1
|
Luo L, Ruan X, Li C, Chen S, Hu Q and
Mueck AO: Early clinical features and risk factors for cesarean
scar pregnancy: A retrospective case-control study. Gynecol
Endocrinol. 35:337–341. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Seow KM, Huang LW, Lin YH, Lin MY, Tsai YL
and Hwang JL: Cesarean scar pregnancy: Issues in management.
Ultrasound Obstet Gynecol. 23:247–253. 2004.PubMed/NCBI View
Article : Google Scholar
|
3
|
Li HT, Hellerstein S, Zhou YB, Liu JM and
Blustein J: Trends in cesarean delivery rates in China, 2008-2018.
JAMA. 323:89–91. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Miller R, Timor-Tritsch IE and
Gyamfi-Bannerman C: Society for Maternal-fetal medicine (SMFM)
Consult series #49: Cesarean scar pregnancy. Am J Obstet Gynecol.
222:B2–B14. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Murray MJ and Lessey BA: Embryo
implantation and tumor metastasis: Common pathways of invasion and
angiogenesis. Semin Reprod Endocrinol. 17:275–290. 1999.PubMed/NCBI View Article : Google Scholar
|
6
|
Obenauf AC and Massagué J: Surviving at a
distance: Organ-specific metastasis. Trends Cancer. 1:76–91.
2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Han B, Alonso-Valenteen F, Wang Z, Deng N,
Lee TY, Gao B, Zhang Y, Xu Y, Zhang X, Billet S, et al: A chemokine
regulatory loop induces cholesterol synthesis in lung-colonizing
triple-negative breast cancer cells to fuel metastatic growth. Mol
Ther. 30:672–687. 2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhang KL, Zhu WW, Wang SH, Gao C, Pan JJ,
Du ZG, Lu L, Jia HL, Dong QZ, Chen JH, et al: Organ-specific
cholesterol metabolic aberration fuels liver metastasis of
colorectal cancer. Theranostics. 11:6560–6572. 2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Grandaliano G, Valente AJ and Abboud HE: A
novel biologic activity of thrombin: Stimulation of monocyte
chemotactic protein production. J Exp Med. 179:1737–1741.
1994.PubMed/NCBI View Article : Google Scholar
|
10
|
Colotta F, Sciacca FL, Sironi M, Luini W,
Rabiet MJ and Mantovani A: Expression of monocyte chemotactic
protein-1 by monocytes and endothelial cells exposed to thrombin.
Am J Pathol. 144:975–985. 1994.PubMed/NCBI
|
11
|
Chaiworapongsa T, Yoshimatsu J, Espinoza
J, Kim YM, Berman S, Edwin S, Yoon BH and Romero R: Evidence of in
vivo generation of thrombin in patients with
small-for-gestational-age fetuses and pre-eclampsia. J Matern Fetal
Neonatal Med. 11:362–367. 2002.PubMed/NCBI View Article : Google Scholar
|
12
|
Bagot CN, Leishman E, Onyiaodike CC,
Jordan F and Freeman DJ: Normal pregnancy is associated with an
increase in thrombin generation from the very early stages of the
first trimester. Thromb Res. 157:49–54. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Ghio A, Bertolotto A, Resi V, Volpe L and
Di Cianni G: Triglyceride metabolism in pregnancy. Adv Clin Chem.
55:133–153. 2011.PubMed/NCBI View Article : Google Scholar
|
14
|
Ferriols E, Rueda C, Gamero R, Vidal M,
Payá A, Carreras R, Flores-le Roux JA and Pedro-Botet J:
Relationship between lipid alterations during pregnancy and adverse
pregnancy outcomes. Clin Investig Arterioscler. 28:232–244.
2016.PubMed/NCBI View Article : Google Scholar : (In Spanish).
|
15
|
Xiong M, Wang Q, Zhang X, Wen L and Zhao
A: Decidual stromal cells-derived exosomes incurred insufficient
migration and invasion of trophoblast by disturbing of
β-TrCP-mediated snail ubiquitination and degradation in unexplained
recurrent spontaneous abortion. Eur J Med Res.
29(39)2024.PubMed/NCBI View Article : Google Scholar
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
17
|
Shi JW, Yang HL, Fan DX, Yang SL, Qiu XM,
Wang Y, Lai ZZ, Ha SY, Ruan LY, Shen HH, et al: The role of CXC
chemokine ligand 16 in physiological and pathological pregnancies.
Am J Reprod Immunol. 83(e13223)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Lin Z, Shi JL, Chen M, Zheng ZM, Li MQ and
Shao J: CCL2: An important cytokine in normal and pathological
pregnancies: A review. Front Immunol. 13(1053457)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Valles CS and Domínguez F:
Embryo-endometrial interaction. Chang Gung Med J. 29:9–14.
2006.PubMed/NCBI
|
20
|
Sun R, Fang P, Jiang J, Huang C, Wang J,
Guo Q, Li H, Wu X, Xie X, Jiang Y, et al: Insulin rescued
MCP-1-suppressed cholesterol efflux to large HDL2 particles via
ABCA1, ABCG1, SR-BI and PI3K/Akt activation in adipocytes.
Cardiovasc Drugs Ther. 36:665–678. 2022.PubMed/NCBI View Article : Google Scholar
|
21
|
Blanco-Colio LM, Martín-Ventura JL, de
Teresa E, Farsang C, Gaw A, Gensini G, Leiter LA, Langer A,
Martineau P and Egido J: ACTFAST investigators. Elevated ICAM-1 and
MCP-1 plasma levels in subjects at high cardiovascular risk are
diminished by atorvastatin treatment. Atorvastatin on Inflammatory
Markers study: A substudy of Achieve Cholesterol Targets Fast with
Atorvastatin Stratified Titration. Am Heart J. 153:881–888.
2007.PubMed/NCBI View Article : Google Scholar
|
22
|
Damsky CH, Fitzgerald ML and Fisher SJ:
Distribution patterns of extracellular matrix components and
adhesion receptors are intricately modulated during first trimester
cytotrophoblast differentiation along the invasive pathway, in
vivo. J Clin Invest. 89:210–222. 1992.PubMed/NCBI View Article : Google Scholar
|
23
|
Jones RL, Hannan NJ, Kaitu'u TJ, Zhang J
and Salamonsen LA: Identification of chemokines important for
leukocyte recruitment to the human endometrium at the times of
embryo implantation and menstruation. J Clin Endocrinol Metab.
89:6155–6167. 2004.PubMed/NCBI View Article : Google Scholar
|
24
|
Red-Horse K, Drake PM, Gunn MD and Fisher
SJ: Chemokine ligand and receptor expression in the pregnant
uterus: Reciprocal patterns in complementary cell subsets suggest
functional roles. Am J Pathol. 159:2199–2213. 2001.PubMed/NCBI View Article : Google Scholar
|
25
|
Roussos ET, Condeelis JS and Patsialou A:
Chemotaxis in cancer. Nat Rev Cancer. 11:573–587. 2011.PubMed/NCBI View
Article : Google Scholar
|
26
|
Qian BZ, Li J, Zhang H, Kitamura T, Zhang
J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits
inflammatory monocytes to facilitate breast-tumour metastasis.
Nature. 475:222–225. 2011.PubMed/NCBI View Article : Google Scholar
|
27
|
Lu Y, Cai Z, Galson DL, Xiao G, Liu Y,
George DE, Melhem MF, Yao Z and Zhang J: Monocyte chemotactic
protein-1 (MCP-1) acts as a paracrine and autocrine factor for
prostate cancer growth and invasion. Prostate. 66:1311–1318.
2006.PubMed/NCBI View Article : Google Scholar
|
28
|
Yoshidome H, Kohno H, Shida T, Kimura F,
Shimizu H, Ohtsuka M, Nakatani Y and Miyazaki M: Significance of
monocyte chemoattractant protein-1 in angiogenesis and survival in
colorectal liver metastases. Int J Oncol. 34:923–930.
2009.PubMed/NCBI View Article : Google Scholar
|
29
|
Fang WB, Yao M, Brummer G, Acevedo D,
Alhakamy N, Berkland C and Cheng N: Targeted gene silencing of CCL2
inhibits triple negative breast cancer progression by blocking
cancer stem cell renewal and M2 macrophage recruitment. Oncotarget.
7:49349–49367. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Nam JS, Kang MJ, Suchar AM, Shimamura T,
Kohn EA, Michalowska AM, Jordan VC, Hirohashi S and Wakefield LM:
Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of
dysadherin in human breast cancer cells. Cancer Res. 66:7176–7184.
2006.PubMed/NCBI View Article : Google Scholar
|
31
|
Cranford TL, Velázquez KT, Enos RT, Bader
JE, Carson MS, Chatzistamou I, Nagarkatti M and Murphy EA: Loss of
monocyte chemoattractant protein-1 expression delays mammary
tumorigenesis and reduces localized inflammation in the
C3(1)/SV40Tag triple negative breast cancer model. Cancer Biol
Ther. 18:85–93. 2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Yan L and Sundaram S: Monocyte chemotactic
protein-1 deficiency reduces spontaneous metastasis of Lewis lung
carcinoma in mice fed a high-fat diet. Oncotarget. 7:24792–24799.
2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Simons K and Ikonen E: How cells handle
cholesterol. Science. 290:1721–1726. 2000.PubMed/NCBI View Article : Google Scholar
|
34
|
Russell DW: The enzymes, regulation, and
genetics of bile acid synthesis. Annu Rev Biochem. 72:137–174.
2003.PubMed/NCBI View Article : Google Scholar
|
35
|
Clendening JW, Pandyra A, Boutros PC, El
Ghamrasni S, Khosravi F, Trentin GA, Martirosyan A, Hakem A, Hakem
R, Jurisica I and Penn LZ: Dysregulation of the mevalonate pathway
promotes transformation. Proc Natl Acad Sci USA. 107:15051–15056.
2010.PubMed/NCBI View Article : Google Scholar
|
36
|
Shimano H: Sterol regulatory
element-binding proteins (SREBPs): Transcriptional regulators of
lipid synthetic genes. Prog Lipid Res. 40:439–452. 2001.PubMed/NCBI View Article : Google Scholar
|
37
|
Llaverias G, Danilo C, Mercier I, Daumer
K, Capozza F, Williams TM, Sotgia F, Lisanti MP and Frank PG: Role
of cholesterol in the development and progression of breast cancer.
Am J Pathol. 178:402–412. 2011.PubMed/NCBI View Article : Google Scholar
|
38
|
Sakellakis M, Akinosoglou K, Kostaki A,
Spyropoulou D and Koutras A: Statins and risk of breast cancer
recurrence. Breast Cancer (Dove Med Press). 8:199–205.
2016.PubMed/NCBI View Article : Google Scholar
|
39
|
Manthravadi S, Shrestha A and Madhusudhana
S: Impact of statin use on cancer recurrence and mortality in
breast cancer: A systematic review and meta-analysis. Int J Cancer.
139:1281–1288. 2016.PubMed/NCBI View Article : Google Scholar
|
40
|
Beckwitt CH, Clark AM, Ma B, Whaley D,
Oltvai ZN and Wells A: Statins attenuate outgrowth of breast cancer
metastases. Br J Cancer. 119:1094–1105. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Baek AE, Yu YA, He S, Wardell SE, Chang
CY, Kwon S, Pillai RV, McDowell HB, Thompson JW, Dubois LG, et al:
The cholesterol metabolite 27 hydroxycholesterol facilitates breast
cancer metastasis through its actions on immune cells. Nat Commun.
8(864)2017.PubMed/NCBI View Article : Google Scholar
|