
Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review)
- Authors:
- Xuesong Chen
- Bin Tian
- Yiqun Wang
- Jiang Zheng
- Xin Kang
-
Affiliations: Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China - Published online on: April 14, 2025 https://doi.org/10.3892/ijmm.2025.5533
- Article Number: 92
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Ritter J and Bielack SS: Osteosarcoma. Ann Oncol. 21(Suppl 7): vii320–vii325. 2010. View Article : Google Scholar : PubMed/NCBI | |
Belayneh R, Fourman MS, Bhogal S and Weiss KR: Update on osteosarcoma. Curr Oncol Rep. 23:712021. View Article : Google Scholar : PubMed/NCBI | |
Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P and Rutkowski P: Molecular biology of osteosarcoma. Cancers (Basel). 12:21302020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Wang J, Sun M, Zuo D, Wang H, Shen J, Jiang W, Mu H, Ma X, Yin F, et al: Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment. Nat Commun. 13:72072022. View Article : Google Scholar : PubMed/NCBI | |
Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI | |
Meltzer PS and Helman LJ: New horizons in the treatment of osteosarcoma. N Engl J Med. 385:2066–2076. 2021. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Ortega DY, Cabrera-Nieto SA, Caro-Sánchez HS and Cruz-Ramos M: An overview of resistance to chemotherapy in osteosarcoma and future perspectives. Cancer Drug Resist. 5:762–793. 2022. View Article : Google Scholar : PubMed/NCBI | |
Panez-Toro I, Muñoz-García J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F and Heymann D: Advances in osteosarcoma. Curr Osteoporos Rep. 21:330–343. 2023. View Article : Google Scholar : PubMed/NCBI | |
Peled Y, Levin D, Manisterski M, Kollander N, Shukrun R and Elhasid R: Weight loss and response to chemotherapy in pediatric patients with osteosarcoma. Eur J Clin Nutr. 78:541–543. 2024. View Article : Google Scholar : PubMed/NCBI | |
He X, Liu X, Zuo F, Shi H and Jing J: Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 88:187–200. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Qu J, Harari O, Boddey JA, Wang Z and Linna-Kuosmanen S: The impact of multi-omics in medicine. Cell Rep Med. 5:1017422024. View Article : Google Scholar : PubMed/NCBI | |
Mohammadi-Shemirani P, Sood T and Paré G: From omics to multi-omics technologies: The discovery of novel causal mediators. Curr Atheroscler Rep. 25:55–65. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Roberts RD, Cheng L and Li L: Osteosarcoma multi-omics landscape and subtypes. Cancers (Basel). 15:49702023. View Article : Google Scholar : PubMed/NCBI | |
Donisi C, Pretta A, Pusceddu V, Ziranu P, Lai E, Puzzoni M, Mariani S, Massa E, Madeddu C and Scartozzi M: Immunotherapy and cancer: The multi-omics perspective. Int J Mol Sci. 25:35632024. View Article : Google Scholar : PubMed/NCBI | |
Urban W, Krzystańska D, Piekarz M, Nazar J and Jankowska A: Osteosarcoma's genetic landscape painted by genes' mutations. Acta Biochim Pol. 70:671–678. 2023.PubMed/NCBI | |
Mirabello L, Yeager M, Mai PL, Gastier-Foster JM, Gorlick R, Khanna C, Patiño-Garcia A, Sierrasesúmaga L, Lecanda F, Andrulis IL, et al: Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst. 107:djv1012015. View Article : Google Scholar : PubMed/NCBI | |
Mokánszki A, Chang Chien YC, Mótyán JA, Juhász P, Bádon ES, Madar L, Szegedi I, Kiss C and Méhes G: Novel RB1 and MET gene mutations in a case with bilateral retinoblastoma followed by multiple metastatic osteosarcoma. Diagnostics (Basel). 11:282020. View Article : Google Scholar : PubMed/NCBI | |
Righi A, Gambarotti M, Benini S, Gamberi G, Cocchi S, Picci P and Bertoni F: MDM2 and CDK4 expression in periosteal osteosarcoma. Hum Pathol. 46:549–553. 2015. View Article : Google Scholar : PubMed/NCBI | |
Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, et al: Heterogeneity of TP53 mutations and P53 protein residual function in cancer: Does it matter? Front Oncol. 10:5933832020. View Article : Google Scholar : PubMed/NCBI | |
Huang MF, Wang YX, Chou YT and Lee DF: Therapeutic strategies for RB1-deficient cancers: Intersecting gene regulation and targeted therapy. Cancers (Basel). 16:15582024. View Article : Google Scholar : PubMed/NCBI | |
Koo N, Sharma AK and Narayan S: Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. Int J Mol Sci. 23:50052022. View Article : Google Scholar : PubMed/NCBI | |
Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P and Grieb P: TP53 in biology and treatment of osteosarcoma. Cancers (Basel). 13:42842021. View Article : Google Scholar : PubMed/NCBI | |
Mannheimer JD, Tawa G, Gerhold D, Braisted J, Sayers CM, McEachron TA, Meltzer P, Mazcko C, Beck JA and LeBlanc AK: Transcriptional profiling of canine osteosarcoma identifies prognostic gene expression signatures with translational value for humans. Commun Biol. 6:8562023. View Article : Google Scholar : PubMed/NCBI | |
Nie JJ, Zhang B, Luo P, Luo M, Luo Y, Cao J, Wang H, Mao J, Xing Y, Liu W, et al: Enhanced pyroptosis induction with pore-forming gene delivery for osteosarcoma microenvironment reshaping. Bioact Mater. 38:455–471. 2024.PubMed/NCBI | |
Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su Y, Lu M, Ma Y, Li Z, Wang L, et al: Cracking the code: Deciphering the role of the tumor microenvironment in osteosarcoma metastasis. Int Immunopharmacol. 121:1104222023. View Article : Google Scholar : PubMed/NCBI | |
Luo ZW, Liu PP, Wang ZX, Chen CY and Xie H: Macrophages in osteosarcoma immune microenvironment: Implications for immunotherapy. Front Oncol. 10:5865802020. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa J, Schoenecker JG, Tatsuno R, Kawasaki T, Suzuki-Inoue K and Haro H: Advancing tissue factor-targeted therapy for osteosarcoma via understanding its role in the tumor microenvironment. Curr Pharm Des. 29:1009–1012. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tatsuno R, Ichikawa J, Komohara Y, Pan C, Kawasaki T, Enomoto A, Aoki K, Hayakawa K, Iwata S, Jubashi T and Haro H: Pivotal role of IL-8 derived from the interaction between osteosarcoma and tumor-associated macrophages in osteosarcoma growth and metastasis via the FAK pathway. Cell Death Dis. 15:1082024. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Dean D, Hornicek FJ, Chen Z and Duan Z: The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res. 39:1782020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Yang Q, Dong Y, Ji T, Zhang B, Yang C, Zheng S, Tang L, Zhou C, Qian G, et al: First-in-maintenance therapy for localized high-grade osteosarcoma: An open-label phase I/II trial of the anti-PD-L1 antibody ZKAB001. Clin Cancer Res. 29:764–774. 2023. View Article : Google Scholar | |
Sun Y, Zhang C, Fang Q, Zhang W and Liu W: Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J Transl Med. 21:992023. View Article : Google Scholar : PubMed/NCBI | |
Rajan S, Franz EM, McAloney CA, Vetter TA, Cam M, Gross AC, Taslim C, Wang M, Cannon MV, Oles A and Roberts RD: Osteosarcoma tumors maintain intra-tumoral transcriptional heterogeneity during bone and lung colonization. BMC Biol. 21:982023. View Article : Google Scholar : PubMed/NCBI | |
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y and Huang C: Managing the immune microenvironment of osteosarcoma: The outlook for osteosarcoma treatment. Bone Res. 11:112023. View Article : Google Scholar : PubMed/NCBI | |
Lilienthal I and Herold N: Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: A review of current and future strategies. Int J Mol Sci. 21:68852020. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Yi Q, He J, Huang D, Xiong J and Sun W and Sun W: Extracellular vesicles in tumorigenesis, metastasis, chemotherapy resistance and intercellular communication in osteosarcoma. Bioengineered. 14:113–128. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jia C, Liu M, Yao L, Zhao F, Liu S, Li Z and Han Y: Multi-omics analysis reveals cuproptosis and mitochondria-based signature for assessing prognosis and immune landscape in osteosarcoma. Front Immunol. 14:12809452024. View Article : Google Scholar : PubMed/NCBI | |
Schott C, Shah AT and Sweet-Cordero EA: Genomic complexity of osteosarcoma and its implication for preclinical and clinical targeted therapies. Adv Exp Med Biol. 1258:1–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Sun M, Wang J and Wan S: Multi-omics based artificial intelligence for cancer research. Adv Cancer Res. 163:303–356. 2024. View Article : Google Scholar : PubMed/NCBI | |
Meijer DM, Ruano D, Briaire-de Bruijn IH, Wijers-Koster PM, van de Sande MAJ, Gelderblom H, Cleton-Jansen AM, de Miranda NFCC, Kuijjer ML and Bovée JVMG: The variable genomic landscape during osteosarcoma progression: Insights from a longitudinal WGS analysis. Genes Chromosomes Cancer. 63:e232532024. View Article : Google Scholar : PubMed/NCBI | |
Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M and Nielsen FC: Whole genome sequencing in clinical practice. BMC Med Genomics. 17:392024. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Yang S, Liu Y and Yang S: Deletion of Trp53 and Rb1 in Ctsk-expressing cells drives osteosarcoma progression by activating glucose metabolism and YAP signaling. MedComm (2020). 3:e1312022. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Wang Z, Feng D, Zhu Y, Zhang K and Huang W: The effects of common variants in MDM2 and GNRH2 genes on the risk and survival of osteosarcoma in Han populations from Northwest China. Sci Rep. 10:159392020. View Article : Google Scholar : PubMed/NCBI | |
He X, Pang Z, Zhang X, Lan T, Chen H, Chen M, Yang H, Huang J, Chen Y, Zhang Z, et al: Consistent amplification of FRS2 and MDM2 in low-grade osteosarcoma: A genetic study of 22 cases with clinicopathologic analysis. Am J Surg Pathol. 42:1143–1155. 2018. View Article : Google Scholar : PubMed/NCBI | |
Limbach AL, Lingen MW, McElherne J, Mashek H, Fitzpatrick C, Hyjek E, Mostofi R and Cipriani NA: The utility of MDM2 and CDK4 immunohistochemistry and MDM2 FISH in craniofacial osteosarcoma. Head Neck Pathol. 14:889–898. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kaur H, Kala S, Sood A, Mridha AR, Kakkar A, Yadav R, Mishra S and Mishra D: Role of MDM2, CDK4, BCL2, parafibromin and galectin 1 in differentiating osteosarcoma from its benign fibro-osseous lesions. Head Neck Pathol. 16:728–737. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ren C, Pan R, Hou L, Wu H, Sun J, Zhang W, Tian X and Chen H: Suppression of CLEC3A inhibits osteosarcoma cell proliferation and promotes their chemosensitivity through the AKT1/mTOR/HIF1α signaling pathway. Mol Med Rep. 21:1739–1748. 2020.PubMed/NCBI | |
Wang J, Ni J, Song D, Ding M, Huang J, Li W and He G: MAT1 facilitates the lung metastasis of osteosarcoma through upregulation of AKT1 expression. Life Sci. 234:1167712019. View Article : Google Scholar : PubMed/NCBI | |
Madda R, Chen CM, Chen CF, Wang JY, Wu HY, Wu PK and Chen WM: Analyzing BMP2, FGFR, and TGF beta expressions in high-grade osteosarcoma untreated and treated autografts using proteomic analysis. Int J Mol Sci. 23:74092022. View Article : Google Scholar : PubMed/NCBI | |
Huang YC, Chen WC, Yu CL, Chang TK, I-Chin Wei A, Chang TM, Liu JF and Wang SW: FGF2 drives osteosarcoma metastasis through activating FGFR1-4 receptor pathway-mediated ICAM-1 expression. Biochem Pharmacol. 218:1158532023. View Article : Google Scholar : PubMed/NCBI | |
Kim JA, Berlow NE, Lathara M, Bharathy N, Martin LR, Purohit R, Cleary MM, Liu Q, Michalek JE, Srinivasa G, et al: Sensitization of osteosarcoma to irradiation by targeting nuclear FGFR1. Biochem Biophys Res Commun. 621:101–108. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Wang W, Li Z, Zhang Z, Wu B and Zeng L: Epigenetic changes in osteosarcoma. Bull Cancer. 98:E62–E68. 2011. View Article : Google Scholar : PubMed/NCBI | |
Makise N, Sekimizu M, Kubo T, Wakai S, Watanabe SI, Kato T, Kinoshita T, Hiraoka N, Fukayama M, Kawai A, et al: Extraskeletal osteosarcoma: MDM2 and H3K27me3 analysis of 19 cases suggest disease heterogeneity. Histopathology. 73:147–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saba KH, Cornmark L, Rissler M, Fioretos T, Åström K, Haglund F, Rosenberg AE, Brosjö O and Nord KH: Genetic profiling of a chondroblastoma-like osteosarcoma/malignant phosphaturic mesenchymal tumor of bone reveals a homozygous deletion of CDKN2A, intragenic deletion of DMD, and a targetable FN1-FGFR1 gene fusion. Genes Chromosomes Cancer. 58:731–736. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu CC and Livingston JA: Genomics and the immune landscape of osteosarcoma. Adv Exp Med Biol. 1258:21–36. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Tian Z, Feng Y, Zhang K, Pan Y, Li Y, Wang Z, Wei W, Qiao X, Zhou R, et al: Transcriptomics and metabolomics reveal changes in the regulatory mechanisms of osteosarcoma under different culture methods in vitro. BMC Med Genomics. 15:2652022. View Article : Google Scholar : PubMed/NCBI | |
Yoon H, Liyanarachchi S, Wright FA, Davuluri R, Lockman JC, de la Chapelle A and Pellegata NS: Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl Acad Sci USA. 99:15632–15637. 2002. View Article : Google Scholar : PubMed/NCBI | |
Das S, Idate R, Regan DP, Fowles JS, Lana SE, Thamm DH, Gustafson DL and Duval DL: Immune pathways and TP53 missense mutations are associated with longer survival in canine osteosarcoma. Commun Biol. 4:11782021. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Huang M, Yang N, Zhu Y, Huang P, Xu Z, Wang W and Cai L: Impairment of rigidity sensing caused by mutant TP53 gain of function in osteosarcoma. Bone Res. 11:282023. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Dean DC, Hornicek FJ, Spentzos D, Hoffman RM, Shi H and Duan Z: Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther Adv Med Oncol. 12:17588359209220552020. View Article : Google Scholar : PubMed/NCBI | |
Akkawi R, Hidmi O, Haj-Yahia A, Monin J, Diment J, Drier Y, Stein GS and Aqeilan RI: WWOX promotes osteosarcoma development via upregulation of Myc. Cell Death Dis. 15:132024. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Xue W and Ma X: GATA3 is downregulated in osteosarcoma and facilitates EMT as well as migration through regulation of slug. Onco Targets Ther. 11:7579–7589. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Zhang J, Dai R, Xu J and Feng H: Transferrin receptor-1 and VEGF are prognostic factors for osteosarcoma. J Orthop Surg Res. 14:2962019. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Ji Z, Li D and Dong Q: Proliferation inhibition and apoptosis promotion by dual silencing of VEGF and survivin in human osteosarcoma. Acta Biochim Biophys Sin (Shanghai). 51:59–67. 2019. View Article : Google Scholar | |
Quan B, Li Z, Yang H, Li S, Yan X and Wang Y: The splicing factor YBX1 promotes the progression of osteosarcoma by upregulating VEGF165 and downregulating VEGF165b. Heliyon. 9:e187062023. View Article : Google Scholar | |
Luo P, Zhang YD, He F, Tong CJ, Liu K, Liu H, Zhu SZ, Luo JZ and Yuan B: HIF-1α-mediated augmentation of miRNA-18b-5p facilitates proliferation and metastasis in osteosarcoma through attenuation PHF2. Sci Rep. 12:103982022. View Article : Google Scholar | |
Zeng X, Liu S, Yang H, Jia M, Liu W and Zhu W: Synergistic anti-tumour activity of ginsenoside Rg3 and doxorubicin on proliferation, metastasis and angiogenesis in osteosarcoma by modulating mTOR/HIF-1α/VEGF and EMT signalling pathways. J Pharm Pharmacol. 75:1405–1417. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liao YX, Zhou CH, Zeng H, Zuo DQ, Wang ZY, Yin F, Hua YQ and Cai ZD: The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas (Review). Int J Mol Med. 32:1239–1246. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Dong L, Yan K, Long H, Yang TT, Dong MQ, Zhou Y, Fan QY and Ma BA: CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF. Oncol Rep. 30:1753–1761. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lu H, Zhang Y, Lv J, Zhang Y, Xu T, Yang D, Duan Z, Guan Y, Jiang Z, et al: Blocking CXCR4-CARM1-YAP axis overcomes osteosarcoma doxorubicin resistance by suppressing aerobic glycolysis. Cancer Sci. 115:3305–3319. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gong C, Sun K, Xiong HH, Sneh T, Zhang J, Zhou X, Yan P and Wang JH: Expression of CXCR4 and MMP-2 is associated with poor prognosis in patients with osteosarcoma. Histol Histopathol. 35:863–870. 2020.PubMed/NCBI | |
Liu JF, Chen PC, Chang TM and Hou CH: Monocyte chemoattractant protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma. J Exp Clin Cancer Res. 39:2542020. View Article : Google Scholar : PubMed/NCBI | |
Harrison BM and Loukopoulos P: Genomics and transcriptomics in veterinary oncology. Oncol Lett. 21:3362021. View Article : Google Scholar : PubMed/NCBI | |
Feleke M, Feng W, Song D, Li H, Rothzerg E, Wei Q, Kõks S, Wood D, Liu Y and Xu J: Single-cell RNA sequencing reveals differential expression of EGFL7 and VEGF in giant-cell tumor of bone and osteosarcoma. Exp Biol Med (Maywood). 247:1214–1227. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Chen Z, Lian X, Wu W, Chu L, Zhang S and Wang L: MUC 15 promotes osteosarcoma cell proliferation, migration and invasion through livin, MMP-2/MMP-9 and Wnt/β-catenin signal pathway. J Cancer. 12:467–473. 2021. View Article : Google Scholar : | |
Li AA, Zhang Y, Li F, Zhou Y, Liu ZL and Long XH: The mechanism of VCP-mediated metastasis of osteosarcoma based on cell autophagy and the EMT pathway. Clin Transl Oncol. 25:653–661. 2023. View Article : Google Scholar | |
Zheng X, Liu X, Zhang X, Zhao Z, Wu W and Yu S: A single-cell and spatially resolved atlas of human osteosarcomas. J Hematol Oncol. 17:712024. View Article : Google Scholar : PubMed/NCBI | |
Sirikaew N, Pruksakorn D, Chaiyawat P and Chutipongtanate S: Mass spectrometric-based proteomics for biomarker discovery in osteosarcoma: Current status and future direction. Int J Mol Sci. 23:97412022. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Gong S, Duan Y, Deng C, Kallendrusch S, Berninghausen L, Osterhoff G and Schopow N: A tumor microenvironment-based prognostic index for osteosarcoma. J Biomed Sci. 30:232023. View Article : Google Scholar : PubMed/NCBI | |
Chang TY, Lan KC, Wu CH, Sheu ML, Yang RS and Liu SH: Nε-(1-carboxymethyl)-L-lysine/RAGE signaling drives metastasis and cancer stemness through ERK/NFκB axis in osteosarcoma. Int J Biol Sci. 20:880–896. 2024. View Article : Google Scholar : | |
Jiang K, Li J, Zhang J, Wang L, Zhang Q, Ge J, Guo Y, Wang B, Huang Y, Yang T, et al: SDF-1/CXCR4 axis facilitates myeloid-derived suppressor cells accumulation in osteosarcoma microenvironment and blunts the response to anti-PD-1 therapy. Int Immunopharmacol. 75:1058182019. View Article : Google Scholar : PubMed/NCBI | |
Liao YX, Lv JY, Zhou ZF, Xu TY, Yang D, Gao QM, Fan L, Li GD, Yu HY and Liu KY: CXCR4 blockade sensitizes osteosarcoma to doxorubicin by inducing autophagic cell death via PI3K-Akt-mTOR pathway inhibition. Int J Oncol. 59:492021. View Article : Google Scholar : | |
Zhang L, Pan Y, Pan F, Huang S, Wang F, Zeng Z, Chen H and Tian X: MATN4 as a target gene of HIF-1α promotes the proliferation and metastasis of osteosarcoma. Aging (Albany NY). 16:10462–10476. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shi X and Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W and Wang X: Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther. 9:1922024. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Qu Y, Zhou Q and Ma Y: SIRT6 inhibits proliferation and invasion in osteosarcoma cells by targeting N-cadherin. Oncol Lett. 17:1237–1244. 2019.PubMed/NCBI | |
Masuelli L, Benvenuto M, Izzi V, Zago E, Mattera R, Cerbelli B, Potenza V, Fazi S, Ciuffa S, Tresoldi I, et al: In vivo and in vitro inhibition of osteosarcoma growth by the pan Bcl-2 inhibitor AT-101. Invest New Drugs. 38:675–689. 2020. View Article : Google Scholar | |
Esperança-Martins M, Fernandes I, Soares do Brito J, Macedo D, Vasques H, Serafim T, Costa L and Dias S: Sarcoma metabolomics: Current horizons and future perspectives. Cells. 10:14322021. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Li F, Gao B, Ma M, Chen M, Wu Y, Zhang W, Sun Y, Liu S and Shen H: KDM6B-mediated histone demethylation of LDHA promotes lung metastasis of osteosarcoma. Theranostics. 11:3868–3881. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mei Z, Shen Z, Pu J, Liu Q, Liu G, He X, Wang Y, Yue J, Ge S, Li T, et al: NAT10 mediated ac4C acetylation driven m6A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma. Cell Commun Signal. 22:512024. View Article : Google Scholar | |
Xia K, Zheng D, Wei Z, Liu W and Guo W: TRIM26 inhibited osteosarcoma progression through destabilizing RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis. 14:5292023. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhao Y, Wang G, Feng S, Ge X, Ye W, Wang Z, Zhu Y, Cai W, Bai J and Zhou X: TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biol. 53:1023442022. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Xia K, Zhou B, Zheng D and Guo W: Zyxin inhibits the proliferation, migration, and invasion of osteosarcoma via Rap1-mediated inhibition of the MEK/ERK signaling pathway. Biomedicines. 11:23142023. View Article : Google Scholar : PubMed/NCBI | |
Li G, Stampas A, Komatsu Y, Gao X, Huard J and Pan S: Proteomics in orthopedic research: Recent studies and their translational implications. J Orthop Res. 42:1631–1640. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dean DC, Shen S, Hornicek FJ and Duan Z: From genomics to metabolomics: Emerging metastatic biomarkers in osteosarcoma. Cancer Metastasis Rev. 37:719–731. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Shen G, Fan M and Zheng P: Lipid metabolic reprogramming and associated ferroptosis in osteosarcoma: From molecular mechanisms to potential targets. J Bone Oncol. 51:1006602025. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zhou X, Zhang J and Li L: Sphingolipid metabolism is associated with osteosarcoma metastasis and prognosis: Evidence from interaction analysis. Front Endocrinol (Lausanne). 13:9836062022. View Article : Google Scholar : PubMed/NCBI | |
Cai F, Liu L, Bo Y, Yan W, Tao X, Peng Y, Zhang Z, Liao Q and Yi Y: LncRNA RPARP-AS1 promotes the progression of osteosarcoma cells through regulating lipid metabolism. BMC Cancer. 24:1662024. View Article : Google Scholar : PubMed/NCBI | |
Bispo DSC, Correia M, Carneiro TJ, Martins AS, Reis AAN, Carvalho ALMB, Marques MPM and Gil AM: Impact of conventional and potential new metal-based drugs on lipid metabolism in osteosarcoma MG-63 cells. Int J Mol Sci. 24:175562023. View Article : Google Scholar : PubMed/NCBI | |
Fritsche-Guenther R, Gloaguen Y, Kirchner M, Mertins P, Tunn PU and Kirwan JA: Progression-dependent altered metabolism in osteosarcoma resulting in different nutrient source dependencies. Cancers (Basel). 12:13712020. View Article : Google Scholar : PubMed/NCBI | |
Shen S, Xu Y, Gong Z, Yao T, Qiao D, Huang Y, Zhang Z, Gao J, Ni H, Jin Z, et al: Positive feedback regulation of circular RNA Hsa_circ_0000566 and HIF-1α promotes osteosarcoma progression and glycolysis metabolism. Aging Dis. 14:529–547. 2023.PubMed/NCBI | |
Li G, Li Y and Wang DY: Overexpression of miR-329-3p sensitizes osteosarcoma cells to cisplatin through suppression of glucose metabolism by targeting LDHA. Cell Biol Int. 45:766–774. 2021. View Article : Google Scholar | |
Wang B, Zhou Y, Zhang P, Li J and Lu X: Solasonine inhibits cancer stemness and metastasis by modulating glucose metabolism via Wnt/β-catenin/snail pathway in osteosarcoma. Am J Chin Med. 51:1293–1308. 2023. View Article : Google Scholar | |
Ren J, Zhao C, Sun R, Sun J, Lu L, Wu J, Li S and Cui L: Augmented drug resistance of osteosarcoma cells within decalcified bone matrix scaffold: The role of glutamine metabolism. Int J Cancer. 154:1626–1638. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tao Y, Han J, Shen J, Mu H, Wang Z, Wang J, Jin X, Zhang Q, Yang Y, et al: Disrupting YAP1-mediated glutamine metabolism induces synthetic lethality alongside ODC1 inhibition in osteosarcoma. Cell Oncol (Dordr). 47:1845–1861. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Miao Y, Zheng X, Dong Y, Yang Q, Yang Q, Du S, Xu J, Zhou S and Yuan T: ANGPTL4 negatively regulates the progression of osteosarcoma by remodeling branched-chain amino acid metabolism. Cell Death Discov. 8:2252022. View Article : Google Scholar : PubMed/NCBI | |
Qian H, Lei T, Hu Y and Lei P: Expression of lipid-metabolism genes is correlated with immune microenvironment and predicts prognosis in osteosarcoma. Front Cell Dev Biol. 9:6738272021. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Tan J, Shen H, Deng C, Kleber C, Osterhoff G and Schopow N: Exploring the relationship between metabolism and immune microenvironment in osteosarcoma based on metabolic pathways. J Biomed Sci. 31:42024. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Fang J, Liu K, Luo P and Wang X: Multi-omic validation of the cuproptosis-sphingolipid metabolism network: Modulating the immune landscape in osteosarcoma. Front Immunol. 15:14248062024. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, He Y, Wu Z, Yuan Y, Li X and Luo W: Comprehensive analysis of copper-metabolism-related genes about prognosis and immune microenvironment in osteosarcoma. Sci Rep. 13:150592023. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M and Liu GP: Applications of multi-omics analysis in human diseases. MedComm (2020). 4:e3152023. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Yang Y, Yuan K, Yang S, Zhang S, Li H and Tang T: Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma. Bioact Mater. 18:459–470. 2022.PubMed/NCBI | |
Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, Wang Y, Zhang Z, Yuan T, Ding X, et al: Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. 11:63222020. View Article : Google Scholar : PubMed/NCBI | |
Jia C, Yao X, Dong Z, Wang L, Zhao F, Gao J and Cai T: Molecular landscape and prognostic value in the post-translational ubiquitination, SUMOylation and neddylation in osteosarcoma: A transcriptome study. J Inflamm Res. 17:4315–4330. 2024. View Article : Google Scholar : PubMed/NCBI | |
Truong DD, Weistuch C, Murgas KA, Admane P, King BL, Chauviere Lee J, Lamhamedi-Cherradi SE, Swaminathan J, Daw NC, Gordon N, et al: Mapping the single-cell differentiation landscape of osteosarcoma. Clin Cancer Res. 30:3259–3272. 2024. View Article : Google Scholar : PubMed/NCBI | |
Heo YJ, Hwa C, Lee GH, Park JM and An JY: Integrative multi-omics approaches in cancer research: From biological networks to clinical subtypes. Mol Cells. 44:433–443. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Xia K, Zheng D, Gong C and Guo W: RILP inhibits tumor progression in osteosarcoma via Grb10-mediated inhibition of the PI3K/AKT/mTOR pathway. Mol Med. 29:1332023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wen Z, Wang Q, Ren L and Zhao S: A novel stratification framework based on anoikis-related genes for predicting the prognosis in patients with osteosarcoma. Front Immunol. 14:11998692023. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Jahed V and Klavins K: Metabolomics in bone research. Metabolites. 11:4342021. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Han K, Min D, Kong W, Wang S and Gao M: Identification of the methotrexate resistance-related diagnostic markers in osteosarcoma via adaptive total variation netNMF and multi-omics datasets. Front Genet. 14:12880732023. View Article : Google Scholar : PubMed/NCBI | |
Audinot B, Drubay D, Gaspar N, Mohr A, Cordero C, Marec-Bérard P, Lervat C, Piperno-Neumann S, Jimenez M, Mansuy L, et al: ctDNA quantification improves estimation of outcomes in patients with high-grade osteosarcoma: A translational study from the OS2006 trial. Ann Oncol. 35:559–568. 2024. View Article : Google Scholar | |
Schaafsma E, Takacs EM, Kaur S, Cheng C and Kurokawa M: Predicting clinical outcomes of cancer patients with a p53 deficiency gene signature. Sci Rep. 12:13172022. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Guo J, Zhang K and Guo Y: TP53 mutations and survival in osteosarcoma patients: A meta-analysis of published data. Dis Markers. 2016:46395752016. View Article : Google Scholar : PubMed/NCBI | |
Ru JY, Cong Y, Kang WB, Yu L, Guo T and Zhao JN: Polymorphisms in TP53 are associated with risk and survival of osteosarcoma in a Chinese population. Int J Clin Exp Pathol. 8:3198–3203. 2015.PubMed/NCBI | |
Jeon DG, Koh JS, Cho WH, Song WS, Kong CB, Cho SH and Lee SY and Lee SY: Clinical outcome of low-grade central osteosarcoma and role of CDK4 and MDM2 immunohistochemistry as a diagnostic adjunct. J Orthop Sci. 20:529–537. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iwata S, Tatsumi Y, Yonemoto T, Araki A, Itami M, Kamoda H, Tsukanishi T, Hagiwara Y, Kinoshita H, Ishii T, et al: CDK4 overexpression is a predictive biomarker for resistance to conventional chemotherapy in patients with osteosarcoma. Oncol Rep. 46:1352021. View Article : Google Scholar : PubMed/NCBI | |
Schubert NA, Chen CY, Rodríguez A, Koster J, Dowless M, Pfister SM, Shields DJ, Stancato LF, Vassal G, Caron HN, et al: Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours. Eur J Cancer. 170:196–208. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun R, Shen J, Gao Y, Zhou Y, Yu Z, Hornicek F, Kan Q and Duan Z: Overexpression of EZH2 is associated with the poor prognosis in osteosarcoma and function analysis indicates a therapeutic potential. Oncotarget. 7:38333–38346. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Xu L and Yang L: Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem. 256:1154612023. View Article : Google Scholar : PubMed/NCBI | |
Nazarizadeh A, Alizadeh-Fanalou S, Hosseini A, Mirzaei A, Salimi V, Keshipour H, Safizadeh B, Jamshidi K, Bahrabadi M and Tavakoli-Yaraki M: Evaluation of local and circulating osteopontin in malignant and benign primary bone tumors. J Bone Oncol. 29:1003772021. View Article : Google Scholar : PubMed/NCBI | |
Barris DM, Weiner SB, Dubin RA, Fremed M, Zhang X, Piperdi S, Zhang W, Maqbool S, Gill J, Roth M, et al: Detection of circulating tumor DNA in patients with osteosarcoma. Oncotarget. 9:12695–12704. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kathiresan N, Selvaraj C, Pandian S, Subbaraj GK, Alothaim AS, Safi SZ and Kulathaivel L: Proteomics and genomics insights on malignant osteosarcoma. Adv Protein Chem Struct Biol. 138:275–300. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Jia P, Wang W and Zhang G: VEGF-mediated suppression of cell proliferation and invasion by miR-410 in osteosarcoma. Mol Cell Biochem. 400:87–95. 2015. View Article : Google Scholar | |
Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, D'Angelo S, Attia S, Riedel RF, Priebat DA, et al: Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18:1493–1501. 2017. View Article : Google Scholar : PubMed/NCBI | |
Assi T, Watson S, Samra B, Rassy E, Le Cesne A, Italiano A and Mir O: Targeting the VEGF pathway in osteosarcoma. Cells. 10:12402021. View Article : Google Scholar : PubMed/NCBI | |
Mickymaray S, Alfaiz FA, Paramasivam A, Veeraraghavan VP, Periadurai ND, Surapaneni KM and Niu G: Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci. 28:3641–3649. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu DG, Tang QL, Wei JH, He FY, Lu L and Tang YJ: Targeting EZH2 by microRNA-449a inhibits osteosarcoma cell proliferation, invasion and migration via regulation of PI3K/AKT signaling pathway and epithelial-mesenchymal transition. Eur Rev Med Pharmacol Sci. 24:1656–1665. 2020.PubMed/NCBI | |
Chen ZY, Huang HH, Li QC, Zhan FB, Wang LB, He T, Yang CH, Wang Y, Zhang Y and Quan ZX: Capsaicin reduces cancer stemness and inhibits metastasis by downregulating SOX2 and EZH2 in osteosarcoma. Am J Chin Med. 51:1041–1066. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, He S, Wu H, Xie H, Zhang T and Deng Z: Blocking the PD-1/PD-L1 axis enhanced cisplatin chemotherapy in osteosarcoma in vitro and in vivo. Environ Health Prev Med. 24:792019. View Article : Google Scholar : PubMed/NCBI | |
Yoshida K, Okamoto M, Sasaki J, Kuroda C, Ishida H, Ueda K, Okano S, Ideta H, Kamanaka T, Sobajima A, et al: Clinical outcome of osteosarcoma and its correlation with programmed death-ligand 1 and T cell activation markers. Onco Targets Ther. 12:2513–2518. 2019. View Article : Google Scholar : PubMed/NCBI | |
Davis KL, Fox E, Merchant MS, Reid JM, Kudgus RA, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ and Mackall CL: Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, openlabel, single-arm, phase 1-2 trial. Lancet Oncol. 21:541–550. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Shen JK, Yu Z, Hornicek FJ, Kan Q and Duan Z: Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim Biophys Acta Mol Basis Dis. 1864:1573–1582. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oshiro H, Tome Y, Miyake K, Higuchi T, Sugisawa N, Kanaya F, Nishida K and Hoffman RM: Combination of CDK4/6 and mTOR inhibitors suppressed doxorubicin-resistant osteosarcoma in a patient-derived orthotopic xenograft mouse model: A translatable strategy for recalcitrant disease. Anticancer Res. 41:3287–3292. 2021. View Article : Google Scholar : PubMed/NCBI | |
Athieniti E and Spyrou GM: A guide to multi-omics data collection and integration for translational medicine. Comput Struct Biotechnol J. 21:134–149. 2022. View Article : Google Scholar : PubMed/NCBI | |
Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, Ley TJ and Evans WE: The pediatric cancer genome project. Nat Genet. 44:619–622. 2012. View Article : Google Scholar : PubMed/NCBI | |
Freeberg MA, Fromont LA, D'Altri T, Romero AF, Ciges JI, Jene A, Kerry G, Moldes M, Ariosa R, Bahena S, et al: The European genome-phenome archive in 2021. Nucleic Acids Res. 50(D1): D980–D987. 2022. View Article : Google Scholar : | |
Jovic D, Liang X, Zeng H, Lin L, Xu F and Luo Y: Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 12:e6942022. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Hu H, Shao Z, Lv X, Zhang Z, Deng X, Song Q, Han Y, Guo T, Xiong L, et al: Characterizing the tumor microenvironment at the single-cell level reveals a novel immune evasion mechanism in osteosarcoma. Bone Res. 11:42023. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Wang L, Guo H, Zhang W and Shao Z: Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics. 12:5877–5887. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, Qin Z, Liao S, He J, Huang Q, et al: Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma. Front Oncol. 11:7092102021. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Xu Y, Liu W, Zhang J, Wang F, Jian Q, Huang G, Zou C, Xie X, Kim AH, et al: Tumor-informed deep sequencing of ctDNA detects minimal residual disease and predicts relapse in osteosarcoma. EClinicalMedicine. 73:1026972024. View Article : Google Scholar : PubMed/NCBI | |
Landuzzi L, Manara MC, Lollini PL and Scotlandi K: Patient derived xenografts for genome-driven therapy of osteosarcoma. Cells. 10:4162021. View Article : Google Scholar : PubMed/NCBI | |
He A, Huang Y, Cheng W, Zhang D, He W, Bai Y, Gu C, Ma Z, He Z, Si G, et al: Organoid culture system for patient-derived lung metastatic osteosarcoma. Med Oncol. 37:1052020. View Article : Google Scholar : PubMed/NCBI |