
Molecular mechanisms underlying the inhibition of cell migration and invasion in endometriosis: Advances in pharmacological research (Review)
- Authors:
- Ni Wei
- Haibin Guan
- Yanfen Zhang
- Jianping Shi
- Jiannan Ma
- Ruiweng Shi
- Xiao Qi
- Zhiheng Dong
- Rongwei Zhao
-
Affiliations: The First Clinical Medical College of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China, School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China, Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China, School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China, Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China, Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China - Published online on: July 8, 2025 https://doi.org/10.3892/br.2025.2030
- Article Number: 152
-
Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Taylor HS, Kotlyar AM and Flores VA: Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet. 397:839–852. 2021.PubMed/NCBI View Article : Google Scholar | |
Peiris AN, Chaljub E and Medlock D: Endometriosis. JAMA. 320(2608)2018.PubMed/NCBI View Article : Google Scholar | |
Greene R, Stratton P, Cleary SD, Ballweg ML and Sinaii N: Diagnostic experience among 4,334 women reporting surgically diagnosed endometriosis. Fertil Steril. 91:32–39. 2009.PubMed/NCBI View Article : Google Scholar | |
Sanfilippo JS, Wakim NG, Schikler KN and Yussman MA: Endometriosis in association with uterine anomaly. Am J Obstet Gynecol. 154:39–43. 1986.PubMed/NCBI View Article : Google Scholar | |
Imperiale L, Nisolle M, Noël JC and Fastrez M: Three types of endometriosis: Pathogenesis, diagnosis and treatment. state of the art. J Clin Med. 12(994)2023.PubMed/NCBI View Article : Google Scholar | |
As-Sanie S, Shafrir AL, Halvorson L, Chawla R, Hughes R and Merz M: The Burden of pelvic pain associated with endometriosis among women in selected European countries and the United States: A restricted systematic review. J Minim Invasive Gynecol. 31:653–666.e5. 2024.PubMed/NCBI View Article : Google Scholar | |
Katon JG, Plowden TC and Marsh EE: Racial disparities in uterine fibroids and endometriosis: A systematic review and application of social, structural, and political context. Fertil Steril. 119:355–363. 2023.PubMed/NCBI View Article : Google Scholar | |
Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V and Martin DC: Pathogenesis of endometriosis: The genetic/epigenetic theory. Fertil Steril. 111:327–340. 2019.PubMed/NCBI View Article : Google Scholar | |
van Haaps AP, Wijbers JV, Schreurs AMF, Vlek S, Tuynman J, De Bie B, de Vogel AL, van Wely M and Mijatovic V: The effect of dietary interventions on pain and quality of life in women diagnosed with endometriosis: A prospective study with control group. Hum Reprod. 38:2433–2446. 2023.PubMed/NCBI View Article : Google Scholar | |
Burney RO and Giudice LC: Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 98:511–519. 2012.PubMed/NCBI View Article : Google Scholar | |
Jensen JR and Coddington CC III: Evolving spectrum: The pathogenesis of endometriosis. Clin Obstet Gynecol. 53:379–388. 2010.PubMed/NCBI View Article : Google Scholar | |
Maignien C, Santulli P, Chouzenoux S, Gonzalez-Foruria I, Marcellin L, Doridot L, Jeljeli M, Grange P, Reis FM, Chapron C and Batteux F: Reduced α-2,6 sialylation regulates cell migration in endometriosis. Hum Reprod. 34:479–490. 2019.PubMed/NCBI View Article : Google Scholar | |
Hapangama DK, Raju RS, Valentijn AJ, Barraclough D, Hart A, Turner MA, Platt-Higgins A, Barraclough R and Rudland PS: Aberrant expression of metastasis-inducing proteins in ectopic and matched eutopic endometrium of women with endometriosis: Implications for the pathogenesis of endometriosis. Hum Reprod. 27:394–407. 2012.PubMed/NCBI View Article : Google Scholar | |
Lin LL, Makwana S, Chen M, Wang CM, Gillette LH, Huang TH, Burney RO, Nicholson BJ and Kirma NB: Cellular junction and mesenchymal factors delineate an endometriosis-specific response of endometrial stromal cells to the mesothelium. Mol Cell Endocrinol. 539(111481)2022.PubMed/NCBI View Article : Google Scholar | |
Chen CW, Chavez JB, Kumar R, Go VA, Pant A, Jain A, Polusani SR, Hart MJ, Robinson RD, Gaczynska M, et al: Hypersensitive intercellular responses of endometrial stromal cells drive invasion in endometriosis. Elife. 13(e94778)2024.PubMed/NCBI View Article : Google Scholar | |
Wang X, Zheng Q, Sun M, Liu L, Zhang H and Ying W: Signatures of necroptosis-related genes as diagnostic markers of endometriosis and their correlation with immune infiltration. BMC Womens Health. 23(535)2023.PubMed/NCBI View Article : Google Scholar | |
Dai F, Li J and Liu Y: Phosphatase and tensin homolog deficiency induces M2 macrophage polarization by promoting glycolytic activity in endometrial stromal cells. Biol Reprod. 112:640–650. 2025.PubMed/NCBI View Article : Google Scholar | |
Cordeiro MR, Carvalhos CA and Figueiredo-Dias M: The emerging role of menstrual-blood-derived stem cells in endometriosis. Biomedicines. 11(39)2022.PubMed/NCBI View Article : Google Scholar | |
Hou S, Xu H, Lei S and Zhao D: Overexpressed nicotinamide N-methyltransferase in endometrial stromal cells induced by macrophages and estradiol contributes to cell proliferation in endometriosis. Cell Death Discov. 10(463)2024.PubMed/NCBI View Article : Google Scholar | |
Wu M and Zhang Y: MiR-182 inhibits proliferation, migration, invasion and inflammation of endometrial stromal cells through deactivation of NF-κB signaling pathway in endometriosis. Mol Cell Biochem. 476:1575–1588. 2021.PubMed/NCBI View Article : Google Scholar | |
Sarsenova M, Stepanjuk A, Saare M, Kasvandik S, Soplepmann P, Mikeltadze I, Götte M, Salumets A and Peters M: Carboxypeptidase inhibitor LXN expression in endometrial tissue is menstrual cycle phase-dependent and is upregulated in endometriotic lesions. Genes (Basel). 15(1086)2024.PubMed/NCBI View Article : Google Scholar | |
Peng Y, Xiong W, He H, Liu H, Fu T, Long X, Li X, Dai X, Xu Y, Zhang L and Liu Y: Estradiol promotes endometriosis progression via the eRβ/QKI/circSMAD2 Axis. Curr Pharm Biotechnol: Feb 20, 2025 (Epub ahead of print). | |
Begum Y, Pandit A, Shukla D, Gupta R, DasMahapatra P, Srivastava AK and Swarnakar S: Suppression of endometriosis by miRNA-34a via inhibition of matrix metalloproteinase-2: An alternative pathway to impede invasion. Noncoding RNA Res. 12:92–101. 2025.PubMed/NCBI View Article : Google Scholar | |
Tang X, Li Q, Li L and Jiang J: Expression of Talin-1 in endometriosis and its possible role in pathogenesis. Reprod Biol Endocrinol. 19(42)2021.PubMed/NCBI View Article : Google Scholar | |
D'Amico F, Skarmoutsou E, Quaderno G, Malaponte G, La Corte C, Scibilia G, D'Agate G, Scollo P, Fraggetta F, Spandidos DA and Mazzarino MC: Expression and localisation of osteopontin and prominin-1 (CD133) in patients with endometriosis. Int J Mol Med. 31:1011–1016. 2013.PubMed/NCBI View Article : Google Scholar | |
Xiong W, Zhang L, Liu H, Li N, Du Y, He H, Zhang Z and Liu Y: E(2) -mediated EMT by activation of β-catenin/Snail signalling during the development of ovarian endometriosis. J Cell Mol Med. 23:8035–8045. 2019.PubMed/NCBI View Article : Google Scholar | |
Sesti F, Pietropolli A, Capozzolo T, Broccoli P, Pierangeli S, Bollea MR and Piccione E: Hormonal suppression treatment or dietary therapy versus placebo in the control of painful symptoms after conservative surgery for endometriosis stage III-IV. A randomized comparative trial. Fertil Steril. 88:1541–1547. 2007.PubMed/NCBI View Article : Google Scholar | |
Qin Z, Dong Z, Liu J, Zhong A, Bao M, Wang H, Yu H, Zhang S, Zhang W, Shen L, et al: A preliminary study on the effects of black cohosh preparations on bone metabolism of rat models with GnRH-a-induced peri-menopausal symptoms. Front Endocrinol (Lausanne). 13(854345)2022.PubMed/NCBI View Article : Google Scholar | |
Houshdaran S, Oke AB, Fung JC, Vo KC, Nezhat C and Giudice LC: Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 16(e1008601)2020.PubMed/NCBI View Article : Google Scholar | |
Moustafa S, Burn M, Mamillapalli R, Nematian S, Flores V and Taylor HS: Accurate diagnosis of endometriosis using serum microRNAs. Am J Obstet Gynecol. 223:557.e1–557.e11. 2020.PubMed/NCBI View Article : Google Scholar | |
Frisendahl C, Tang Y, Boggavarapu NR, Peters M, Lalitkumar PG, Piltonen TT, Arffman RK, Salumets A, Götte M, Korsching E and Gemzell-Danielsson K: miR-193b-5p and miR-374b-5p are aberrantly expressed in endometriosis and suppress endometrial cell migration in vitro. Biomolecules. 14(1400)2024.PubMed/NCBI View Article : Google Scholar | |
Rodríguez E, Aburjania N, Priedigkeit NM, DiFeo A and Martignetti JA: Nucleo-cytoplasmic localization domains regulate Krüppel-like factor 6 (KLF6) protein stability and tumor suppressor function. PLoS One. 5(e12639)2010.PubMed/NCBI View Article : Google Scholar | |
Shi J, Jing W, He Y and Huang Y: Decreased expression of KLF6 in ectopic endometrial stromal cells contributes to endometriosis progression by targeting CTNNB1. Cell Signal. 120(111230)2024.PubMed/NCBI View Article : Google Scholar | |
Meng F, Li J, Dong K, Bai R, Liu Q, Lu S, Liu Y, Wu D, Jiang C and Li W: Juan-tong-yin potentially impacts endometriosis pathophysiology by enhancing autophagy of endometrial stromal cells via unfolded protein reaction-triggered endoplasmic reticulum stress. J Ethnopharmacol. 325(117859)2024.PubMed/NCBI View Article : Google Scholar | |
Yu M, Yang L, Pei Y and Xu M: Amygdalin inhibits endometrial stromal cell proliferation, migration, and invasion in endometriosis mice via inhibiting Wnt/β-catenin signaling. J Mol Histol. 56(11)2024.PubMed/NCBI View Article : Google Scholar | |
Kao AP, Wang KH, Chang CC, Lee JN, Long CY, Chen HS, Tsai CF, Hsieh TH and Tsai EM: Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril. 95:1308–1315.e1. 2011.PubMed/NCBI View Article : Google Scholar | |
Mao Z, Sang MM, Chen C, Zhu WT, Gong YS and Pei DS: CSN6 promotes the migration and invasion of cervical cancer cells by inhibiting autophagic degradation of cathepsin L. Int J Biol Sci. 15:1310–1324. 2019.PubMed/NCBI View Article : Google Scholar | |
Gao S, Bian T, Su M, Liu Y and Zhang Y: miR-26a inhibits ovarian cancer cell proliferation, migration and invasion by targeting TCF12. Oncol Rep. 43:368–374. 2020.PubMed/NCBI View Article : Google Scholar | |
Geng A, Luo L, Ren F, Zhang L, Zhou H and Gao X: miR-29a-3p inhibits endometrial cancer cell proliferation, migration and invasion by targeting VEGFA/CD C42/PAK1. BMC Cancer. 21(843)2021.PubMed/NCBI View Article : Google Scholar | |
Cong Y, Cui Y, Zhu S, Cao J, Zou H, Martin TA, Qiao G, Jiang W and Yu Z: Tim-3 promotes cell aggressiveness and paclitaxel resistance through NF-κB/STAT3 signalling pathway in breast cancer cells. Chin J Cancer Res. 32:564–579. 2020.PubMed/NCBI View Article : Google Scholar | |
Altayyeb A, Othman E, Khashbah M, Esmaeel A, El-Mokhtar M, Lambalk C, Mijatovic V and Abdelgawad M: Characterization of mechanical signature of eutopic endometrial stromal cells of endometriosis patients. Reprod Sci. 27:364–374. 2020.PubMed/NCBI View Article : Google Scholar | |
Maurya VK, Szwarc MM, Fernandez-Valdivia R, Lonard DM, Yong S, Joshi N, Fazleabas AT and Lydon JP: Early growth response 1 transcription factor is essential for the pathogenic properties of human endometriotic epithelial cells. Reproduction. 164:41–54. 2022.PubMed/NCBI View Article : Google Scholar | |
Chen SM, Liu YK, Ma XQ, Wei CY, Li MQ and Zhu XY: Creatine promotes endometriosis progression by inducing M2 polarization of peritoneal macrophages. Reproduction. 169(e240278)2025.PubMed/NCBI View Article : Google Scholar | |
Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, Mariani M, Brignole C, Ponzoni M, Ferrari S, et al: Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 175:547–556. 2009.PubMed/NCBI View Article : Google Scholar | |
Yu JJ, Sun HT, Zhang ZF, Shi RX, Liu LB, Shang WQ, Wei CY, Chang KK, Shao J, Wang MY and Li MQ: IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction. 152:151–160. 2016.PubMed/NCBI View Article : Google Scholar | |
Vallvé-Juanico J, Houshdaran S and Giudice LC: The endometrial immune environment of women with endometriosis. Hum Reprod Update. 25:564–591. 2019.PubMed/NCBI View Article : Google Scholar | |
Makoui MH, Fekri S, Makoui RH, Ansari N and Esmaeilzadeh A: The role of mast cells in the development and advancement of endometriosis. Am J Reprod Immunol. 93(e70019)2025.PubMed/NCBI View Article : Google Scholar | |
McCallion A, Nasirzadeh Y, Lingegowda H, Miller JE, Khalaj K, Ahn S, Monsanto SP, Bidarimath M, Sisnett DJ, Craig AW, et al: Estrogen mediates inflammatory role of mast cells in endometriosis pathophysiology. Front Immunol. 13(961599)2022.PubMed/NCBI View Article : Google Scholar | |
Tian J, Hoffmann V, Ibrahim MG, Hansen U, Schüring AN, Velho RV, Mechsner S and Götte M: Characterization of E-Cadherin, SSEA-1, MSI-1, and SOX-2 expression and their association with pale cells in adenomyosis. Biomolecules. 14(1355)2024.PubMed/NCBI View Article : Google Scholar | |
Guo J, Gao J, Yu X, Luo H, Xiong X and Huang O: Expression of DJ-1 and mTOR in eutopic and ectopic endometria of patients with endometriosis and adenomyosis. Gynecol Obstet Invest. 79:195–200. 2015.PubMed/NCBI View Article : Google Scholar | |
Gentilini D, Busacca M, Di Francesco S, Vignali M, Viganò P and Di Blasio AM: PI3K/Akt and ERK1/2 signalling pathways are involved in endometrial cell migration induced by 17beta-estradiol and growth factors. Mol Hum Reprod. 13:317–322. 2007.PubMed/NCBI View Article : Google Scholar | |
Guzeloglu Kayisli O, Kayisli UA, Luleci G and Arici A: In vivo and in vitro regulation of Akt activation in human endometrial cells is estrogen dependent. Biol Reprod. 71:714–721. 2004.PubMed/NCBI View Article : Google Scholar | |
Zheng T and Yang J: Differential expression of EWI-2 in endometriosis, its functional role and underlying molecular mechanisms. J Obstet Gynaecol Res. 43:1180–1188. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen J, Chang H, Peng X, Gu Y, Yi L, Zhang Q, Zhu J and Mi M: 3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway. Sci Rep. 6(28858)2016.PubMed/NCBI View Article : Google Scholar | |
Yamaguchi M, Murata T, Shoji M and Weitzmann MN: The flavonoid p-hydroxycinnamic acid mediates anticancer effects on MDA-MB-231 human breast cancer cells in vitro: Implications for suppression of bone metastases. Int J Oncol. 47:1563–1571. 2015.PubMed/NCBI View Article : Google Scholar | |
Yu MM and Zhou QM: 3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition, migration and invasion in endometrial stromal cells by inhibiting the Notch signaling pathway. Eur Rev Med Pharmacol Sci. 22:4009–4017. 2018.PubMed/NCBI View Article : Google Scholar | |
Du X, Yang H, Kang X, Fu C and Yang T: Blocking GATA6 alleviates pyroptosis and inhibits abdominal wall endometriosis lesion growth through inactivating the PI3K/AKT pathway. Cell Biochem Biophys. 83:1757–1770. 2025.PubMed/NCBI View Article : Google Scholar | |
Qin R, Zheng F, Qin W, Wang J, Ma N, Tian W, Li J, Liao M and Qin A: Progranulin promotes proliferation, migration and invasion via the PI3K/Akt signalling pathway in a model of endometriosis. Reprod Biomed Online. 46:425–435. 2023.PubMed/NCBI View Article : Google Scholar | |
Chen JJ, Xiao ZJ, Meng X, Wang Y, Yu MK, Huang WQ, Sun X, Chen H, Duan YG, Jiang X, et al: MRP4 sustains Wnt/β-catenin signaling for pregnancy, endometriosis and endometrial cancer. Theranostics. 9:5049–5064. 2019.PubMed/NCBI View Article : Google Scholar | |
Lu Q, Huang Y, Wu J, Guan Y, Du M, Wang F, Liu Z, Zhu Y, Gong G, Hou H, et al: T-cadherin inhibits invasion and migration of endometrial stromal cells in endometriosis. Hum Reprod. 35:145–156. 2020.PubMed/NCBI View Article : Google Scholar | |
Matsuzaki S, Botchorishvili R, Pouly JL and Canis M: Targeting the Wnt/β-catenin pathway in endometriosis: A potentially effective approach for treatment and prevention. Mol Cell Ther. 2(36)2014.PubMed/NCBI View Article : Google Scholar | |
Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW and Shivdasani RA: Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 5:91–102. 2004.PubMed/NCBI View Article : Google Scholar | |
Li Y, Wang X, Wang X, Wan L, Liu Y, Shi Y, Zhang L, Fang Z and Wei Z: PDCD4 suppresses proliferation, migration, and invasion of endometrial cells by inhibiting autophagy and NF-κB/MMP2/MMP9 signal pathway. Biol Reprod. 99:360–372. 2018.PubMed/NCBI View Article : Google Scholar | |
Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018.PubMed/NCBI View Article : Google Scholar | |
Jung S, Jeong H and Yu SW: Autophagy as a decisive process for cell death. Exp Mol Med. 52:921–930. 2020.PubMed/NCBI View Article : Google Scholar | |
Doherty J and Baehrecke EH: Life, death and autophagy. Nat Cell Biol. 20:1110–1117. 2018.PubMed/NCBI View Article : Google Scholar | |
Cooper KF: Till death do us part: The marriage of autophagy and apoptosis. Oxid Med Cell Longev. 2018(4701275)2018.PubMed/NCBI View Article : Google Scholar | |
Liu H, Du Y, Zhang Z, Lv L, Xiong W, Zhang L, Li N, He H, Li Q and Liu Y: Autophagy contributes to hypoxia-induced epithelial to mesenchymal transition of endometrial epithelial cells in endometriosis. Biol Reprod. 99:968–981. 2018.PubMed/NCBI View Article : Google Scholar | |
Pang C, Wu Z, Xu X, Yang W, Wang X and Qi Y: Paeonol alleviates migration and invasion of endometrial stromal cells by reducing HIF-1α-regulated autophagy in endometriosis. Front Biosci (Landmark Ed). 26:485–495. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu H, Zhang Z, Xiong W, Zhang L, Xiong Y, Li N, He H, Du Y and Liu Y: Hypoxia-inducible factor-1α promotes endometrial stromal cells migration and invasion by upregulating autophagy in endometriosis. Reproduction. 153:809–820. 2017.PubMed/NCBI View Article : Google Scholar | |
Wu L, Lin S, Hu Y, Jing S, Sun B, Chen X, Jia J, Zeng C and Pei F: Potential mechanism of Luoshi Neiyi prescription in endometriosis based on serum pharmacochemistry and network pharmacology. Front Pharmacol. 15(1395160)2024.PubMed/NCBI View Article : Google Scholar | |
Foster WG: Hypoxia-induced autophagy, epithelial to mesenchymal transition, and invasion in the pathophysiology of endometriosis: A perspective. Biol Reprod. 99:905–906. 2018.PubMed/NCBI View Article : Google Scholar | |
McDonald PC, Swayampakula M and Dedhar S: Coordinated regulation of metabolic transporters and migration/invasion by carbonic anhydrase IX. Metabolites. 8(20)2018.PubMed/NCBI View Article : Google Scholar | |
Quan Q, Wu J, Yu M and Tang J: Immune micro-environment and drug analysis of peritoneal endometriosis based on epithelial-mesenchymal transition classification. Front Endocrinol (Lausanne). 13(1035158)2022.PubMed/NCBI View Article : Google Scholar | |
Acloque H, Thiery JP and Nieto MA: The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep. 9:322–326. 2008.PubMed/NCBI View Article : Google Scholar | |
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP and Sethi G: Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev. 43:1141–1200. 2023.PubMed/NCBI View Article : Google Scholar | |
Matsuzaki S and Darcha C: Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod. 27:712–721. 2012.PubMed/NCBI View Article : Google Scholar | |
Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S and Pal M: The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol. 234:14535–14555. 2019.PubMed/NCBI View Article : Google Scholar | |
Yan L, Song Z, Yi L, Tian C, Zhang R, Qin X, Wang X, Ren S, Ma X, Wang X, et al: TMEM176B inhibits ovarian cancer progression by regulating EMT via the Wnt/β-catenin signaling pathway. J Transl Med. 23(350)2025.PubMed/NCBI View Article : Google Scholar | |
Yao Y, Niu Y, Zhou H and Yong M: KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer. Sci Rep. 15(3417)2025.PubMed/NCBI View Article : Google Scholar | |
Huang J, Sun X, Diao G, Li R, Guo J and Han J: KIF15 knockdown inhibits the development of endometrial cancer by suppressing epithelial-mesenchymal transition and stemness through Wnt/β-catenin signaling. Environ Toxicol. 38:1824–1834. 2023.PubMed/NCBI View Article : Google Scholar | |
Cassier PA, Navaridas R, Bellina M, Rama N, Ducarouge B, Hernandez-Vargas H, Delord JP, Lengrand J, Paradisi A, Fattet L, et al: Netrin-1 blockade inhibits tumour growth and EMT features in endometrial cancer. Nature. 620:409–416. 2023.PubMed/NCBI View Article : Google Scholar | |
Li N, Ji GX and Yang ZY: EFEMP2 increases the invasion ability of cervical cancer cells by promoting EMT via the Raf/MEK/ERK signaling pathway. Neoplasma. 69:1185–1197. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhu Y, Yin WF, Yu P, Zhang C, Sun MH, Kong LY and Yang L: Meso-Hannokinol inhibits breast cancer bone metastasis via the ROS/JNK/ZEB1 axis. Phytother Res. 37:2262–2279. 2023.PubMed/NCBI View Article : Google Scholar | |
Wojtowicz-Praga SM, Dickson RB and Hawkins MJ: Matrix metalloproteinase inhibitors. Invest New Drugs. 15:61–75. 1997.PubMed/NCBI View Article : Google Scholar | |
Sharpe-Timms KL, Keisler LW, McIntush EW and Keisler DH: Tissue inhibitor of metalloproteinase-1 concentrations are attenuated in peritoneal fluid and sera of women with endometriosis and restored in sera by gonadotropin-releasing hormone agonist therapy. Fertil Steril. 69:1128–1134. 1998.PubMed/NCBI View Article : Google Scholar | |
Wenzl RJ and Heinzl H: Localization of matrix metalloproteinase-2 in uterine endometrium and ectopic implants. Gynecol Obstet Invest. 45:253–257. 1998.PubMed/NCBI View Article : Google Scholar | |
Cox KE, Piva M and Sharpe-Timms KL: Differential regulation of matrix metalloproteinase-3 gene expression in endometriotic lesions compared with endometrium. Biol Reprod. 65:1297–1303. 2001.PubMed/NCBI View Article : Google Scholar | |
Lv X, Chen P and Liu W: Down regulation of MiR-93 contributes to endometriosis through targeting MMP3 and VEGFA. Am J Cancer Res. 5:1706–1717. 2015.PubMed/NCBI | |
Chung HW, Lee JY, Moon HS, Hur SE, Park MH, Wen Y and Polan ML: Matrix metalloproteinase-2, membranous type 1 matrix metalloproteinase, and tissue inhibitor of metalloproteinase-2 expression in ectopic and eutopic endometrium. Fertil Steril. 78:787–795. 2002.PubMed/NCBI View Article : Google Scholar | |
Collette T, Maheux R, Mailloux J and Akoum A: Increased expression of matrix metalloproteinase-9 in the eutopic endometrial tissue of women with endometriosis. Hum Reprod. 21:3059–3067. 2006.PubMed/NCBI View Article : Google Scholar | |
Lin TC, Wang KH, Chuang KH, Kao AP and Kuo TC: Interleukin-33 promotes invasiveness of human ovarian endometriotic stromal cells through the ST2/MAPK/MMP-9 pathway activated by 17β-estradiol. Taiwan J Obstet Gynecol. 60:658–664. 2021.PubMed/NCBI View Article : Google Scholar | |
Gaetje R, Holtrich U, Engels K, Kourtis K, Cikrit E, Kissler S, Rody A, Karn T and Kaufmann M: Expression of membrane-type 5 matrix metalloproteinase in human endometrium and endometriosis. Gynecol Endocrinol. 23:567–573. 2007.PubMed/NCBI View Article : Google Scholar | |
Rodgers WH, Osteen KG, Matrisian LM, Navre M, Giudice LC and Gorstein F: Expression and localization of matrilysin, a matrix metalloproteinase, in human endometrium during the reproductive cycle. Am J Obstet Gynecol. 168 (1 Pt 1):253–260. 1993.PubMed/NCBI View Article : Google Scholar | |
Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, Nagle CM, Doherty JA, Cushing-Haugen KL, Wicklund KG, et al: Association between endometriosis and risk of histological subtypes of ovarian cancer: A pooled analysis of case-control studies. Lancet Oncol. 13:385–394. 2012.PubMed/NCBI View Article : Google Scholar | |
Barnard ME, Farland LV, Yan B, Wang J, Trabert B, Doherty JA, Meeks HD, Madsen M, Guinto E, Collin LJ, et al: Endometriosis typology and ovarian cancer risk. JAMA. 332:482–489. 2024.PubMed/NCBI View Article : Google Scholar | |
Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M and Pasdar A: Current insights into the metastasis of epithelial ovarian cancer-hopes and hurdles. Cell Oncol (Dordr). 43:515–538. 2020.PubMed/NCBI View Article : Google Scholar | |
Schröpfer A, Kammerer U, Kapp M, Dietl J, Feix S and Anacker J: Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines. BMC Cancer. 10(553)2010.PubMed/NCBI View Article : Google Scholar | |
Cho-Clark M, Larco DO, Zahn BR, Mani SK and Wu TJ: GnRH-(1-5) activates matrix metallopeptidase-9 to release epidermal growth factor and promote cellular invasion. Mol Cell Endocrinol. 415:114–125. 2015.PubMed/NCBI View Article : Google Scholar | |
Kicman A, Gacuta E, Kulesza M, Będkowska EG, Marecki R, Klank-Sokołowska E, Knapp P, Niczyporuk M and Ławicki S: Diagnostic utility of selected matrix metalloproteinases (MMP-2, MMP-3, MMP-11, MMP-26), HE4, CA125 and ROMA algorithm in diagnosis of ovarian cancer. Int J Mol Sci. 25(6265)2024.PubMed/NCBI View Article : Google Scholar | |
Shi L, Zhang Q, Zhu S, Tang Q, Chen X, Lan R, Wang N and Zhu Y: Pharmacological inhibition of EZH2 using a covalent inhibitor suppresses human ovarian cancer cell migration and invasion. Mol Cell Biochem. 479:831–841. 2024.PubMed/NCBI View Article : Google Scholar | |
Li H, Qiu Z, Li F and Wang C: The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett. 14:5865–5870. 2017.PubMed/NCBI View Article : Google Scholar | |
Ünüvar S, Melekoğlu R, Yüce H, Çelik NZ, Okumuş EB, Toprak S, Tanbek K, Yaşar Ş, Doğan A, Türkmen NB, et al: Diagnostic utility of lipocalin 2 and metalloproteinase 9 levels in early-stage endometrial cancer. Cancer Biomark. 41(18758592241290951)2024.PubMed/NCBI View Article : Google Scholar | |
Shukla S, Qureshi S, Singh U and Khattri S: A study of matrix metalloproteinase-2 and interleukin-18 in preinvasive and invasive lesions of cancer cervix. J Midlife Health. 11:236–239. 2020.PubMed/NCBI View Article : Google Scholar | |
Chauhan R, Malhotra L, Gupta A, Dagar G, Mendiratta M, Masoodi T, Hashem S, Al Marzooqi S, Das D, Uddin S, et al: Bergenin inhibits growth of human cervical cancer cells by decreasing Galectin-3 and MMP-9 expression. Sci Rep. 14(15287)2024.PubMed/NCBI View Article : Google Scholar | |
Kochumon S, Al-Sayyar A, Jacob T, Bahman F, Akhter N, Wilson A, Sindhu S, Hannun YA, Ahmad R and Al-Mulla F: TGF-β and TNF-α interaction promotes the expression of MMP-9 through H3K36 dimethylation: Implications in breast cancer metastasis. Front Immunol. 15(1430187)2024.PubMed/NCBI View Article : Google Scholar | |
Wan Y, Huang J, Song Y, Gu C, Kong J, Zuo L and Chen J: hsa-miR-340-5p inhibits epithelial-mesenchymal transition in endometriosis by targeting MAP3K2 and inactivating MAPK/ERK signaling. Open Med (Wars). 17:566–576. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhang M, Wang X, Xia X, Fang X, Zhang T and Huang F: Endometrial epithelial cells-derived exosomes deliver microRNA-30c to block the BCL9/Wnt/CD44 signaling and inhibit cell invasion and migration in ovarian endometriosis. Cell Death Discov. 8(151)2022.PubMed/NCBI View Article : Google Scholar | |
Ntzeros K, Voros C, Mavrogianni D, Kathopoulis N, Kypriotis K, Varthaliti A, Darlas M, Douligeris A and Protopapas A: Expression of E-CADHERIN and miR-200b in Different Forms of Endometriosis. Biomedicines. 13(524)2025.PubMed/NCBI View Article : Google Scholar | |
Hagh YN, Ahmadifard M, Esmaelzadeh S, Abbaszadeh S and Shokrzadeh N: Decreased expression of miR-200a and miR-223-3p in endometriosis during the secretory phase of menstrual cycle: Insights from a case-control study on molecular biomarkers and disease-related infertility. Int J Reprod Biomed. 22:1003–1014. 2025.PubMed/NCBI View Article : Google Scholar | |
Wang J, Li J, Han H, Wang C, Shi T and Yang X: miR-375-3p predicts the severity of endometriosis and regulates cellular progression by targeting NOX4. Mol Cell Probes. 79(101999)2025.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Qin Y, Huang J, Wang Y, Zeng L, Wang Y, Zhuyun F and Wang L: Oestrogen promotes the progression of adenomyosis by inhibiting CITED2 through miR-145. Reprod Biomed Online. 49(104108)2024.PubMed/NCBI View Article : Google Scholar | |
Cui X, Zhou S and Lin Y: Long non-coding RNA DHRS4 antisense RNA 1 inhibits ectopic endometrial cell proliferation, migration, and invasion in endometriosis by regulating microRNA-139-5p expression. Bioengineered. 13:9792–9804. 2022.PubMed/NCBI View Article : Google Scholar | |
Bao Q, Zheng Q, Wang S, Tang W and Zhang B: LncRNA HOTAIR regulates cell invasion and migration in endometriosis through miR-519b-3p/PRRG4 pathway. Front Oncol. 12(953055)2022.PubMed/NCBI View Article : Google Scholar | |
Liu L, Wang L, Hao N, Du N, Li Y and Kang S: miRNA-1229-5p promotes migration and invasion and suppresses apoptosis of endometrial cells via the STMN1/p38 MAPK axis in endometriosis. Gene. 950(149385)2025.PubMed/NCBI View Article : Google Scholar | |
Hudson QJ, Proestling K, Perricos A, Kuessel L, Husslein H, Wenzl R and Yotova I: The role of long non-coding RNAs in endometriosis. Int J Mol Sci. 22(11425)2021.PubMed/NCBI View Article : Google Scholar | |
Arendt W, Kleszczyński K, Gagat M and Izdebska M: Endometriosis and cytoskeletal remodeling: The functional role of actin-binding proteins. Cells. 14(360)2025.PubMed/NCBI View Article : Google Scholar | |
Ma J and Jiang J: ATG8 inhibited endometriosis formation by regulating Treg cells differentiation via integrin α4β1 and Talin-1 interaction. Reprod Biomed Online. 48(103646)2024.PubMed/NCBI View Article : Google Scholar | |
Knez J, Kovačič B and Goropevšek A: The role of regulatory T-cells in the development of endometriosis. Hum Reprod: May 19, 2024 (Epub ahead of print). | |
Sun H, Lagarrigue F and Ginsberg MH: The connection between Rap1 and Talin1 in the activation of integrins in blood cells. Front Cell Dev Biol. 10(908622)2022.PubMed/NCBI View Article : Google Scholar | |
Rahmawati E, Yang WV, Lei YP, Maurya PK, Chen HW and Tzeng CR: Gonadotropin-releasing hormone agonist induces downregulation of tensin 1 in women with endometriosis. Acta Obstet Gynecol Scand. 98:222–231. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Wang L, Li C, Zhang H, Li R and Li M: Letrozole promotes the expression of integrin αvβ3 and HOXA10 in endometrium of endometriosis. Syst Biol Reprod Med. 68:121–128. 2022.PubMed/NCBI View Article : Google Scholar | |
Duan R, Wang Y, Lin A, Lian L, Cao H, Gu W, Li T and Sun Q: Expression of nm23-H1, p53, and integrin β1 in endometriosis and their clinical significance. Int J Clin Exp Pathol. 13:1024–1029. 2020.PubMed/NCBI | |
Gao X, Shao W, Wang J, Gao H, Zhang X, Xia C, Li M and Liu S: Integrin β3 enhances glycolysis and increases lactate production in endometriosis. J Reprod Immunol. 165(104312)2024.PubMed/NCBI View Article : Google Scholar | |
Rosa-E-Silva ACJS, Mamillapalli R, Rosa-E-Silva JC, Ucar A, Schwartz J and Taylor HS: Uterine administration of C-X-C motif chemokine ligand 12 increases the pregnancy rates in mice with induced endometriosis. F S Sci. 4:65–73. 2023.PubMed/NCBI View Article : Google Scholar | |
Harden S, Tan TY, Ku CW, Zhou J, Chen Q, Chan JKY, Brosens J and Lee YH: Peritoneal autoantibody profiling identifies p53 as an autoantibody target in endometriosis. Fertil Steril. 120:176–187. 2023.PubMed/NCBI View Article : Google Scholar | |
Raghuwanshi S and Gartel AL: Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer. 1878(189015)2023.PubMed/NCBI View Article : Google Scholar | |
Yu C, Chen L, Yie L, Wei L, Wen T, Liu Y and Chen H: Targeting FoxM1 inhibits proliferation, invasion and migration of nasopharyngeal carcinoma through the epithelial-to-mesenchymal transition pathway. Oncol Rep. 33:2402–2410. 2015.PubMed/NCBI View Article : Google Scholar | |
Yu M, Yang Y, Zhao H, Li M, Chen J, Wang B, Xiao T, Huang C, Zhao H, Zhou W and Zhang JV: Targeting the chemerin/CMKLR1 axis by small molecule antagonist α-NETA mitigates endometriosis progression. Front Pharmacol. 13(985618)2022.PubMed/NCBI View Article : Google Scholar | |
Lin Y, Kojima S, Ishikawa A, Matsushita H, Takeuchi Y, Mori Y, Ma J, Takeuchi K, Umezawa K and Wakatsuki A: Inhibition of MLCK-mediated migration and invasion in human endometriosis stromal cells by NF-κB inhibitor DHMEQ. Mol Med Rep. 28(141)2023.PubMed/NCBI View Article : Google Scholar | |
Xu X, Zheng Q, Zhang Z, Zhang X, Liu R and Liu P: Periostin enhances migration, invasion, and adhesion of human endometrial stromal cells through integrin-linked kinase 1/Akt signaling pathway. Reprod Sci. 22:1098–1106. 2015.PubMed/NCBI View Article : Google Scholar | |
Zheng QM, Lu JJ, Zhao J, Wei X, Wang L and Liu PS: Periostin facilitates the epithelial-mesenchymal transition of endometrial epithelial cells through ILK-Akt signaling pathway. Biomed Res Int. 2016(9842619)2016.PubMed/NCBI View Article : Google Scholar | |
Li YH, Geng YY, Liu L, Chen CY and Gao Y: Lipoxin A4 inhibits the invasion and migration of endometrial stromal cells by down-regulating NF-κB signaling-mediated autophagy. Zhonghua Fu Chan Ke Za Zhi. 53:547–553. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Marquardt RM, Kim TH, Shin JH and Jeong JW: Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci. 20(3822)2019.PubMed/NCBI View Article : Google Scholar | |
Wakatsuki A, Lin Y, Kojima S, Matsushita H, Takeuchi K and Umezawa K: Inhibitory effects of estetrol on the invasion and migration of immortalized human endometrial stromal cells. Endocr J. 71:199–206. 2024.PubMed/NCBI View Article : Google Scholar | |
Guo B, Zhu H, Xiao C, Zhang J, Liu X, Fang Y, Wei B, Zhang J, Cao Y and Zhan L: NLRC5 exerts anti-endometriosis effects through inhibiting ERβ-mediated inflammatory response. BMC Med. 22(351)2024.PubMed/NCBI View Article : Google Scholar | |
Wang S, Long S, Deng Z and Wu W: Positive role of Chinese herbal medicine in cancer immune regulation. Am J Chin Med. 48:1577–1592. 2020.PubMed/NCBI View Article : Google Scholar | |
He Q, Wan S, Jiang M, Li W, Zhang Y, Zhang L, Wu M, Lin J, Zou L and Hu Y: Exploring the therapeutic potential of tonic Chinese herbal medicine for gynecological disorders: An updated review. J Ethnopharmacol. 329(118144)2024.PubMed/NCBI View Article : Google Scholar | |
Griffith JS, Binkley PA, Kirma NB, Schenken RS, Witz CA and Tekmal RR: Imatinib decreases endometrial stromal cell transmesothial migration and proliferation in the extracellular matrix of modeled peritoneum. Fertil Steril. 94:2531–2535. 2010.PubMed/NCBI View Article : Google Scholar | |
Yao Z, Zhang J, Zhang B, Liang G, Chen X, Yao F, Xu X, Wu H, He Q, Ding L and Yang B: Imatinib prevents lung cancer metastasis by inhibiting M2-like polarization of macrophages. Pharmacol Res. 133:121–131. 2018.PubMed/NCBI View Article : Google Scholar | |
Ferraz CR, Calixto-Campos C, Manchope MF, Casagrande R, Clissa PB, Baldo C and Verri WA Jr: Jararhagin-induced mechanical hyperalgesia depends on TNF-α, IL-1β and NFκB in mice. Toxicon. 103:119–128. 2015.PubMed/NCBI View Article : Google Scholar | |
Pinho-Ribeiro FA, Fattori V, Zarpelon AC, Borghi SM, Staurengo-Ferrari L, Carvalho TT, Alves-Filho JC, Cunha FQ, Cunha TM, Casagrande R and Verri WA Jr: Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress. Inflammopharmacology. 24:97–107. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang JJ, Xu ZM, Zhang CM, Dai HY, Ji XQ, Wang XF and Li C: Pyrrolidine dithiocarbamate inhibits nuclear factor-κB pathway activation, and regulates adhesion, migration, invasion and apoptosis of endometriotic stromal cells. Mol Hum Reprod. 17:175–181. 2011.PubMed/NCBI View Article : Google Scholar | |
Babu S and Jayaraman S: An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed Pharmacother. 131(110702)2020.PubMed/NCBI View Article : Google Scholar | |
Khan Z, Nath N, Rauf A, Emran TB, Mitra S, Islam F, Chandran D, Barua J, Khandaker MU, Idris AM, et al: Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact. 365(110117)2022.PubMed/NCBI View Article : Google Scholar | |
Wen Y, Pang L, Fan L, Zhou Y, Li R, Zhao T and Zhang M: β-Sitosterol inhibits the proliferation of endometrial cells via regulating Smad7-Mediated TGF-β/Smads signaling pathway. Cell J. 25:554–563. 2023.PubMed/NCBI View Article : Google Scholar | |
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C and Costache DO: Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications. Int J Mol Sci. 23(15054)2022.PubMed/NCBI View Article : Google Scholar | |
Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, et al: Kaempferol: A key emphasis to its anticancer potential. Molecules. 24(2277)2019.PubMed/NCBI View Article : Google Scholar | |
Jantas D, Malarz J, Le TN and Stojakowska A: Neuroprotective properties of kempferol derivatives from maesa membranacea against oxidative stress-induced cell damage: An association with cathepsin D inhibition and PI3K/Akt activation. Int J Mol Sci. 22(10363)2021.PubMed/NCBI View Article : Google Scholar | |
Zhao J, Wang J, Liu J, Li S, Liu P and Zhang X: Effect and mechanisms of kaempferol against endometriosis based on network pharmacology and in vitro experiments. BMC Complement Med Ther. 22(254)2022.PubMed/NCBI View Article : Google Scholar | |
Ren Y, Li Y, Lv J, Guo X, Zhang J, Zhou D, Zhang Z, Xue Z, Yang G, Xi Q, et al: Parthenolide regulates oxidative stress-induced mitophagy and suppresses apoptosis through p53 signaling pathway in C2C12 myoblasts. J Cell Biochem. 120:15695–15708. 2019.PubMed/NCBI View Article : Google Scholar | |
Freund RRA, Gobrecht P, Fischer D and Arndt HD: Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep. 37:541–565. 2020.PubMed/NCBI View Article : Google Scholar | |
Jafari N, Nazeri S and Enferadi ST: Parthenolide reduces metastasis by inhibition of vimentin expression and induces apoptosis by suppression elongation factor α - 1 expression. Phytomedicine. 41:67–73. 2018.PubMed/NCBI View Article : Google Scholar | |
Mathema VB, Koh YS, Thakuri BC and Sillanpää M: Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation. 35:560–565. 2012.PubMed/NCBI View Article : Google Scholar | |
Wang M and Li Q: Parthenolide could become a promising and stable drug with anti-inflammatory effects. Nat Prod Res. 29:1092–1101. 2015.PubMed/NCBI View Article : Google Scholar | |
Huang L, Liu F, Liu X, Niu L, Sun L, Fang F, Ma K and Hu P: Parthenolide inhibits the proliferation and migration of cervical cancer cells via FAK/GSK3β pathway. Cancer Chemother Pharmacol. 93:203–213. 2024.PubMed/NCBI View Article : Google Scholar | |
Kabil SL, Rashed HE, Mohamed NM and Elwany NE: Parthenolide repressed endometriosis induced surgically in rats: Role of PTEN/PI3Kinase/AKT/GSK-3β/β-catenin signaling in inhibition of epithelial mesenchymal transition. Life Sci. 331(122037)2023.PubMed/NCBI View Article : Google Scholar | |
Cheng J, Li C, Ying Y, Lv J, Qu X, McGowan E, Lin Y and Zhu X: Metformin alleviates endometriosis and potentiates endometrial receptivity via decreasing VEGF and MMP9 and increasing leukemia inhibitor factor and HOXA10. Front Pharmacol. 13(750208)2022.PubMed/NCBI View Article : Google Scholar | |
Neto AC, Botelho M, Rodrigues AR, Lamas S, Araújo B, Guimarães JT, Gouveia AM, Almeida H and Neves D: Metformin reverses infertility in a mouse model of endometriosis: Unveiling disease pathways and implications for future clinical approaches. Reprod Biomed Online. 50(104474)2025.PubMed/NCBI View Article : Google Scholar | |
Semwal RB, Semwal DK, Combrinck S and Viljoen A: Emodin-A natural anthraquinone derivative with diverse pharmacological activities. Phytochemistry. 190(112854)2021.PubMed/NCBI View Article : Google Scholar | |
Demirezer LO, Kuruüzüm-Uz A, Bergere I, Schiewe HJ and Zeeck A: The structures of antioxidant and cytotoxic agents from natural source: Anthraquinones and tannins from roots of Rumex patientia. Phytochemistry. 58:1213–1217. 2001.PubMed/NCBI View Article : Google Scholar | |
Zhang Q, Chen WW, Sun X, Qian D, Tang DD, Zhang LL, Li MY, Wang LY, Wu CJ and Peng W: The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers. Int J Biol Sci. 18:3498–3527. 2022.PubMed/NCBI View Article : Google Scholar | |
Zheng Q, Xu Y, Lu J, Zhao J, Wei X and Liu P: Emodin inhibits migration and invasion of human endometrial stromal cells by facilitating the mesenchymal-epithelial transition through targeting ILK. Reprod Sci. 23:1526–1535. 2016.PubMed/NCBI View Article : Google Scholar | |
Cui Y, Chen LJ, Huang T, Ying JQ and Li J: The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin J Nat Med. 18:425–435. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu X, Mi X, Wang Z, Zhang M, Hou J, Jiang S, Wang Y, Chen C and Li W: Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis. 11(454)2020.PubMed/NCBI View Article : Google Scholar | |
Nakhjavani M, Smith E, Townsend AR, Price TJ and Hardingham JE: Anti-angiogenic properties of ginsenoside Rg3. Molecules. 25(4905)2020.PubMed/NCBI View Article : Google Scholar | |
Ren B, Feng J, Yang N, Guo Y, Chen C and Qin Q: Ginsenoside Rg3 attenuates angiotensin II-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway. Int Immunopharmacol. 98(107841)2021.PubMed/NCBI View Article : Google Scholar | |
Zhu Y, Wang A, Zhang S, Kim J, Xia J, Zhang F, Wang D, Wang Q and Wang J: Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res. 49:159–173. 2023.PubMed/NCBI View Article : Google Scholar | |
Kim MK, Lee SK, Park JH, Lee JH, Yun BH, Park JH, Seo SK, Cho S and Choi YS: Ginsenoside Rg3 decreases fibrotic and invasive nature of endometriosis by modulating miRNA-27b: In vitro and in vivo studies. Sci Rep. 7(17670)2017.PubMed/NCBI View Article : Google Scholar | |
Vlavcheski F, O'Neill EJ, Gagacev F and Tsiani E: Effects of berberine against pancreatitis and pancreatic cancer. Molecules. 27(8630)2022.PubMed/NCBI View Article : Google Scholar | |
Habtemariam S: Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol Res. 155(104722)2020.PubMed/NCBI View Article : Google Scholar | |
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan STS, Šmejkal K, Malaník M, et al: Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics. Theranostics. 9:1923–1951. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang K, Feng X, Chai L, Cao S and Qiu F: The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev. 49:139–157. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Li K, Zhao H, Hao Z, Yang Y, Gao M and Zhao D: Integrated lipidomics and network pharmacology analysis to reveal the mechanisms of berberine in the treatment of hyperlipidemia. J Transl Med. 20(412)2022.PubMed/NCBI View Article : Google Scholar | |
Hu S, Wang J, Liu E, Zhang X, Xiang J, Li W, Wei P, Zeng J, Zhang Y and Ma X: Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol Res. 185(106481)2022.PubMed/NCBI View Article : Google Scholar | |
Braicu OL, Budisan L, Buiga R, Jurj A, Achimas-Cadariu P, Pop LA, Braicu C, Irimie A and Berindan-Neagoe I: miRNA expression profiling in formalin-fixed paraffin-embedded endometriosis and ovarian cancer samples. Onco Targets Ther. 10:4225–4238. 2017.PubMed/NCBI View Article : Google Scholar | |
Gu Y and Zhou Z: Berberine inhibits the proliferation, invasion and migration of endometrial stromal cells by downregulating miR-429. Mol Med Rep. 23(416)2021.PubMed/NCBI View Article : Google Scholar | |
Fu Z, Liu H, Kuang Y, Yang J, Luo M, Cao L and Zheng W: β-elemene, a sesquiterpene constituent from Curcuma phaeocaulis inhibits the development of endometriosis by inducing ferroptosis via the MAPK and STAT3 signaling pathways. J Ethnopharmacol. 341(119344)2025.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Cao H, Zheng S and Zhuang Y: Unveiling the therapeutic mechanisms of taraxasterol from dandelion in endometriosis: Network pharmacology and cellular insights. Biochem Biophys Res Commun. 742(151079)2025.PubMed/NCBI View Article : Google Scholar | |
Wu RF, Yang HM, Zhou WD, Zhang LR, Bai JB, Lin DC, Ng TW, Dai SJ, Chen QH and Chen QX: Effect of interleukin-1β and lipoxin A(4) in human endometriotic stromal cells: Proteomic analysis. J Obstet Gynaecol Res. 43:308–319. 2017.PubMed/NCBI View Article : Google Scholar | |
Matsuzaki S and Darcha C: In vitro effects of a small-molecule antagonist of the Tcf/ß-catenin complex on endometrial and endometriotic cells of patients with endometriosis. PLoS One. 8(e61690)2013.PubMed/NCBI View Article : Google Scholar | |
van Winden AW, van den Broek I, Gast MC, Engwegen JY, Sparidans RW, van Dulken EJ, Depla AC, Cats A, Schellens JH, Peeters PH, et al: Serum degradome markers for the detection of breast cancer. J Proteome Res. 9:3781–3788. 2010.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Li H, Cheng HY, Rui-Qiong M, Ye X, Cui H, Hong-Lan Z and Chang XH: Fibrinogen alpha chain is up-regulated and affects the pathogenesis of endometriosis. Reprod Biomed Online. 39:893–904. 2019.PubMed/NCBI View Article : Google Scholar | |
Li H, Ma RQ, Cheng HY, Ye X, Zhu HL and Chang XH: Fibrinogen alpha chain promotes the migration and invasion of human endometrial stromal cells in endometriosis through focal adhesion kinase/protein kinase B/matrix metallopeptidase 2 pathway†. Biol Reprod. 103:779–790. 2020.PubMed/NCBI View Article : Google Scholar | |
Akbarzadeh M, Movassaghpour AA, Ghanbari H, Kheirandish M, Fathi Maroufi N, Rahbarghazi R, Nouri M and Samadi N: The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep. 7(17062)2017.PubMed/NCBI View Article : Google Scholar | |
Bu S, Wang Q, Sun J, Li X, Gu T and Lai D: Melatonin suppresses chronic restraint stress-mediated metastasis of epithelial ovarian cancer via NE/AKT/beta-catenin/SLUG axis. Cell Death Dis. 11(644)2020.PubMed/NCBI View Article : Google Scholar | |
El-Sokkary GH, Ismail IA and Saber SH: Melatonin inhibits breast cancer cell invasion through modulating DJ-1/KLF17/ID-1 signaling pathway. J Cell Biochem. 120:3945–3957. 2019.PubMed/NCBI View Article : Google Scholar | |
Qi S, Yan L, Liu Z, Mu YL, Li M, Zhao X, Chen ZJ and Zhang H: Melatonin inhibits 17β-estradiol-induced migration, invasion and epithelial-mesenchymal transition in normal and endometriotic endometrial epithelial cells. Reprod Biol Endocrinol. 16(62)2018.PubMed/NCBI View Article : Google Scholar | |
Bhattacharya S, Patel KK, Dehari D, Agrawal AK and Singh S: Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem. 462:133–155. 2019.PubMed/NCBI View Article : Google Scholar | |
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF and Xu K: Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int J Mol Sci. 18(843)2017.PubMed/NCBI View Article : Google Scholar | |
Cheng J, Yang HL, Gu CJ, Liu YK, Shao J, Zhu R, He YY, Zhu XY and Li MQ: Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med. 43:945–955. 2019.PubMed/NCBI View Article : Google Scholar | |
Kwon MR, Park JS, Ko EJ, Park J, Ju EJ, Shin SH, Son GW, Lee HW, Park YY, Kang MH, et al: Ibulocydine inhibits migration and invasion of TNBC cells via MMP-9 regulation. Int J Mol Sci. 25(6123)2024.PubMed/NCBI View Article : Google Scholar | |
Liang RN, Li PS, Zou Y, Liu YL, Jiang Z, Liu Z, Fan P, Xu L, Peng JH and Sun XY: Ping-Chong-Jiang-Ni formula induces apoptosis and inhibits proliferation of human ectopic endometrial stromal cells in endometriosis via the activation of JNK signaling pathway. Evid Based Complement Alternat Med. 2017(6489427)2017.PubMed/NCBI View Article : Google Scholar | |
Huang J, Zhang X, Wang J, Gu C, Zhang Y, Hu G and Chen J: Mechanism of Yushenhuoxue prescription in treating endometriosis based on network pharmacology and the effect on the TNF pathway. Heliyon. 9(e20283)2023.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Li Y, Zhang J and Cai P: Hua Yu Xiao Zheng decoction induces ectopic endometrial stromal cell senescence via inhibiting the PI3K/AKT signaling. Tissue Cell. 93(102763)2025.PubMed/NCBI View Article : Google Scholar | |
Miller MA, Meyer AS, Beste MT, Lasisi Z, Reddy S, Jeng KW, Chen CH, Han J, Isaacson K, Griffith LG and Lauffenburger DA: ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci USA. 110:E2074–E2083. 2013.PubMed/NCBI View Article : Google Scholar | |
Zanon P, Terraciano PB, Quandt L, Palma Kuhl C, Pandolfi Passos E and Berger M: Angiotensin II-AT1 receptor signalling regulates the plasminogen-plasmin system in human stromal endometrial cells increasing extracellular matrix degradation, cell migration and inducing a proinflammatory profile. Biochem Pharmacol. 225(116280)2024.PubMed/NCBI View Article : Google Scholar | |
Chen J, Shen L, Wu T and Yang Y: Unraveling the significance of AGPAT4 for the pathogenesis of endometriosis via a multi-omics approach. Hum Genet. 143:1163–1174. 2024.PubMed/NCBI View Article : Google Scholar | |
Zheng R, Liu Y, Lei Y and Yue Y: Upregulated microRNA-429 confers endometrial stromal cell dysfunction by targeting HIF1AN and regulating the HIF1A/VEGF pathway. Open Med (Wars). 18(20230775)2023.PubMed/NCBI View Article : Google Scholar | |
Zhang Y and Yang H: Silencing of FZD7 inhibits endometriotic cell viability, migration, and angiogenesis by promoting ferroptosis. Cell Biochem Biophys. 83:2471–2480. 2025.PubMed/NCBI View Article : Google Scholar | |
Lv X and Li F: METTL14 promotes proliferation, migration, and invasion in endometriotic stromal cell growth by activating the ZEB1/MEK/ERK pathway. Gynecol Obstet Invest. 90:42–54. 2025.PubMed/NCBI View Article : Google Scholar | |
Tang Y, Lu X and Lin K, Li J, Yuan M and Lin K: m6A methylation of RNF43 inhibits the progression of endometriosis through regulating oxidative phosphorylation via NDUFS1. J Cell Physiol. 239(e31367)2024.PubMed/NCBI View Article : Google Scholar | |
Vu TH, Nakamura K, Shigeyasu K, Kashino C, Okamoto K, Kubo K, Kamada Y and Masuyama H: Apolipoprotein-B mRNA-editing complex 3B could be a new potential therapeutic target in endometriosis. Sci Rep. 14(24968)2024.PubMed/NCBI View Article : Google Scholar | |
Practice bulletin no. 114. Management of endometriosis. Obstet Gynecol. 116:223–236. 2010. | |
Vlahos N, Vlachos A, Triantafyllidou O, Vitoratos N and Creatsas G: Continuous versus cyclic use of oral contraceptives after surgery for symptomatic endometriosis: A prospective cohort study. Fertil Steril. 100:1337–1342. 2013.PubMed/NCBI View Article : Google Scholar | |
Jewson M, Purohit P and Lumsden MA: Progesterone and abnormal uterine bleeding/menstrual disorders. Best Pract Res Clin Obstet Gynaecol. 69:62–73. 2020.PubMed/NCBI View Article : Google Scholar | |
Rafique S and Decherney AH: Medical management of endometriosis. Clin Obstet Gynecol. 60:485–496. 2017.PubMed/NCBI View Article : Google Scholar | |
Resta C, Moustogiannis A, Chatzinikita E, Malligiannis Ntalianis D, Malligiannis Ntalianis K, Philippou A, Koutsilieris M and Vlahos N: Gonadotropin-releasing hormone (GnRH)/GnRH receptors and their role in the treatment of endometriosis. Cureus. 15(e38136)2023.PubMed/NCBI View Article : Google Scholar | |
Surrey ES, Katz-Jaffe M, Kondapalli LV, Gustofson RL and Schoolcraft WB: GnRH agonist administration prior to embryo transfer in freeze-all cycles of patients with endometriosis or aberrant endometrial integrin expression. Reprod Biomed Online. 35:145–151. 2017.PubMed/NCBI View Article : Google Scholar | |
Leconet W, Chentouf M, du Manoir S, Chevalier C, Sirvent A, Aït-Arsa I, Busson M, Jarlier M, Radosevic-Robin N, Theillet C, et al: Therapeutic activity of Anti-AXL antibody against triple-negative breast cancer patient-derived xenografts and metastasis. Clin Cancer Res. 23:2806–2816. 2017.PubMed/NCBI View Article : Google Scholar | |
Duan Y, Luo L, Qiao C, Li X, Wang J, Liu H, Zhou T, Shen B, Lv M and Feng J: A novel human anti-AXL monoclonal antibody attenuates tumour cell migration. Scand J Immunol. 90(e12777)2019.PubMed/NCBI View Article : Google Scholar | |
Colavito SA: AXL as a target in breast cancer therapy. J Oncol. 2020(5291952)2020.PubMed/NCBI View Article : Google Scholar | |
Davis JD, Bravo Padros M, Conrado DJ, Ganguly S, Guan X, Hassan HE, Hazra A, Irvin SC, Jayachandran P, Kosloski MP, et al: Subcutaneous administration of monoclonal antibodies: Pharmacology, delivery, immunogenicity, and learnings from applications to clinical development. Clin Pharmacol Ther. 115:422–439. 2024.PubMed/NCBI View Article : Google Scholar | |
Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, Weimer R, Wu Y and Pei L: An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene. 29:5254–5264. 2010.PubMed/NCBI View Article : Google Scholar | |
Netcharoensirisuk P, Abrahamian C, Tang R, Chen CC, Rosato AS, Beyers W, Chao YK, Filippini A, Di Pietro S, Bartel K, et al: Flavonoids increase melanin production and reduce proliferation, migration and invasion of melanoma cells by blocking endolysosomal/melanosomal TPC2. Sci Rep. 11(8515)2021.PubMed/NCBI View Article : Google Scholar | |
Li M, Guo T, Lin J, Huang X, Ke Q, Wu Y, Fang C and Hu C: Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway. J Ethnopharmacol. 283(114689)2022.PubMed/NCBI View Article : Google Scholar | |
Yoo JY, Kim TH, Shin JH, Marquardt RM, Müller U, Fazleabas AT, Young SL, Lessey BA, Yoon HG and Jeong JW: Loss of MIG-6 results in endometrial progesterone resistance via ERBB2. Nat Commun. 13(1101)2022.PubMed/NCBI View Article : Google Scholar | |
Jiang Y, Palomares AR, Munoz P, Nalvarte I, Acharya G, Inzunza J, Varshney M and Rodriguez-Wallberg KA: Proof-of-concept for long-term human endometrial epithelial organoids in modeling menstrual cycle responses. Cells. 13(1811)2024.PubMed/NCBI View Article : Google Scholar | |
Abdolmaleki A, Jalili C, Mansouri K and Bakhtiari M: New rat to mouse xenograft transplantation of endometrium as a model of human endometriosis. Animal Model Exp Med. 4:268–277. 2021.PubMed/NCBI View Article : Google Scholar | |
Ma J, Liao Z, Li J, Li X, Guo H, Zhong Q, Huang J, Shuai X and Chen S: A cRGD-modified liposome for targeted delivery of artesunate to inhibit angiogenesis in endometriosis. Biomater Sci. 13:1045–1058. 2025.PubMed/NCBI View Article : Google Scholar | |
Abhang A and Burgess DJ: Recent advancements and future applications of intrauterine drug delivery systems. Expert Opin Drug Deliv. 22:841–856. 2025.PubMed/NCBI View Article : Google Scholar |