1
|
Riehle C and Bauersachs J: Of mice and
men: Models and mechanisms of diabetic cardiomyopathy. Basic Res
Cardiol. 114(2)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Lorenzo-Almorós A, Tuñón J, Orejas M,
Cortés M, Egido J and Lorenzo Ó: Diagnostic approaches for diabetic
cardiomyopathy. Cardiovasc Diabetol. 16(28)2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Unger RH and Orci L: Diseases of
liporegulation: New perspective on obesity and related disorders.
FASEB J. 15:312–321. 2001.PubMed/NCBI View Article : Google Scholar
|
4
|
Wu Y, Reece EA, Zhong J, Dong D, Shen WB,
Harman CR and Yang P: Type 2 diabetes mellitus induces congenital
heart defects in murine embryos by increasing oxidative stress,
endoplasmic reticulum stress, and apoptosis. Am J Obstet Gynecol.
215:366.e1–366.e10. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Cong XQ, Piao MH, Li Y, Xie L and Liu Y:
Bis(maltolato)oxovanadium(IV) (BMOV) attenuates apoptosis in high
glucose-treated cardiac cells and diabetic rat hearts by regulating
the unfolded protein responses (UPRs). Biol Trace Elem Res.
173:390–398. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Xue Y, Su J, Jiang F, Wu C, Shen X and Tao
L: Preparation and pharmaceutical properties of breviscapine
sustained-release microspheres. Chin J Exp Trad Med Formulae.
23:7–12. 2017.(In Chinese).
|
7
|
Zhang J, Xiao F and Yang X: Biological
characteristics and medicinal efficacy of Erigeron breviscapus.
Lishizhen Med Mater Med Res. 2925–2926. 2007.(In Chinese).
|
8
|
Gao C, Zhou Y, Jiang Z, Zhao Y, Zhang D,
Cong X, Cao R, Li H and Tian W: Cytotoxic and chemosensitization
effects of scutellarin from traditional Chinese herb Scutellaria
altissima L. in human prostate cancer cells. Oncol Rep.
38:1491–1499. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Hou L, Chen L and Fang L: Scutellarin
inhibits proliferation, invasion, and tumorigenicity in human
breast cancer cells by regulating HIPPO-YAP signaling pathway. Med
Sci Monit. 23:5130–5138. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhu PT, Mao M, Liu ZG, Tao L and Yan BC:
Scutellarin suppresses human colorectal cancer metastasis and
angiogenesis by targeting ephrinb2. Am J Transl Res. 9:5094–5104.
2017.PubMed/NCBI
|
11
|
Li H, Fan H, Wang Z, Zheng J and Cao W:
Potentiation of scutellarin on human tongue carcinoma xenograft by
low-intensity ultrasound. PLoS One. 8(e59473)2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Long L, Li Y, Yu S, Li X, Hu Y, Long T,
Wang L, Li W, Ye X, Ke Z and Xiao H: Scutellarin prevents
angiogenesis in diabetic retinopathy by downregulating
VEGF/ERK/FAK/Src pathway signaling. J Diabetes Res.
2019(4875421)2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Wang Y, Fan X, Fan B, Jiang K, Zhang H,
Kang F, Su H, Gu D, Li S and Lin S: Scutellarin reduce the
homocysteine level and alleviate liver injury in type 2 diabetes
model. Front Pharmacol. 11(538407)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Liu Q, Li X, Ouyang X and Chen D: Dual
effect of glucuronidation of a pyrogallol-type phytophenol
antioxidant: A comparison between scutellarein and scutellarin.
Molecules. 23(3225)2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Bae YS, Oh H, Rhee SG and Yoo YD:
Regulation of reactive oxygen species generation in cell signaling.
Mol Cells. 32:491–509. 2011.PubMed/NCBI View Article : Google Scholar
|
16
|
Geiszt M, Kopp JB, Várnai P and Leto TL:
Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl
Acad Sci USA. 7:8010–8014. 2000.PubMed/NCBI View Article : Google Scholar
|
17
|
Huo Y, Mijiti A, Cai R, Gao Z, Aini M,
Mijiti A, Wang Z and Qie R: Scutellarin alleviates type 2 diabetes
(HFD/low dose STZ)-induced cardiac injury through modulation of
oxidative stress, inflammation, apoptosis and fibrosis in mice. Hum
Exp Toxicol. 40 (Suppl 12):S460–S474. 2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Xu L, Chen R, Zhang X, Zhu Y, Ma X, Sun G
and Sun X: Scutellarin protects against diabetic cardiomyopathy via
inhibiting oxidative stress and inflammatory response in mice. Ann
Palliat Med. 10:2481–2493. 2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Sun S, Yang S, Dai M, Jia X, Wang Q, Zhang
Z and Mao Y: The effect of astragalus polysaccharides on
attenuation of diabetic cardiomyopathy through inhibiting the
extrinsic and intrinsic apoptotic pathways in high glucose
-stimulated H9C2 cells. BMC Complement Altern Med.
17(310)2017.PubMed/NCBI View Article : Google Scholar
|
20
|
E L and Jiang H: Simvastatin protects high
glucose-induced H9c2 cells from injury by inducing autophagy. Pharm
Biol. 58:1077–1084. 2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Johnson R, Dludla P, Joubert E, February
F, Mazibuko S, Ghoor S, Muller C and Louw J: Aspalathin, a
dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against
high glucose induced shifts in substrate preference and apoptosis.
Mol Nutr Food Res. 60:922–934. 2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Katayama S, Shimoda K and Takenaga Y: Loss
of ADAR1 in human iPS cells promotes caspase3-mediated apoptotic
cell death. Genes Cells. 20:675–680. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Joseph EK and Levine JD: Caspase
signalling in neuropathic and inflammatory pain in the rat. Eur J
Neurosci. 20:2896–2902. 2004.PubMed/NCBI View Article : Google Scholar
|
24
|
Johnson CR and Jarvis WD: Caspase-9
regulation: An update. Apoptosis. 9:423–427. 2004.PubMed/NCBI View Article : Google Scholar
|
25
|
Morishima N, Nakanishi K, Takenouchi H,
Shibata T and Yasuhiko Y: An endoplasmic reticulum stress-specific
caspase cascade in apoptosis. Cytochrome c-independent activation
of caspase-9 by caspase-12. J Biol Chem. 277:34287–34294.
2002.PubMed/NCBI View Article : Google Scholar
|
26
|
Liu MQ, Chen Z and Chen LX: Endoplasmic
reticulum stress: A novel mechanism and therapeutic target for
cardiovascular diseases. Acta Pharmacol Sin. 37:425–443.
2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Manaenko A, Sun X, Kim CH, Yan J, Ma Q and
Zhang JH: PAR-1 antagonist SCH79797 ameliorates apoptosis following
surgical brain injury through inhibition of ASK1-JNK in rats.
Neurobiol Dis. 50:13–20. 2013.PubMed/NCBI View Article : Google Scholar
|
28
|
Finkel T and Holbrook NJ: Oxidants,
oxidative stress and the biology of ageing. Nature. 408:239–247.
2000.PubMed/NCBI View
Article : Google Scholar
|
29
|
Dröge W: Free radicals in the
physiological control of cell function. Physiol Rev. 82:47–95.
2002.PubMed/NCBI View Article : Google Scholar
|
30
|
Sahoo S, Meijles DN and Pagano PJ: NADPH
oxidases: Key modulators in aging and age-related cardiovascular
diseases? Clin Sci. 130:317–335. 2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Ago T, Kuroda J, Pain J, Fu C, Li H and
Sadoshima J: Upregulation of Nox4 by hypertrophic stimuli promotes
apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ
Res. 106:1253–1264. 2010.PubMed/NCBI View Article : Google Scholar
|
32
|
Kuroda J, Ago T, Matsushima S, Zhai P,
Schneider MD and Sadoshima J: NADPH oxidase 4 (Nox4) is a major
source of oxidative stress in the failing heart. Proc Natl Acad Sci
USA. 107:15565–15570. 2010.PubMed/NCBI View Article : Google Scholar
|
33
|
Wang Y, Luo X, Pan H, Huang W, Wang X, Wen
H, Shen K and Jin B: Pharmacological inhibition of NADPH oxidase
protects against cisplatin induced nephrotoxicity in mice by two
step mechanism. Food Chem Toxicol. 83:251–260. 2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Cha JJ, Min HS, Kim KT, Kim JE, Ghee JY,
Kim HW, Lee JE, Han JY, Lee G, Ha HJ, et al: APX-115, a
first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db
mice from renal injury. Lab Invest. 97:419–431. 2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Kwon G, Uddin MJ, Lee G, Jiang S, Cho A,
Lee JH, Lee SR, Bae YS, Moon SH, Lee SJ, et al: A novel pan-Nox
inhibitor, APX-115, protects kidney injury in
streptozotocin-induced diabetic mice: Possible role of peroxisomal
and mitochondrial biogenesis. Oncotarget. 8:74217–74232.
2017.PubMed/NCBI View Article : Google Scholar
|
36
|
American Diabetes Association. 2.
Classification and diagnosis of diabetes: Standards of medical care
in diabetes-2021. Diabetes Care. 44 (Suppl 1):S15–S33.
2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Forbes JM and Cooper ME: Mechanisms of
diabetic complications. Physiol Rev. 93:137–188. 2013.PubMed/NCBI View Article : Google Scholar
|
38
|
Rubler S, Dlugash J, Yuceoglu YZ, Kumral
T, Branwood AW and Grishman A: New type of cardiomyopathy
associated with diabetic glomerulosclerosis. Am J Cardiol.
30:595–602. 1972.PubMed/NCBI View Article : Google Scholar
|
39
|
Brownlee M: The pathobiology of diabetic
complications: A unifying mechanism. Diabetes. 54:1615–1625.
2005.PubMed/NCBI View Article : Google Scholar
|
40
|
Cai L and Kang YJ: Oxidative stress and
diabetic cardiomyopathy: A brief review. Cardiovasc Toxicol.
1:181–193. 2001.PubMed/NCBI View Article : Google Scholar
|
41
|
Dandona P, Aljada A and Bandyopadhyay A:
Inflammation: The link between insulin resistance, obesity and
diabetes. Trends Immunol. 25:4–7. 2004.PubMed/NCBI View Article : Google Scholar
|
42
|
Travers JG, Kamal FA, Robbins J, Yutzey KE
and Blaxall BC: Cardiac fibrosis: The fibroblast awakens. Circ Res.
118:1021–1040. 2016.PubMed/NCBI View Article : Google Scholar
|