1
|
Komlosi ZI, van de Veen W, Kovacs N, Szűcs
G, Sokolowska M, O'Mahony L, Akdis M and Akdis CA: Cellular and
molecular mechanisms of allergic asthma. Mol Aspects Med.
85:1009952022. View Article : Google Scholar
|
2
|
Huang K, Yang T, Xu J, Yang L, Zhao J,
Zhang X, Bai C, Kang J, Ran P, Shen H, et al: Prevalence, risk
factors, and management of asthma in China: A national
cross-sectional study. Lancet. 394:407–418. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bowatte G, Lodge CJ, Knibbs LD, Erbas B,
Perret JL, Jalaludin B, Morgan GG, Bui DS, Giles GG, Hamilton GS,
et al: Traffic related air pollution and development and
persistence of asthma and low lung function. Environ Int.
113:170–176. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hayakawa K, Tang N, Nagato E, Toriba A,
Lin JM, Zhao L, Zhou Z, Qing W, Yang X, Mishukov V, et al:
Long-Term trends in urban atmospheric polycyclic aromatic
hydrocarbons and nitropolycyclic aromatic hydrocarbons: China,
Russia, and Korea from 1999 to 2014. Int J Environ Res Public
Health. 17:4312020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oliveira M, Slezakova K, Delerue-Matos C,
Pereira MC and Morais S: Children environmental exposure to
particulate matter and polycyclic aromatic hydrocarbons and
biomonitoring in school environments: A review on indoor and
outdoor exposure levels, major sources and health impacts. Environ
Int. 124:180–204. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Honda A, Sawahara T, Hayashi T, Tsuji K,
Fukushima W, Oishi M, Kitamura G, Kudo H, Ito S, Yoshida S, et al:
Biological factor related to Asian sand dust particles contributes
to the exacerbation of asthma. J Appl Toxicol. 37:583–590. 2017.
View Article : Google Scholar
|
7
|
Choi H, Tabashidze N, Rossner P Jr, Dostal
M, Pastorkova A, Kong SW, Gmuender H and Sram RJ: Altered
vulnerability to asthma at various levels of ambient Benzo[a]Pyrene
by CTLA4, STAT4 and CYP2E1 polymorphisms. Environ Pollut.
231:1134–1144. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Carrard J, Marquillies P, Pichavant M,
Visez N, Lanone S, Tsicopoulos A, Chenivesse C, Scherpereel A and
de Nadaï P: Chronic exposure to benzo (a)pyrene-coupled
nanoparticles worsens inflammation in a mite-induced asthma mouse
model. Allergy. 76:1562–1565. 2021. View Article : Google Scholar
|
9
|
Xiao C, Puddicombe SM, Field S, Haywood J,
Broughton-Head V, Puxeddu I, Haitchi HM, Vernon-Wilson E, Sammut D,
Bedke N, et al: Defective epithelial barrier function in asthma. J
Allergy Clin Immunol. 128:549–56.e1-12. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Aghapour M, Ubags ND, Bruder D, Hiemstra
PS, Sidhaye V, Rezaee F and Heijink IH: Role of air pollutants in
airway epithelial barrier dysfunction in asthma and COPD. Eur
Respir Rev. 31:2101122022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Song Y, Fu W, Zhang Y, Huang D, Wu J, Tong
S, Zhong M, Cao H and Wang B: Azithromycin ameliorated cigarette
smoke-induced airway epithelial barrier dysfunction by activating
Nrf2/GCL/GSH signaling pathway. Respir Res. 24:692023. View Article : Google Scholar : PubMed/NCBI
|
12
|
Garcia MA, Nelson WJ and Chavez N:
Cell-Cell junctions organize structural and signaling networks.
Cold Spring Harb Perspect Biol. 10:a0291812018. View Article : Google Scholar
|
13
|
Rusu AD and Georgiou M: The multifarious
regulation of the apical junctional complex. Open Biol.
10:1902782020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tao Y, Wang Y, Wang X, Wang C, Bao K, Ji
L, Jiang G and Hong M: Calycosin suppresses epithelial derived
initiative key factors and maintains epithelial barrier in allergic
inflammation via TLR4 mediated NF-κB pathway. Cell Physiol Biochem.
44:1106–1119. 2017. View Article : Google Scholar
|
15
|
Tsukita S, Furuse M and Itoh M:
Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol.
2:285–293. 2001. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Kang DH, Lee TJ, Kim JW, Shin YS, Kim JD,
Ryu SW, Ryu S, Choi YH, Kim CH, You E, et al: Down-regulation of
diesel particulate matter-induced airway inflammation by the PDZ
motif peptide of ZO-1. J Cell Mol Med. 24:12211–12218. 2020.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Campbell HK, Maiers JL and DeMali KA:
Interplay between tight junctions & adherens junctions. Exp
Cell Res. 358:39–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chiba T, Uchi H, Tsuji G, Gondo H, Moroi Y
and Furue M: Arylhydrocarbon receptor (AhR) activation in airway
epithelial cells induces MUC5AC via reactive oxygen species (ROS)
production. Pulm Pharmacol Ther. 24:133–140. 2011. View Article : Google Scholar
|
19
|
Zhang L, He X, Xiong Y, Ran Q, Xiong A,
Wang J, Wu D, Niu B and Li G: Transcriptome-wide profiling
discover: PM2.5 aggravates airway dysfunction through epithelial
barrier damage regulated by Stanniocalcin 2 in an OVA-induced
model. Ecotoxicol Environ Saf. 220:1124082021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen M, Yang T, Meng X and Sun T:
Azithromycin attenuates cigarette smoke extract-induced oxidative
stress injury in human alveolar epithelial cells. Mol Med Rep.
11:3414–3422. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li L, Bao B, Chai X, Chen X, Su X, Feng S
and Zhu X: The anti-inflammatory effect of callicarpa nudiflora
extract on H. Pylori-infected GES-1 cells through the inhibition of
ROS/NLRP3/Caspase-1/IL-1β signaling axis. Can J Infect Dis Med
Microbiol. 2022:54692362022. View Article : Google Scholar
|
22
|
Tang L, Chen B, Wang B, Xu J, Yan H, Shan
Y and Zhao X: Mediation of FOXA2/IL-6/IL-6R/STAT3 signaling pathway
mediates benzo[a]pyrene-induced airway epithelial mesenchymal
transformation in asthma. Environ Pollut. 357:1243842024.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang B, Tang L, Sun X, Zhang Q, Liu CY,
Zhang XN, Yu KY, Yang Y, Hu J, Shi XL, et al: Qufeng Xuanbi formula
inhibited benzo[a]pyrene-induced aggravated asthma airway mucus
secretion by AhR/ROS/ERK pathway. J Ethnopharmacol. 319:1172032024.
View Article : Google Scholar
|
24
|
Fang R, Cheng Y, Chen P, Hu J and Yang LQ:
PGC-1α agonist ZLN005 ameliorates OVA-induced asthma in BALB/c mice
through modulating the NF-κB-p65/NLRP3 pathway. Iran J Basic Med
Sci. 28:710–717. 2025.
|
25
|
Zhang YY, Jiang YY, Zhang DM, Hu X, Deng
S, Li X and Feng J: Role of GLCCI1 in inhibiting PI3K-induced NLRP3
inflammasome activation in asthma. Chin Med J Pulm Crit Care Med.
2:279–288. 2024. View Article : Google Scholar
|
26
|
Cui X, Mi T, Xiao X, Dong Y, Zhang H, Chen
G and Gu X: Metabolomic reprogramming induced by Benzo[a]pyene in
skin keratinocytes and protective effects of glutathione amino acid
precursors. J Cosmet Dermatol. 24:e701682025. View Article : Google Scholar : PubMed/NCBI
|
27
|
Siangcham T, Vivithanaporn P, Jantakee K,
Ruangtong J, Thongsepee N, Martviset P, Chantree P, Sornchuer P and
Sangpairoj K: Impact of benzo (a)pyrene and pyrene exposure on
activating autophagy and correlation with endoplasmic reticulum
stress in human astrocytes. Int J Mol Sci. 26:17482025. View Article : Google Scholar
|
28
|
Shen C, Luo Z, Ma S, Yu C, Lai T, Tang S,
Zhang H, Zhang J, Xu W and Xu J: Microbe-Derived antioxidants
protect IPEC-1 cells from H2O2-induced oxidative stress,
inflammation and tight junction protein disruption via activating
the Nrf2 pathway to inhibit the ROS/NLRP3/IL-1β signaling pathway.
Antioxidants (Basel). 13:5332024. View Article : Google Scholar
|
29
|
Kampa M and Castanas E: Human health
effects of air pollution. Environ Pollut. 151:362–367. 2008.
View Article : Google Scholar
|
30
|
Padilla-Garfias F, Araiza-Villanueva M,
Calahorra M, Sánchez NS and Peña A: Advances in the degradation of
polycyclic aromatic hydrocarbons by yeasts: A review.
Microorganisms. 12:24842024. View Article : Google Scholar
|
31
|
Wang E, Liu X, Tu W, Do DC, Yu H, Yang L,
Zhou Y, Xu D, Huang SK, Yang P, et al: Benzo (a)pyrene facilitates
dermatophagoides group 1 (Der f 1)-induced epithelial cytokine
release through aryl hydrocarbon receptor in asthma. Allergy.
74:1675–1690. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Qamar W, Khan R, Khan AQ, Rehman MU,
Lateef A, Tahir M, Ali F and Sultana S: Alleviation of lung injury
by glycyrrhizic acid in benzo (a)pyrene exposed rats: Probable role
of soluble epoxide hydrolase and thioredoxin reductase. Toxicology.
291:25–31. 2012. View Article : Google Scholar
|
33
|
Ni Z, Ma H, Li X, Zou L, Liu Z, Wang X, Ma
H and Yang L: Wogonin alleviates BaP-induced DNA damage and
oxidative stress in human airway epithelial cells by dual
inhibiting CYP1A1 activity and expression. Environ Toxicol.
38:2717–2729. 2023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Martinez-Giron R and van Woerden HC:
Disruption of airway epithelium in asthma pathogenesis: Are
protozoa responsible? Proc Am Thorac Soc. 7:1612010.PubMed/NCBI
|
35
|
Loxham M and Davies DE: Phenotypic and
genetic aspects of epithelial barrier function in asthmatic
patients. J Allergy Clin Immunol. 139:1736–1751. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
He X, Zhang L, Hu L, Liu S, Xiong A, Wang
J, Xiong Y and Li G: PM2.5 aggravated OVA-induced epithelial tight
junction disruption through fas associated via death
domain-dependent apoptosis in asthmatic mice. J Asthma Allergy.
14:1411–1423. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fukuoka A, Matsushita K, Morikawa T,
Takano H and Yoshimoto T: Diesel exhaust particles exacerbate
allergic rhinitis in mice by disrupting the nasal epithelial
barrier. Clin Exp Allergy. 46:142–152. 2016. View Article : Google Scholar
|
38
|
Zarcone MC, Duistermaat E, van Schadewijk
A, Jedynska A, Hiemstra PS and Kooter IM: Cellular response of
mucociliary differentiated primary bronchial epithelial cells to
diesel exhaust. Am J Physiol Lung Cell Mol Physiol. 311:L111–L123.
2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hitomi Y, Ebisawa M, Tomikawa M, Imai T,
Komata T, Hirota T, Harada M, Sakashita M, Suzuki Y, Shimojo N, et
al: Associations of functional NLRP3 polymorphisms with
susceptibility to food-induced anaphylaxis and aspirin-induced
asthma. J Allergy Clin Immunol. 124:779–785.e6. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sharma M and de Alba E: Structure,
activation and regulation of NLRP3 and AIM2 inflammasomes. Int J
Mol Sci. 22:8722021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Christgen S, Place DE and Kanneganti T:
Toward targeting inflammasomes: Insights into their regulation and
activation. Cell Res. 30:315–327. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
He W, Rahman MH, Bajgai J, Abdul-Nasir S,
Mo C, Ma H, Goh SH, Bomi K, Jung H, Kim CS, et al: Hydrogen gas
inhalation alleviates airway inflammation and oxidative stress on
ovalbumin-induced asthmatic BALB/c mouse model. Antioxidants
(Basel). 13:13282024. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang X, Zhang J, Chen X, Hu QH, Wang MX,
Jin R, Zhang QY, Wang W, Wang R, Kang LL, et al: Reactive oxygen
species-induced TXNIP drives fructose-mediated hepatic inflammation
and lipid accumulation through NLRP3 inflammasome activation.
Antioxid Redox Signal. 22:848–870. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhou D, Cai L, Xu J, Fu D, Yan L and Xie
L: Exploring the mitigating potential of anthocyanin Malvidin in a
mouse model of bleomycin-induced pulmonary fibrosis by inhibiting
NLRP3 inflammasome activation and oxidative stress. J Inflamm
(Lond). 22:142025. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang Y, Wang J, Chen Y, Li X and Jiang Z:
Decursinol angelate relieves inflammatory bowel disease by
inhibiting the ROS/TXNIP/NLRP3 pathway and pyroptosis. Front
Pharmacol. 15:15200402024. View Article : Google Scholar
|
46
|
Zhang X, Gu L, Chen Y, Wang T and Xing H:
L-selenomethionine inhibits small intestinal ferroptosis caused by
ammonia exposure through regulating ROS-mediated iron metabolism.
Ecotoxicol Environ Saf. 289:1174772024. View Article : Google Scholar : PubMed/NCBI
|