanoparticles for cancer chemoimmunotherapy. Chem Sci. 14:7005–7015. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Chi H, Liu M, Yin Y, Diao H, Liu Z, Guo Z, Xu W, Xu J, Cui C, et al: Multifunctional ‘ball-rod’ Janus nanoparticles boosting Fenton reaction for ferroptosis therapy of non-small cell lung cancer. J Colloid Interface Sci. 621:12–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yang W, He X, Zhang Z and Zheng X: Assembling p53 activating peptide with CeO2 nanoparticle to construct a metallo-organic supermolecule toward the synergistic ferroptosis of tumor. Front Bioeng Biotechnol. 10:9295362022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang J, Gu G, Guo X, He C, Sun J, Zou H, Wang H, Liu S, Li X, et al: Pulmonary delivery of theranostic nanoclusters for lung cancer ferroptosis with enhanced chemodynamic/radiation synergistic therapy. Nano Lett. 22:963–972. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD and Dixon SJ: p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22:569–575. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang C, Wang J, Hu W and Feng Z: The Regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci. 21:83872020. View Article : Google Scholar : PubMed/NCBI | |
Song MY, Lee DY, Chun KS and Kim EH: The role of NRF2/KEAP1 signaling pathway in cancer metabolism. Int J Mol Sci. 22:43762021. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang H, Liang B, Qin L, Zhang M, Lv X, Hu S, Fan X, Xie W, Yang H, et al: Ponicidin promotes ferroptosis to enhance treatment sensitivity in Lenvatinib-resistant hepatocellular carcinoma cells through regulation of KEAP1/NRF2. Phytomedicine. 143:1568242025. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wu S, He H, Ai K, Xu R, Zhang L and Zhu X: CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis. Lab Invest. 102:1323–1334. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liang Z, Zhao W, Li X, Wang L, Meng L and Yu R: Cisplatin synergizes with PRLX93936 to induce ferroptosis in non-small cell lung cancer cells. Biochem Biophys Res Commun. 569:79–85. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J and Tao Y: Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther. 29:2185–2208. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhang L, He Y, Huang S, Chen S, Zhao W and Yu D: Regulation of m6A modification on ferroptosis and its potential significance in radiosensitization. Cell Death Discov. 9:3432023. View Article : Google Scholar : PubMed/NCBI | |
Kitakata H, Endo J, Matsushima H, Yamamoto S, Ikura H, Hirai A, Koh S, Ichihara G, Hiraide T, Moriyama H, et al: MITOL/MARCH5 determines the susceptibility of cardiomyocytes to doxorubicin-induced ferroptosis by regulating GSH homeostasis. J Mol Cell Cardiol. 161:116–129. 2021. View Article : Google Scholar : PubMed/NCBI | |
Maniam P, Essilfie AT, Kalimutho M, Ling D, Frazer DM, Phipps S, Anderson GJ and Reid DW: Increased susceptibility of cystic fibrosis airway epithelial cells to ferroptosis. Biol Res. 54:382021. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Skeie JM, Schmidt GA, Eggleston T, Shevalye H, Sales CS, Phruttiwanichakun P, Dusane A, Field MG, Rinkoski TA, et al: TCF4 trinucleotide repeat expansions and UV irradiation increase susceptibility to ferroptosis in Fuchs endothelial corneal dystrophy. Redox Biol. 77:1033482024. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Tuo Q and Lei P: Cell density impacts the susceptibility to ferroptosis by modulating IRP1-mediated iron homeostasis. J Neurochem. 168:1359–1373. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tahayneh K, Idkedek M and Abu Akar F: NSCLC: Current evidence on its pathogenesis, integrated treatment, and future perspectives. J Clin Med. 14:10252025. View Article : Google Scholar : PubMed/NCBI | |
Pandjarova I, Mercieca D, Gijtenbeek RGP, Pereira JO, Fantin A, Castaldo N, Keramida E, Pannu K, Konsoulova A and Aujayeb A: Small cell lung cancer and neuroendocrine tumours. Breathe (Sheff). 20:2400042024. View Article : Google Scholar : PubMed/NCBI | |
Yang WS and Stockwell BR: Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 26:165–176. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li Y and Peng Z: ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cui S, Ghai A, Deng Y, Li S, Zhang R, Egbulefu C, Liang G, Achilefu S and Ye J: Identification of hyperoxidized PRDX3 as a ferroptosis marker reveals ferroptotic damage in chronic liver diseases. Mol Cell. 83:3931–3939.e5. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kwon OS, Kwon EJ, Kong HJ, Choi JY, Kim YJ, Lee EW, Kim W, Lee H and Cha HJ: Systematic identification of a nuclear receptor-enriched predictive signature for erastin-induced ferroptosis. Redox Biol. 37:1017192020. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, AlQudsy LHH and Shang P: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 483:127–136. 2020. View Article : Google Scholar : PubMed/NCBI |