1
|
Manning NW, Campbell BCV, Oxley TJ and
Chapot R: Acute ischemic stroke: Time, penumbra, and reperfusion.
Stroke. 45:640–644. 2014.PubMed/NCBI View Article : Google Scholar
|
2
|
Powers WJ, Rabinstein AA, Ackerson T,
Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk
BM, Hoh B, et al: Guidelines for the early management of patients
with acute ischemic stroke: 2019 Update to the 2018 guidelines for
the early management of acute ischemic stroke: A guideline for
healthcare professionals from the American heart
association/american stroke association. Stroke. 50:e344–e418.
2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Berkhemer OA, Fransen PSS, Beumer D, van
den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn
PJ, Wermer MJH, et al: A randomized trial of intraarterial
treatment for acute ischemic stroke. N Engl J Med. 372:11–20.
2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Saver JL, Goyal M, Bonafe A, Diener HC,
Levy EI, Pereira VM, Albers GW, Cognard C, Cohen DJ, Hacke W, et
al: Stent-retriever thrombectomy after intravenous t-PA vs. t-PA
alone in stroke. N Engl J Med. 372:2285–2295. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Campbell BC, Mitchell PJ, Kleinig TJ,
Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley
TJ, et al: Endovascular therapy for ischemic stroke with
perfusion-imaging selection. N Engl J Med. 372:1009–1018.
2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Jovin TG, Chamorro A, Cobo E, de Miquel
MA, Molina CA, Rovira A, San Román L, Serena J, Abilleira S, Ribó
M, et al: Thrombectomy within 8 h after symptom onset in ischemic
stroke. N Engl J Med. 372:2296–2306. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Goyal M, Menon BKLM, van Zwam WH, Dippel
DWJ, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A,
de Miquel MA, et al: Endovascular thrombectomy after large-vessel
ischaemic stroke: A meta-analysis of individual patient data from
five randomised trials. Lancet. 387:1723–1731. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
White BC, Sullivan JM, DeGracia DJ, O'Neil
BJ, Neumar RW, Grossman LI, Rafols JA and Krause GS: Brain ischemia
and reperfusion: Molecular mechanisms of neuronal injury. J Neurol
Sci. 179:1–33. 2000.PubMed/NCBI View Article : Google Scholar
|
9
|
Bai J and Lyden PD: Revisiting cerebral
postischemic reperfusion injury: New insights in understanding
reperfusion failure, hemorrhage, and edema. Int J Stroke.
10:143–152. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Campbell BCV and Khatri P: Stroke. Lancet.
396:129–142. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Musuka TD, Wilton SB, Traboulsi M and Hill
MD: Diagnosis and management of acute ischemic stroke: Speed is
critical. CMAJ. 187:887–893. 2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Campbell BCV, De Silva DA, Macleod MR,
Coutts SB, Schwamm LH, Davis SM and Donnan GA: Ischaemic stroke.
Nat Rev Dis Primers. 5(70)2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Anrather J and Iadecola C: Inflammation
and stroke: An overview. Neurotherapeutics. 13:661–670.
2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Kawasaki H, Springett GM, Mochizuki N,
Toki S, Nakaya M, Matsuda M, Housman DE and Graybiel AM: A family
of cAMP-binding proteins that directly activate Rap1. Science.
282:2275–2279. 1998.PubMed/NCBI View Article : Google Scholar
|
15
|
Hoivik EA, Witsoe SL, Bergheim IR, Xu Y,
Jakobsson I, Tengholm A, Doskeland SO and Bakke M: DNA methylation
of alternative promoters directs tissue specific expression of
Epac2 isoforms. PLoS One. 8(e67925)2013.PubMed/NCBI View Article : Google Scholar
|
16
|
Lezoualc'h F, Fazal L, Laudette M and
Conte C: Cyclic AMP sensor EPAC proteins and their role in
cardiovascular function and disease. Circ Res. 118:881–897.
2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhuang Y, Xu H, Richard SA, Cao J, Li H,
Shen H, Yu Z, Zhang J, Wang Z, Li X and Chen G: Inhibition of EPAC2
attenuates intracerebral hemorrhage-induced secondary brain injury
via the p38/BIM/caspase-3 pathway. J Mol Neurosci. 67:353–363.
2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhang L, Zhang L, Liu H, Jiang F, Wang H,
Li D and Gao R: . Inhibition of Epac2 attenuates neural cell
apoptosis and improves neurological deficits in a rat model of
traumatic brain injury. Front Neurosci. 12(263)2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Wehbe N, Slika H, Mesmar J, Nasser SA,
Pintus G, Baydoun S, Badran A, Kobeissy F, Eid AH and Baydoun E:
The role of Epac in cancer progression. Int J Mol Sci.
21(6489)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Sicard KM and Fisher M: Animal models of
focal brain ischemia. Exp Transl Stroke Med. 1(7)2009.PubMed/NCBI View Article : Google Scholar
|
21
|
Bederson JB, Pitts LH, Germano SM,
Nishimura MC, Davis RL and Bartkowski HM: Evaluation of
2,3,5-triphenyltetrazolium chloride as a stain for detection and
quantification of experimental cerebral infarction in rats. Stroke.
17:1304–1308. 1986.PubMed/NCBI View Article : Google Scholar
|
22
|
Lin TN, He YY, Wu G, Khan M and Hsu CY:
Effect of brain edema on infarct volume in a focal cerebral
ischemia model in rats. Stroke. 24:117–121. 1993.PubMed/NCBI View Article : Google Scholar
|
23
|
Overgaard K and Meden P: Influence of
different fixation procedures on the quantification of infarction
and oedema in a rat model of stroke. Neuropathol Appl Neurobiol.
26:243–250. 2000.PubMed/NCBI View Article : Google Scholar
|
24
|
Hosomi N, Ban CR, Naya T, Takahashi T, Guo
P, Song XYR and Kohno M: Tumor necrosis factor-alpha neutralization
reduced cerebral edema through inhibition of matrix
metalloproteinase production after transient focal cerebral
ischemia. J Cereb Blood Flow Metab. 25:959–967. 2005.PubMed/NCBI View Article : Google Scholar
|
25
|
Hasegawa Y, Suzuki H, Altay O and Zhang
JH: Preservation of tropomyosin-related kinase B (TrkB) signaling
by sodium orthovanadate attenuates early brain injury after
subarachnoid hemorrhage in rats. Stroke. 42:477–483.
2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Shimamura N, Matchett G, Tsubokawa T,
Ohkuma H and Zhang J: Comparison of silicon-coated nylon suture to
plain nylon suture in the rat middle cerebral artery occlusion
model. J Neurosci Methods. 156:161–165. 2006.PubMed/NCBI View Article : Google Scholar
|
27
|
de Rooij J, Zwartkruis FJ, Verheijen MH,
Cool RH, Nijman SM, Wittinghofer A and Bos JL: Epac is a Rap1
guanine-nucleotide-exchange factor directly activated by cyclic
AMP. Nature. 396:474–477. 1998.PubMed/NCBI View
Article : Google Scholar
|
28
|
Liu Z, Zhu Y, Chen H, Wang P, Mei FC, Ye
N, Cheng X and Zhou J: Structure-activity relationships of
2-substituted phenyl-N-phenyl-2-oxoacetohydrazonoyl cyanides as
novel antagonists of exchange proteins directly activated by cAMP
(EPACs). Bioorg Med Chem Lett. 27:5163–5166. 2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Flippo KH, Gnanasekaran A, Perkins GA,
Ajmal A, Merrill RA, Dickey AS, Taylor SS, McKnight GS, Chauhan AK,
Usachev YM and Strack S: AKAP1 protects from cerebral ischemic
stroke by inhibiting Drp1-dependent mitochondrial fission. J
Neurosci. 38:8233–8242. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Tiwari S, Felekkis K, Moon EY, Flies A,
Sherr DH and Lerner A: Among circulating hematopoietic cells, B-CLL
uniquely expresses functional EPAC1, but EPAC1-mediated Rap1
activation does not account for PDE4 inhibitor-induced apoptosis.
Blood. 103:2661–2667. 2004.PubMed/NCBI View Article : Google Scholar
|
31
|
Stork PJS: Does Rap1 deserve a bad Rap?
Trends Biochem Sci. 28:267–275. 2003.PubMed/NCBI View Article : Google Scholar
|
32
|
Yeager LA, Chopra AK and Peterson JW:
Bacillus anthracis edema toxin suppresses human macrophage
phagocytosis and cytoskeletal remodeling via the protein kinase A
and exchange protein activated by cyclic AMP pathways. Infect
Immun. 77:2530–2543. 2009.PubMed/NCBI View Article : Google Scholar
|
33
|
Zhang CL, Katoh M, Shibasaki T, Minami K,
Sunaga Y, Takahashi H, Yokoi N, Iwasaki M, Miki T and Seino S: The
cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea
drugs. Science. 325:607–610. 2009.PubMed/NCBI View Article : Google Scholar
|
34
|
Parnell E, Palmer TM and Yarwood SJ: The
future of EPAC-targeted therapies: Agonism versus antagonism.
Trends Pharmacol Sci. 36:203–214. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Kasner SE, Demchuk AM, Berrouschot J,
Schmutzhard E, Harms L, Verro P, Chalela JA, Abbur R, McGrade H,
Christou I and Krieger DW: Predictors of fatal brain edema in
massive hemispheric ischemic stroke. Stroke. 32:2117–2123.
2001.PubMed/NCBI View Article : Google Scholar
|
36
|
Marmarou A, Fatouros PP, Barzó P, Portella
G, Yoshihara M, Tsuji O, Yamamoto T, Laine F, Signoretti S, Ward
JD, et al: Contribution of edema and cerebral blood volume to
traumatic brain swelling in head-injured patients. J Neurosurg.
93:183–193. 2000.PubMed/NCBI View Article : Google Scholar
|
37
|
Calderón-Sánchez E, Díaz I, Ordóñez A and
Smani T: Urocortin-1 mediated cardioprotection involves XIAP and
CD40-ligand recovery: Role of EPAC2 and ERK1/2. PLoS One.
11(e0147375)2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Lindsay CR, Blackhall FH, Carmel A,
Fernandez-Gutierrez F, Gazzaniga P, Groen HJM, Hiltermann TJN,
Krebs MG, Loges S, López-López R, et al: EPAC-lung: pooled analysis
of circulating tumour cells in advanced non-small cell lung cancer.
Eur J Cancer. 117:60–68. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Emery AC, Xu W, Eiden MV and Eiden LE:
Guanine nucleotide exchange factor Epac2-dependent activation of
the GTP-binding protein Rap2A mediates cAMP-dependent growth arrest
in neuroendocrine cells. J Biol Chem. 292:12220–12231.
2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Suzuki S, Yokoyama U, Abe T, Kiyonari H,
Yamashita N, Kato Y, Kurotani R, Sato M, Okumura S and Ishikawa Y:
Differential roles of Epac in regulating cell death in neuronal and
myocardial cells. J Biol Chem. 285:24248–24259. 2010.PubMed/NCBI View Article : Google Scholar
|
41
|
Nozaki K, Nishimura M and Hashimoto N:
Mitogen-activated protein kinases and cerebral ischemia. Mol
Neurobiol. 23:1–19. 2001.PubMed/NCBI View Article : Google Scholar
|
42
|
Irving EA and Bamford M: Role of mitogen-
and stress-activated kinases in ischemic injury. J Cereb Blood Flow
Metab. 22:631–647. 2002.PubMed/NCBI View Article : Google Scholar
|
43
|
Matsuda M, Oh-Hashi K, Yokota I, Sawa T
and Amaya F: Acquired exchange protein directly activated by cyclic
adenosine monophosphate activity induced by p38 mitogen-activated
protein kinase in primary afferent neurons contributes to
sustaining postincisional nociception. Anesthesiology. 126:150–162.
2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Fan W, Dai Y, Xu H, Zhu X, Cai P, Wang L,
Sun C, Hu C, Zheng P and Zhao BQ: Caspase-3 modulates regenerative
response after stroke. Stem Cells. 32:473–486. 2014.PubMed/NCBI View Article : Google Scholar
|
45
|
Sun Y, Xu Y and Geng L: Caspase-3
inhibitor prevents the apoptosis of brain tissue in rats with acute
cerebral infarction. Exp Ther Med. 10:133–138. 2015.PubMed/NCBI View Article : Google Scholar
|
46
|
Jänicke RU, Sprengart ML, Wati MR and
Porter AG: Caspase-3 is required for DNA fragmentation and
morphological changes associated with apoptosis. J Biol Chem.
273:9357–9360. 1998.PubMed/NCBI View Article : Google Scholar
|
47
|
Zhang T, Fang S, Wan C, Kong Q, Wang G,
Wang S, Zhang H, Zou H, Sun B, Sun W, et al: Excess salt
exacerbates blood-brain barrier disruption via a
p38/MAPK/SGK1-dependent pathway in permanent cerebral ischemia. Sci
Rep. 5(16548)2015.PubMed/NCBI View Article : Google Scholar
|