1
|
Johnson DE, Burtness B, Leemans CR, Lui
VWY, Bauman JE and Grandis JR: Head and neck squamous cell
carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Steuer CE, El-Deiry M, Parks JR, Higgins
KA and Saba NF: An update on larynx cancer. CA Cancer J Clin.
67:31–50. 2017. View Article : Google Scholar
|
3
|
Obid R, Redlich M and Tomeh C: The
treatment of laryngeal cancer. Oral Maxillofac Surg Clin North Am.
31:1–11. 2019. View Article : Google Scholar
|
4
|
Gao W, Zhang C, Li W, Li H, Sang J, Zhao
Q, Bo Y, Luo H, Zheng X, Lu Y, et al: Promoter
methylation-regulated miR-145-5p inhibits laryngeal squamous cell
carcinoma progression by targeting FSCN1. Mol Ther. 27:365–379.
2019. View Article : Google Scholar :
|
5
|
Di Leva G, Garofalo M and Croce CM:
MicroRNAs in cancer. Annu Rev Pathol. 9:287–314. 2014. View Article : Google Scholar :
|
6
|
Lu TX and Rothenberg ME: MicroRNA. J
Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar :
|
7
|
Yang J, Wang X, Hao W, Wang Y, Li Z, Han
Q, Zhang C and Liu H: MicroRNA-488: A miRNA with diverse roles and
clinical applications in cancer and other human diseases. Biomed
Pharmacother. 165:1151152023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Luo M, Deng X, Chen Z and Hu Y: Circular
RNA circPOFUT1 enhances malignant phenotypes and
autophagy-associated chemoresistance via sequestrating miR-488-3p
to activate the PLAG1-ATG12 axis in gastric cancer. Cell Death Dis.
14:102023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Fang C, Chen YX, Wu NY, Yin JY, Li XP,
Huang HS, Zhang W, Zhou HH and Liu ZQ: MiR-488 inhibits
proliferation and cisplatin sensibility in non-small-cell lung
cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling
pathway. Sci Rep. 7:403842017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Deng X, Li D, Ke X, Wang Q, Yan S, Xue Y,
Wang Q and Zheng H: Mir-488 alleviates chemoresistance and
glycolysis of colorectal cancer by targeting PFKFB3. J Clin Lab
Anal. 35:e235782021. View Article : Google Scholar
|
11
|
Wu Y, Zhang Y, Zheng X, Dai F, Lu Y, Dai
L, Niu M, Guo H, Li W, Xue X, et al: Circular RNA circCORO1C
promotes laryngeal squamous cell carcinoma progression by
modulating the let-7c-5p/PBX3 axis. Mol Cancer. 19:992020.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Wu CP, Zhou L, Gong HL, Du HD, Tian J, Sun
S and Li JY: Establishment and characterization of a novel
HPV-negative laryngeal squamous cell carcinoma cell line, FD-LSC-1,
with missense and nonsense mutations of TP53 in the DNA-binding
domain. Cancer Lett. 342:92–103. 2014. View Article : Google Scholar
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
14
|
McGeary SE, Lin KS, Shi CY, Pham TM,
Bisaria N, Kelley GM and Bartel DP: The biochemical basis of
microRNA targeting efficacy. Science. 366:eaav17412019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen Y and Wang X: miRDB: An online
database for prediction of functional microRNA targets. Nucleic
Acids Res. 48:D127–D131. 2020. View Article : Google Scholar :
|
16
|
Sticht C, De La Torre C, Parveen A and
Gretz N: miRWalk: An online resource for prediction of microRNA
binding sites. PLoS One. 13:e02062392018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee C and Huang CH: LASAGNA-Search: An
integrated web tool for transcription factor binding site search
and visualization. Biotechniques. 54:141–153. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rauluseviciute I, Riudavets-Puig R,
Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB,
Lucas J, Chèneby J, Baranasic D, et al: JASPAR 2024: 20th
anniversary of the open-access database of transcription factor
binding profiles. Nucleic Acids Res. 52(D1): D174–D182. 2024.
View Article : Google Scholar :
|
19
|
Perez G, Barber GP, Benet-Pages A, Casper
J, Clawson H, Diekhans M, Fischer C, Gonzalez JN, Hinrichs AS, Lee
CM, et al: The UCSC Genome Browser database: 2025 update. Nucleic
Acids Res. 53:D1243–D1249. 2025. View Article : Google Scholar :
|
20
|
Amin MB, Greene FL, Edge SB, Compton CC,
Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and
Winchester DP: The Eighth Edition AJCC cancer staging manual:
Continuing to build a bridge from a population-based to a more
'personalized' approach to cancer staging. CA Cancer J Clin.
67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hu T, Su F, Jiang W and Dart DA:
Overexpression of activin receptor-like kinase 7 in breast cancer
cells is associated with decreased cell growth and adhesion.
Anticancer Res. 37:3441–3451. 2017.PubMed/NCBI
|
22
|
Du R, Wen L, Niu M, Zhao L, Guan X, Yang
J, Zhang C and Liu H: Activin receptors in human cancer: Functions,
mechanisms, and potential clinical applications. Biochem Pharmacol.
222:1160612024. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu G, Zhou H, Wang Q, Auersperg N and Peng
C: Activin receptor-like kinase 7 induces apoptosis through
up-regulation of Bax and down-regulation of Xiap in normal and
malignant ovarian epithelial cell lines. Mol Cancer Res. 4:235–246.
2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Principe M, Chanal M, Karam V, Wierinckx
A, Mikaélian I, Gadet R, Auger C, Raverot V, Jouanneau E,
Vasiljevic A, et al: ALK7 expression in prolactinoma is associated
with reduced prolactin and increased proliferation. Endocr Relat
Cancer. 25:795–806. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhu J, Cui L, Xu A, Yin X, Li F and Gao J:
MEIS1 inhibits clear cell renal cell carcinoma cells proliferation
and in vitro invasion or migration. BMC Cancer. 17:1762017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Li W, Huang K, Guo H and Cui G: Meis1
regulates proliferation of non-small-cell lung cancer cells. J
Thorac Dis. 6:850–855. 2014.PubMed/NCBI
|
27
|
VanOpstall C, Perike S, Brechka H, Gillard
M, Lamperis S, Zhu B, Brown R, Bhanvadia R and Vander Griend DJ:
MEIS-mediated suppression of human prostate cancer growth and
metastasis through HOXB13-dependent regulation of proteoglycans.
Elife. 9:e536002020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Peng Y and Croce CM: The role of MicroRNAs
in human cancer. Signal Transduct Target Ther. 1:150042016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kulkarni B, Kirave P, Gondaliya P, Jash K,
Jain A, Tekade RK and Kalia K: Exosomal miRNA in chemoresistance,
immune evasion, metastasis and progression of cancer. Drug Discov
Today. 24:2058–2067. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gao W, Guo H, Niu M, Zheng X, Zhang Y, Xue
X, Bo Y, Guan X, Li Z, Guo Y, et al: circPARD3 drives malignant
progression and chemoresistance of laryngeal squamous cell
carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR
pathway. Mol Cancer. 19:1662020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu Y, Dai F, Zhang Y, Zheng X, Li L, Zhang
Y, Cao J and Gao W: miR-1207-5p suppresses laryngeal squamous cell
carcinoma progression by downregulating SKA3 and inhibiting
epithelial-mesenchymal transition. Mol Ther Oncolytics. 22:152–165.
2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhao Y, Lu G, Ke X, Lu X, Wang X, Li H,
Ren M and He S: miR-488 acts as a tumor suppressor gene in gastric
cancer. Tumour Biol. 37:8691–8698. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang D, Shi M, You Q, Zhang Y, Hu Z, Xu J,
Cai Q and Zhu Z: Tumor- and metastasis-promoting roles of miR-488
inhibition via HULC enhancement and EZH2-mediated p53 repression in
gastric cancer. Cell Biol Toxicol. 39:1341–1358. 2023. View Article : Google Scholar
|
34
|
Wang D, Su F and Feng M: Circular RNA
hsa_circ_0000751 serves as a microRNA-488 sponge to suppress
gastric cancer progression via ubiquinol-cytochrome c reductase
core protein 2 regulation. Bioengineered. 12:8793–8808. 2021.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhou C, Tan W, Lv H, Gao F and Sun J:
Hypoxia-inducible microRNA-488 regulates apoptosis by targeting Bim
in osteosarcoma. Cell Oncol (Dordr). 39:463–471. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bu J, Guo R, Xu XZ, Luo Y and Liu JF:
LncRNA SNHG16 promotes epithelial-mesenchymal transition by
upregulating ITGA6 through miR-488 inhibition in osteosarcoma. J
Bone Oncol. 27:1003482021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schmierer B and Hill CS: TGFbeta-SMAD
signal transduction: Molecular specificity and functional
flexibility. Nat Rev Mol Cell Biol. 8:970–982. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ye G, Fu G, Cui S, Zhao S, Bernaudo S, Bai
Y, Ding Y, Zhang Y, Yang BB and Peng C: MicroRNA 376c enhances
ovarian cancer cell survival by targeting activin receptor-like
kinase 7: Implications for chemoresistance. J Cell Sci.
124:359–368. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xu G, Bernaudo S, Fu G, Lee DY, Yang BB
and Peng C: Cyclin G2 is degraded through the ubiquitin-proteasome
pathway and mediates the antiproliferative effect of activin
receptor-like kinase 7. Mol Biol Cell. 19:4968–4979. 2008.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Xu G, Zhong Y, Munir S, Yang BB, Tsang BK
and Peng C: Nodal induces apoptosis and inhibits proliferation in
human epithelial ovarian cancer cells via activin receptor-like
kinase 7. J Clin Endocrinol Metab. 89:5523–5534. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Nguyen DT, Lee E, Alimperti S, Norgard RJ,
Wong A, Lee JJ, Eyckmans J, Stanger BZ and Chen CS: A biomimetic
pancreatic cancer on-chip reveals endothelial ablation via ALK7
signaling. Sci Adv. 5:eaav67892019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Asnaghi L, White DT, Key N, Choi J, Mahale
A, Alkatan H, Edward DP, Elkhamary SM, Al-Mesfer S, Maktabi A, et
al: ACVR1C/SMAD2 signaling promotes invasion and growth in
retinoblastoma. Oncogene. 38:2056–2075. 2019. View Article : Google Scholar :
|
43
|
Wu Y, Yuan MH, Wu HT, Chen WJ, Zhang ML,
Ye QQ, Liu J and Zhang GJ: MicroRNA-488 inhibits proliferation and
motility of tumor cells via downregulating FSCN1, modulated by
Notch3 in breast carcinomas. Cell Death Dis. 11:9122020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Han D, Zhu S, Li X, Li Z, Huang H, Gao W,
Liu Y, Zhu H and Yu X: The NF-κB/miR-488/ERBB2 axis modulates
pancreatic cancer cell malignancy and tumor growth through cell
cycle signaling. Cancer Biol Ther. 23:294–309. 2022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yokoyama T, Nakatake M, Kuwata T, Couzinet
A, Goitsuka R, Tsutsumi S, Aburatani H, Valk PJ, Delwel R and
Nakamura T: MEIS1-mediated transactivation of synaptotagmin-like 1
promotes CXCL12/CXCR4 signaling and leukemogenesis. J Clin Invest.
126:1664–1678. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bhanvadia RR, VanOpstall C, Brechka H,
Barashi NS, Gillard M, McAuley EM, Vasquez JM, Paner G, Chan WC,
Andrade J, et al: MEIS1 and MEIS2 expression and prostate cancer
progression: A role for HOXB13 binding partners in metastatic
disease. Clin Cancer Res. 24:3668–3680. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li Y, Gan Y, Liu J, Li J, Zhou Z, Tian R,
Sun R, Liu J, Xiao Q, Li Y, et al: Downregulation of MEIS1 mediated
by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and
oxaliplatin resistance in colorectal cancer. Signal Transduct
Target Ther. 7:872022. View Article : Google Scholar : PubMed/NCBI
|