
Brain‑heart axis: Neurostimulation techniques in ischemic heart disease (Review)
- Authors:
- Yunnan Liu
- Haimei Yang
- Jian Xiong
- Ying Wei
- Chen Yang
- Qianhua Zheng
- Fanrong Liang
-
Affiliations: The Acupuncture and Massage Institute of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China - Published online on: July 17, 2025 https://doi.org/10.3892/ijmm.2025.5589
- Article Number: 148
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Ralapanawa U and Sivakanesan R: Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: A narrative review. J Epidemiol Glob Health. 11:169–177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pagliaro BR, Cannata F, Stefanini GG and Bolognese L: Myocardial ischemia and coronary disease in heart failure. Heart Fail Rev. 25:53–65. 2020. View Article : Google Scholar | |
Horowitz LN, Harken AH, Josephson ME and Kastor JA: Surgical treatment of ventricular arrhythmias in coronary artery disease. Ann Intern Med. 95:88–97. 1981. View Article : Google Scholar : PubMed/NCBI | |
Sara JD, Eleid MF, Gulati R and Holmes DR Jr: Sudden cardiac death from the perspective of coronary artery disease. Mayo Clin Proc. 89:1685–1698. 2014. View Article : Google Scholar : PubMed/NCBI | |
Russell MW, Huse DM, Drowns S, Hamel EC and Hartz SC: Direct medical costs of coronary artery disease in the United States. Am J Cardiol. 81:1110–1115. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, Kahn J, Afonso L, Williams KA Sr and Flack JM: Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: A Mendelian randomization analysis. J Am Coll Cardiol. 60:2631–2639. 2012. View Article : Google Scholar : PubMed/NCBI | |
Toth PP: High-density lipoprotein and cardiovascular risk. Circulation. 109:1809–1812. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gallo G, Volpe M and Savoia C: Endothelial dysfunction in hypertension: Current concepts and clinical implications. Front Med (Lausanne). 8:7989582022. View Article : Google Scholar : PubMed/NCBI | |
Yang DR, Wang MY, Zhang CL and Wang Y: Endothelial dysfunction in vascular complications of diabetes: A comprehensive review of mechanisms and implications. Front Endocrinol (Lausanne). 15:13592552024. View Article : Google Scholar : PubMed/NCBI | |
Alpert JS: New coronary heart disease risk factors. Am J Med. 136:331–332. 2023. View Article : Google Scholar | |
Malakar AK, Choudhury D, Halder B, Paul P, Uddin A and Chakraborty S: A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 234:16812–16823. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nettleship J, Jones R, Channer K and Jones T: Testosterone and coronary artery disease. Front Horm Res. 37:91–107. 2009. View Article : Google Scholar | |
Bauersachs R, Zeymer U, Brière JB, Marre C, Bowrin K and Huelsebeck M: Burden of coronary artery disease and peripheral artery disease: A literature review. Cardiovasc Ther. 2019:82950542019. View Article : Google Scholar | |
Lee YTH, Fang J, Schieb L, Park S, Casper M and Gillespie C: Prevalence and trends of coronary heart disease in the United States, 2011 to 2018. JAMA Cardiol. 7:459–462. 2022. View Article : Google Scholar : PubMed/NCBI | |
Libby P and Theroux P: Pathophysiology of coronary artery disease. Circulation. 111:3481–3488. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weber C and Noels H: Atherosclerosis: Current pathogenesis and therapeutic options. Nat Med. 17:1410–1422. 2011. View Article : Google Scholar : PubMed/NCBI | |
Attiq A, Afzal S, Ahmad W and Kandeel M: Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol. 966:1763382024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yu Y, Zou W, Zhang M, Wang Y and Gu Y: Association between cardiac autonomic nervous dysfunction and the severity of coronary lesions in patients with stable coronary artery disease. J Int Med Res. 46:3729–3740. 2018. View Article : Google Scholar : PubMed/NCBI | |
Parisi AF, Folland ED and Hartigan P: A comparison of angioplasty with medical therapy in the treatment of single-vessel coronary artery disease. Veterans affairs ACME investigators. N Engl J Med. 326:10–16. 1992. View Article : Google Scholar : PubMed/NCBI | |
Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA, Michler RE, Bonow RO, Doenst T, Petrie MC, et al: Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med. 374:1511–1520. 2016. View Article : Google Scholar : PubMed/NCBI | |
Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, Niccoli G and Crea F: Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J Am Coll Cardiol. 78:1352–1371. 2021. View Article : Google Scholar : PubMed/NCBI | |
Silvani A, Calandra-Buonaura G, Dampney RAL and Cortelli P: Brain-heart interactions: Physiology and clinical implications. Philos Trans A Math Phys Eng Sci. 374:201501812016.PubMed/NCBI | |
Wehrwein EA, Orer HS and Barman SM: Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol. 6:1239–1278. 2016. View Article : Google Scholar : PubMed/NCBI | |
Silva LEV, Silva CAA, Salgado HC and Fazan R Jr: The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics. Am J Physiol Heart Circ Physiol. 312:H469–H477. 2017. View Article : Google Scholar | |
Charkoudian N and Rabbitts JA: Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc. 84:822–830. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kasahara Y, Yoshida C, Saito M and Kimura Y: Assessments of heart rate and sympathetic and parasympathetic nervous activities of normal mouse fetuses at different stages of fetal development using fetal electrocardiography. Front Physiol. 12:6528282021. View Article : Google Scholar : PubMed/NCBI | |
Curtis BM and O'Keefe JH Jr: Autonomic tone as a cardiovascular risk factor: The dangers of chronic fight or flight. Mayo Clin Proc. 77:45–54. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brunner-La Rocca HP, Esler MD, Jennings GL and Kaye DM: Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J. 22:1136–1143. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hadaya J and Ardell JL: Autonomic modulation for cardiovascular disease. Front Physiol. 11:6174592020. View Article : Google Scholar | |
Shen MJ and Zipes DP: Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 114:1004–1021. 2014. View Article : Google Scholar : PubMed/NCBI | |
Malpas SC: Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 90:513–557. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grassi G and Drager LF: Sympathetic overactivity, hypertension and cardiovascular disease: State of the art. Curr Med Res Opin. 40(Suppl 1): S5–S13. 2024. View Article : Google Scholar | |
Bazoukis G, Stavrakis S and Armoundas AA: Vagus nerve stimulation and inflammation in cardiovascular disease: A state-of-the-art review. J Am Heart Assoc. 12:e0305392023. View Article : Google Scholar : PubMed/NCBI | |
Capilupi MJ, Kerath SM and Becker LB: Vagus nerve stimulation and the cardiovascular system. Cold Spring Harb Perspect Med. 10:a0341732020. View Article : Google Scholar | |
De Ferrari GM and Schwartz PJ: Vagus nerve stimulation: from pre-clinical to clinical application: Challenges and future directions. Heart Fail Rev. 16:195–203. 2011. View Article : Google Scholar | |
Deer TR, Levy RM, Kramer J, Poree L, Amirdelfan K, Grigsby E, Staats P, Burton AW, Burgher AH, Obray J, et al: Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: A randomized comparative trial. Pain. 158:669–681. 2017. View Article : Google Scholar : | |
Bernstein SA, Wong B, Vasquez C, Rosenberg SP, Rooke R, Kuznekoff LM, Lader JM, Mahoney VM, Budylin T, Älvstrand M, et al: Spinal cord stimulation protects against atrial fibrillation induced by tachypacing. Heart Rhythm. 9:1426–1433.e3. 2012. View Article : Google Scholar : PubMed/NCBI | |
Torre-Amione G, Alo K, Estep JD, Valderrabano M, Khalil N, Farazi TG, Rosenberg SP, Ness L and Gill J: Spinal cord stimulation is safe and feasible in patients with advanced heart failure: Early clinical experience. Eur J Heart Fail. 16:788–795. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cucinotta F, Swinnen B, Makovac E, Hirschbichler S, Pereira E, Little S, Morgante F and Ricciardi L: Short term cardiovascular symptoms improvement after deep brain stimulation in patients with Parkinson's disease: A systematic review. J Neurol. 271:3764–3776. 2024. View Article : Google Scholar : PubMed/NCBI | |
Clancy JA, Johnson R, Raw R, Deuchars SA and Deuchars J: Anodal transcranial direct current stimulation (tDCS) over the motor cortex increases sympathetic nerve activity. Brain Stimul. 7:97–104. 2014. View Article : Google Scholar | |
Lee H, Lee JH, Hwang MH and Kang N: Repetitive transcranial magnetic stimulation improves cardiovascular autonomic nervous system control: A meta-analysis. J Affect Disord. 339:443–453. 2023. View Article : Google Scholar : PubMed/NCBI | |
De Decker K, Beese U, Staal MJ and Dejongste MJL: Electrical neuromodulation for patients with cardiac diseases. Neth Heart J. 21:91–94. 2013. View Article : Google Scholar : | |
Zipes DP, Neuzil P, Theres H, Caraway D, Mann DL, Mannheimer C, Van Buren P, Linde C, Linderoth B, Kueffer F, et al: Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: The DEFEAT-HF study. JACC Heart Fail. 4:129–136. 2016. View Article : Google Scholar | |
Rodrigues B, Barboza CA, Moura EG, Ministro G, Ferreira-Melo SE, Castaño JB, Nunes WMS, Mostarda C, Coca A, Vianna LC and Moreno-Junior H: Acute and short-term autonomic and hemodynamic responses to transcranial direct current stimulation in patients with resistant hypertension. Front Cardiovasc Med. 9:8534272022. View Article : Google Scholar : PubMed/NCBI | |
Imran TF, Malapero R, Qavi AH, Hasan Z, de la Torre B, Patel YR, Yong RJ, Djousse L, Gaziano JM and Gerhard-Herman MD: Efficacy of spinal cord stimulation as an adjunct therapy for chronic refractory angina pectoris. Int J Cardiol. 227:535–542. 2017. View Article : Google Scholar | |
Palasubramaniam J, Wang X and Peter K: Myocardial infarction-from atherosclerosis to thrombosis. Arterioscler Thromb Vasc Biol. 39:e176–e185. 2019. View Article : Google Scholar : PubMed/NCBI | |
Libby P: Inflammation in atherosclerosis. Nature. 420:868–874. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bradley C and Berry C: Definition and epidemiology of coronary microvascular disease. J Nucl Cardiol. 29:1763–1775. 2022. View Article : Google Scholar : PubMed/NCBI | |
Marinescu MA, Löffler AI, Ouellette M, Smith L, Kramer CM and Bourque JM: Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging. 8:210–220. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez E, Flammer AJ, Lerman LO, Elízaga J, Lerman A and Fernández-Avilés F: Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 34:3175–3181. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bentzon JF, Otsuka F, Virmani R and Falk E: Mechanisms of plaque formation and rupture. Circ Res. 114:1852–1866. 2014. View Article : Google Scholar : PubMed/NCBI | |
Villa AD, Sammut E, Nair A, Rajani R, Bonamini R and Chiribiri A: Coronary artery anomalies overview: The normal and the abnormal. World J Radiol. 8:537–555. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Wu X and Xu C: The 'hands' teaching method in coronary artery anatomy. Asian J Surg. 47:3183–3184. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chilian WM and Marcus ML: Phasic coronary blood flow velocity in intramural and epicardial coronary arteries. Circ Res. 50:775–781. 1982. View Article : Google Scholar : PubMed/NCBI | |
De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, Gould KL and Wijns W: Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but 'normal' coronary angiography. Circulation. 104:2401–2406. 2001. View Article : Google Scholar : PubMed/NCBI | |
Camici PG and Rimoldi OE: The clinical value of myocardial blood flow measurement. J Nucl Med. 50:1076–1087. 2009. View Article : Google Scholar : PubMed/NCBI | |
Duncker DJ, Koller A, Merkus D and Canty JM Jr: Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis. 57:409–422. 2015. View Article : Google Scholar | |
Dedkov EI, Christensen LP, Weiss RM and Tomanek RJ: Reduction of heart rate by chronic beta1-adrenoceptor blockade promotes growth of arterioles and preserves coronary perfusion reserve in postinfarcted heart. Am J Physiol Heart Circ Physiol. 288:H2684–H2693. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pruthi S, Siddiqui E and Smilowitz NR: Beyond coronary artery disease: Assessing the microcirculation. Interv Cardiol Clin. 12:119–129. 2023. | |
Palade GE: Blood capillaries of the heart and other organs. Circulation. 24:368–388. 1961. View Article : Google Scholar : PubMed/NCBI | |
Wolff CB: Normal cardiac output, oxygen delivery and oxygen extraction. Adv Exp Med Biol. 599:169–182. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gandoy-Fieiras N, Gonzalez-Juanatey JR and Eiras S: Myocardium metabolism in physiological and pathophysiological states: Implications of epicardial adipose tissue and potential therapeutic targets. Int J Mol Sci. 21:26412020. View Article : Google Scholar : PubMed/NCBI | |
Hollenberg M and Tager IB: Oxygen uptake efficiency slope: An index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. J Am Coll Cardiol. 36:194–201. 2000. View Article : Google Scholar : PubMed/NCBI | |
Downey JM: Myocardial contractile force as a function of coronary blood flow. Am J Physiol. 230:1–6. 1976. View Article : Google Scholar : PubMed/NCBI | |
Heusch G: Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: Benefit from selective bradycardic agents. Br J Pharmacol. 153:1589–1601. 2008. View Article : Google Scholar : PubMed/NCBI | |
Seligman H, Nijjer SS, van de Hoef TP, de Waard GA, Mejía-Rentería H, Echavarria-Pinto M, Shun-Shin MJ, Howard JP, Cook CM, Warisawa T, et al: Phasic flow patterns of right versus left coronary arteries in patients undergoing clinical physiological assessment. EuroIntervention. 17:1260–1270. 2022. View Article : Google Scholar | |
Comunale G, Peruzzo P, Castaldi B, Razzolini R, Di Salvo G, Padalino MA and Susin FM: Understanding and recognition of the right ventricular function and dysfunction via a numerical study. Sci Rep. 11:37092021. View Article : Google Scholar : PubMed/NCBI | |
Nikorowitsch J, Bei der Kellen R, Haack A, Magnussen C, Prochaska J, Wild PS, Dörr M, Twerenbold R, Schnabel RB, Kirchhof P, et al: Correlation of systolic and diastolic blood pressure with echocardiographic phenotypes of cardiac structure and function from three German population-based studies. Sci Rep. 13:145252023. View Article : Google Scholar : PubMed/NCBI | |
Yang HJ, Dey D, Sykes J, Klein M, Butler J, Kovacs MS, Sobczyk O, Sharif B, Bi X, Kali A, et al: Arterial CO2 as a potent coronary vasodilator: A preclinical PET/MR validation study with implications for cardiac stress testing. J Nucl Med. 58:953–960. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shryock JC, Snowdy S, Baraldi PG, Cacciari B, Spalluto G, Monopoli A, Ongini E, Baker SP and Belardinelli L: A2A-adenosine receptor reserve for coronary vasodilation. Circulation. 98:711–718. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mori K, Nakaya Y, Sakamoto S, Hayabuchi Y, Matsuoka S and Kuroda Y: Lactate-induced vascular relaxation in porcine coronary arteries is mediated by Ca2+-activated K+ channels. J Mol Cell Cardiol. 30:349–356. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tarnow J, Brückner JB, Eberlein HJ, Gethmann JW, Hess W, Patschke D and Wilde J: Blood pH and PaCO2 as chemical factors in myocardial blood flow control. Basic Res Cardiol. 70:685–696. 1975. View Article : Google Scholar : PubMed/NCBI | |
Ishizaka H and Kuo L: Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle. Circ Res. 78:50–57. 1996. View Article : Google Scholar : PubMed/NCBI | |
Knot HJ, Zimmermann PA and Nelson MT: Extracellular K(+)-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. J Physiol. 492:419–430. 1996. View Article : Google Scholar : PubMed/NCBI | |
Dora KA, Borysova L, Ye X, Powell C, Beleznai TZ, Stanley CP, Bruno VD, Starborg T, Johnson E, Pielach A, et al: Human coronary microvascular contractile dysfunction associates with viable synthetic smooth muscle cells. Cardiovasc Res. 118:1978–1992. 2022. View Article : Google Scholar : | |
Zhuge Y, Zhang J, Qian F, Wen Z, Niu C, Xu K, Ji H, Rong X, Chu M and Jia C: Role of smooth muscle cells in cardiovascular disease. Int J Biol Sci. 16:2741–2751. 2020. View Article : Google Scholar : PubMed/NCBI | |
Young MA, Knight DR and Vatner SF: Autonomic control of large coronary arteries and resistance vessels. Prog Cardiovasc Dis. 30:211–234. 1987. View Article : Google Scholar : PubMed/NCBI | |
Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, Casadei B, Chowienczyk P and Shah AM: Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation. 119:2656–2662. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schrör K: Possible role of prostaglandins in the regulation of coronary blood flow. Basic Res Cardiol. 76:239–249. 1981. View Article : Google Scholar : PubMed/NCBI | |
Dharmashankar K and Widlansky ME: Vascular endothelial function and hypertension: Insights and directions. Curr Hypertens Rep. 12:448–455. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, Liu G, Wang Q, Tian K, Lim KS, et al: The functional role of lipoproteins in atherosclerosis: Novel directions for diagnosis and targeting therapy. Aging Dis. 13:491–520. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi Y, Sakai C, Ishida T, Nagata M, Nakano Y and Ishida M: Mitochondrial DNA is a key driver in cigarette smoke extract-induced IL-6 expression. Hypertens Res. 47:88–101. 2024. View Article : Google Scholar | |
Mundi S, Massaro M, Scoditti E, Carluccio MA, van Hinsbergh VWM, Iruela-Arispe ML and De Caterina R: Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res. 114:35–52. 2018. View Article : Google Scholar | |
Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47(8 Suppl): C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aviram M: Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins. Antioxid Redox Signal. 1:585–594. 1999. View Article : Google Scholar | |
Willemsen L and de Winther MP: Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol. 250:705–714. 2020. View Article : Google Scholar : PubMed/NCBI | |
Newby AC and Zaltsman AB: Fibrous cap formation or destruction-the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res. 41:345–360. 1999. View Article : Google Scholar : PubMed/NCBI | |
Allahverdian S, Chehroudi AC, McManus BM, Abraham T and Francis GA: Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation. 129:1551–1559. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rong JX, Shapiro M, Trogan E and Fisher EA: Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci USA. 100:13531–13536. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ajoolabady A, Pratico D, Lin L, Mantzoros CS, Bahijri S, Tuomilehto J and Ren J: Inflammation in atherosclerosis: Pathophysiology and mechanisms. Cell Death Dis. 15:8172024. View Article : Google Scholar : PubMed/NCBI | |
Song B, Bie Y, Feng H, Xie B, Liu M and Zhao F: Inflammatory factors driving atherosclerotic plaque progression new insights. J Transl Int Med. 10:36–47. 2022. View Article : Google Scholar : PubMed/NCBI | |
Francisco J and Del Re DP: Inflammation in myocardial ischemia/reperfusion injury: Underlying mechanisms and therapeutic potential. Antioxidants (Basel). 12:19442023. View Article : Google Scholar : PubMed/NCBI | |
Bennett MR, Sinha S and Owens GK: Vascular smooth muscle cells in atherosclerosis. Circ Res. 118:692–702. 2016. View Article : Google Scholar : PubMed/NCBI | |
Otsuka F, Kramer MCA, Woudstra P, Yahagi K, Ladich E, Finn AV, de Winter RJ, Kolodgie FD, Wight TN, Davis HR, et al: Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: A pathology study. Atherosclerosis. 241:772–782. 2015. View Article : Google Scholar : PubMed/NCBI | |
Badimon L and Vilahur G: Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 276:618–632. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Kar S and Fay WP: Thrombosis, physical activity, and acute coronary syndromes. J Appl Physiol (1985). 111:599–605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ha EJ, Kim Y, Cheung JY and Shim SS: Coronary artery disease in asymptomatic young adults: Its prevalence according to coronary artery disease risk stratification and the CT characteristics. Korean J Radiol. 11:425–432. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dzaye O, Razavi AC, Blaha MJ and Mortensen MB: Evaluation of coronary stenosis versus plaque burden for atherosclerotic cardiovascular disease risk assessment and management. Curr Opin Cardiol. 36:769–775. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kragel AH, Reddy SG, Wittes JT and Roberts WC: Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation. 80:1747–1756. 1989. View Article : Google Scholar : PubMed/NCBI | |
Servoss SJ, Januzzi JL and Muller JE: Triggers of acute coronary syndromes. Prog Cardiovasc Dis. 44:369–380. 2002. View Article : Google Scholar : PubMed/NCBI | |
Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J and Virmani R: Healed plaque ruptures and sudden coronary death: Evidence that subclinical rupture has a role in plaque progression. Circulation. 103:934–940. 2001. View Article : Google Scholar : PubMed/NCBI | |
Amabile N and Veugeois A: Ruptured and healed atherosclerotic plaques: Breaking bad? EuroIntervention. 15:e742–e744. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rittersma SZH, van der Wal AC, Koch KT, Piek JJ, Henriques JP, Mulder KJ, Ploegmakers JP, Meesterman M and de Winter RJ: Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: A pathological thrombectomy study in primary percutaneous coronary intervention. Circulation. 111:1160–1165. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Ortiz A, Badimon JJ, Falk E, Fuster V, Meyer B, Mailhac A, Weng D, Shah PK and Badimon L: Characterization of the relative thrombogenicity of atherosclerotic plaque components: Implications for consequences of plaque rupture. J Am Coll Cardiol. 23:1562–1569. 1994. View Article : Google Scholar : PubMed/NCBI | |
Silvain J, Collet JP, Nagaswami C, Beygui F, Edmondson KE, Bellemain-Appaix A, Cayla G, Pena A, Brugier D, Barthelemy O, et al: Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol. 57:1359–1367. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mohammed AQ, Abdu FA, Liu L, Yin G, Mareai RM, Mohammed AA, Xu Y and Che W: Coronary microvascular dysfunction and myocardial infarction with non-obstructive coronary arteries: Where do we stand? Eur J Intern Med. 117:8–20. 2023. View Article : Google Scholar : PubMed/NCBI | |
Herrmann J, Kaski JC and Lerman A: Coronary microvascular dysfunction in the clinical setting: From mystery to reality. Eur Heart J. 33:2771–2782b. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sinha A, Rahman H and Perera D: Coronary microvascular disease: Current concepts of pathophysiology, diagnosis and management. Cardiovasc Endocrinol Metab. 10:22–30. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rezaeian P, Shufelt CL, Wei J, Pacheco C, Cook-Wiens G, Berman D, Tamarappoo B, Thomson LE, Nelson MD, Anderson RD, et al: Arterial stiffness assessment in coronary microvascular dysfunction and heart failure with preserved ejection fraction: An initial report from the WISE-CVD continuation study. Am Heart J Plus. 41:1003902024.PubMed/NCBI | |
Singh A, Ashraf S, Irfan H, Venjhraj F, Verma A, Shaukat A, Tariq MD and Hamza HM: Heart failure and microvascular dysfunction: An in-depth review of mechanisms, diagnostic strategies, and innovative therapies. Ann Med Surg (Lond). 87:616–626. 2024. View Article : Google Scholar | |
Li M, Qian M, Kyler K and Xu J: Endothelial-vascular smooth muscle cells interactions in atherosclerosis. Front Cardiovasc Med. 5:1512018. View Article : Google Scholar : PubMed/NCBI | |
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T and Jacobo-Albavera L: Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 22:38502021. View Article : Google Scholar : PubMed/NCBI | |
Fleissner F and Thum T: Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal. 15:933–948. 2011. View Article : Google Scholar : | |
Goodwill AG, Dick GM, Kiel AM and Tune JD: Regulation of coronary blood flow. Compr Physiol. 7:321–382. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maddox TM, Stanislawski MA, Grunwald GK, Bradley SM, Ho PM, Tsai TT, Patel MR, Sandhu A, Valle J, Magid DJ, et al: Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA. 312:1754–1763. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heusch G: Myocardial ischemia: Lack of coronary blood flow or myocardial oxygen supply/demand imbalance? Circ Res. 119:194–196. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pasupathy S, Tavella R and Beltrame JF: Myocardial infarction with nonobstructive coronary arteries (MINOCA): The past, present, and future management. Circulation. 135:1490–1493. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ford TJ, Rocchiccioli P, Good R, McEntegart M, Eteiba H, Watkins S, Shaukat A, Lindsay M, Robertson K, Hood S, et al: Systemic microvascular dysfunction in microvascular and vasospastic angina. Eur Heart J. 39:4086–4097. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mohri M, Koyanagi M, Egashira K, Tagawa H, Ichiki T, Shimokawa H and Takeshita A: Angina pectoris caused by coronary microvascular spasm. Lancet. 351:1165–1169. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mehta PK, Thobani A and Vaccarino V: Coronary artery spasm, coronary reactivity, and their psychological context. Psychosom Med. 81:233–236. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hung MJ, Hu P and Hung MY: Coronary artery spasm: Review and update. Int J Med Sci. 11:1161–1171. 2014. View Article : Google Scholar : PubMed/NCBI | |
Igarashi Y, Yamazoe M and Shibata A: Effect of direct intracoronary administration of methylergonovine in patients with and without variant angina. Am Heart J. 121:1094–1100. 1991. View Article : Google Scholar : PubMed/NCBI | |
Frantz RP, Lerman A, Edwards BS, Olson LJ, Higano ST, Schwartz RS, Daly RC, McGregor CG and Rodeheffer RJ: Methylergonovine-induced diffuse coronary spasm in a patient with exercise-induced coronary spasm after heart transplantation. J Heart Lung Transplant. 13:834–839. 1994.PubMed/NCBI | |
Doenst T, Thiele H, Haasenritter J, Wahlers T, Massberg S and Haverich A: The treatment of coronary artery disease. Dtsch Arztebl Int. 119:716–723. 2022.PubMed/NCBI | |
Hennekens CH: Aspirin in the treatment and prevention of cardiovascular disease. Annu Rev Public Health. 18:37–49. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sabatine MS, Wiviott SD, Im K, Murphy SA and Giugliano RP: Efficacy and safety of further lowering of low-density lipoprotein cholesterol in patients starting with very low levels: A meta-analysis. JAMA Cardiol. 3:823–828. 2018. View Article : Google Scholar : PubMed/NCBI | |
Manikandan A, Moharil P, Sathishkumar M, Muñoz-Garay C and Sivakumar A: Therapeutic investigations of novel indoxyl-based indolines: A drug target validation and structure-activity relationship of angiotensin-converting enzyme inhibitors with cardiovascular regulation and thrombolytic potential. Eur J Med Chem. 141:417–426. 2017. View Article : Google Scholar : PubMed/NCBI | |
Godoy LC, Farkouh ME, Austin PC, Shah BR, Qiu F, Jackevicius CA, Wijeysundera HC, Krumholz HM and Ko DT: Association of beta-blocker therapy with cardiovascular outcomes in patients with stable ischemic heart disease. J Am Coll Cardiol. 81:2299–2311. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, An W, Mei S, Zhu Q, Li C, Yang L, Zhao Z and Huo J: Real-world research on beta-blocker usage trends in China and safety exploration based on the FDA adverse event reporting system (FAERS). BMC Pharmacol Toxicol. 25:862024. View Article : Google Scholar : PubMed/NCBI | |
Elliott WJ and Ram CVS: Calcium channel blockers. J Clin Hypertens (Greenwich). 13:687–689. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kalinowski L, Dobrucki LW, Szczepanska-Konkel M, Jankowski M, Martyniec L, Angielski S and Malinski T: Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: A novel mechanism for antihypertensive action. Circulation. 107:2747–2752. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, Bittl JA, Cohen MG, DiMaio JM, Don CW, et al: 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: Executive summary: A report of the American college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation. 145:e4–e17. 2022. | |
Head SJ, Kieser TM, Falk V, Huysmans HA and Kappetein AP: Coronary artery bypass grafting: Part 1-the evolution over the first 50 years. Eur Heart J. 34:2862–2872. 2013. View Article : Google Scholar : PubMed/NCBI | |
Costa MACD, Betero AL, Okamoto J, Schafranski M, Reis ESD and Gomes RZ: Coronary endarterectomy: A case control study and evaluation of early patency rate of endarterectomized arteries. Braz J Cardiovasc Surg. 35:9–15. 2020.PubMed/NCBI | |
González-Montero J, Brito R, Gajardo AI and Rodrigo R: Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol. 10:74–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ and Yellon DM: Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest. 123:92–100. 2013. View Article : Google Scholar : PubMed/NCBI | |
McBride W, Lange RA and Hillis LD: Restenosis after successful coronary angioplasty. Pathophysiology and prevention. N Engl J Med. 318:1734–1737. 1988. View Article : Google Scholar : PubMed/NCBI | |
Smart NA, Dieberg G and King N: Long-term outcomes of on-versus off-pump coronary artery bypass grafting. J Am Coll Cardiol. 71:983–991. 2018. View Article : Google Scholar : PubMed/NCBI | |
Camici PG and Crea F: Coronary microvascular dysfunction. N Engl J Med. 356:830–840. 2007. View Article : Google Scholar : PubMed/NCBI | |
Roffi M, Meier B and Gallino A: Fifty years of percutaneous transluminal angioplasty. Eur Heart J. 45:1779–1780. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ruel M and Chikwe J: Coronary artery bypass grafting: Past and future. Circulation. 150:1067–1069. 2024. View Article : Google Scholar : PubMed/NCBI | |
Rocco E, Grimaldi MC, Maino A, Cappannoli L, Pedicino D, Liuzzo G and Biasucci LM: Advances and challenges in biomarkers use for coronary microvascular dysfunction: From bench to clinical practice. J Clin Med. 11:20552022. View Article : Google Scholar : PubMed/NCBI | |
Soleymani M, Masoudkabir F, Shabani M, Vasheghani-Farahani A, Behnoush AH and Khalaji A: Updates on pharmacologic management of microvascular angina. Cardiovasc Ther. 2022:60802582022. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Zhao W, Kan Y, Ren C and Ji X: From mechanisms to medicine: Neurovascular coupling in the diagnosis and treatment of cerebrovascular disorders: A narrative review. Cells. 14:162024. View Article : Google Scholar | |
Bairey Merz CN, Pepine CJ, Shimokawa H and Berry C: Treatment of coronary microvascular dysfunction. Cardiovasc Res. 116:856–870. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fatima M, Bazarbaev A, Rana A, Khurshid R, Effiom V, Bajwa NK, Nasir A, Candelario K, Tabraiz SA, Colon S, et al: Neuroprotective strategies in coronary artery disease interventions. J Cardiovasc Dev Dis. 12:1432025.PubMed/NCBI | |
Manolis AA, Manolis TA, Apostolopoulos EJ, Apostolaki NE, Melita H and Manolis AS: The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med. 31:290–302. 2021. View Article : Google Scholar | |
Armour JA: Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm. 7:994–996. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brodde OE, Bruck H, Leineweber K and Seyfarth T: Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol. 96:528–538. 2001. View Article : Google Scholar | |
Kawashima T: The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl). 209:425–438. 2005. View Article : Google Scholar : PubMed/NCBI | |
Burnstock G: Autonomic neurotransmission: 60 Years since sir henry dale. Annu Rev Pharmacol Toxicol. 49:1–30. 2009. View Article : Google Scholar | |
Nikolaidis LA, Trumble D, Hentosz T, Doverspike A, Huerbin R, Mathier MA, Shen YT and Shannon RP: Catecholamines restore myocardial contractility in dilated cardiomyopathy at the expense of increased coronary blood flow and myocardial oxygen consumption (MvO2 cost of catecholamines in heart failure). Eur J Heart Fail. 6:409–419. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rajendran PS, Challis RC, Fowlkes CC, Hanna P, Tompkins JD, Jordan MC, Hiyari S, Gabris-Weber BA, Greenbaum A, Chan KY, et al: Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat Commun. 10:19442019. View Article : Google Scholar : PubMed/NCBI | |
Machhada A, Hosford PS, Dyson A, Ackland GL, Mastitskaya S and Gourine AV: Optogenetic stimulation of vagal efferent activity preserves left ventricular function in experimental heart failure. JACC Basic Transl Sci. 5:799–810. 2020. View Article : Google Scholar : PubMed/NCBI | |
Finlay M, Harmer SC and Tinker A: The control of cardiac ventricular excitability by autonomic pathways. Pharmacol Ther. 174:97–111. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kawano H, Okada R and Yano K: Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels. 18:32–39. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yu Y, Zhang H, Zhang M and Liu Y: The role of muscarinic acetylcholine receptor M3 in cardiovascular diseases. Int J Mol Sci. 25:75602024. View Article : Google Scholar | |
Giannino G, Braia V, Griffith Brookles C, Giacobbe F, D'Ascenzo F, Angelini F, Saglietto A, De Ferrari GM and Dusi V: The intrinsic cardiac nervous system: From pathophysiology to therapeutic implications. Biology (Basel). 13:1052024.PubMed/NCBI | |
Armour JA, Murphy DA, Yuan BX, Macdonald S and Hopkins DA: Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 247:289–298. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wake E and Brack K: Characterization of the intrinsic cardiac nervous system. Auton Neurosci. 199:3–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fedele L and Brand T: The intrinsic cardiac nervous system and its role in cardiac pacemaking and conduction. J Cardiovasc Dev Dis. 7:542020.PubMed/NCBI | |
Rysevaite K, Saburkina I, Pauziene N, Noujaim SF, Jalife J and Pauza DH: Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm. 8:448–454. 2011. View Article : Google Scholar | |
Kimura K, Ieda M and Fukuda K: Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res. 110:325–336. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rajendran PS, Nakamura K, Ajijola OA, Vaseghi M, Armour JA, Ardell JL and Shivkumar K: Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol. 594:321–341. 2016. View Article : Google Scholar : | |
Gardner RT, Ripplinger CM, Myles RC and Habecker BA: Molecular mechanisms of sympathetic remodeling and arrhythmias. Circ Arrhythm Electrophysiol. 9:e0013592016. View Article : Google Scholar : PubMed/NCBI | |
Hopkins DA, Macdonald SE, Murphy DA and Armour JA: Pathology of intrinsic cardiac neurons from ischemic human hearts. Anat Rec. 259:424–436. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hardwick JC, Ryan SE, Beaumont E, Ardell JL and Southerland EM: Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton Neurosci. 181:4–12. 2014. View Article : Google Scholar : | |
Vaseghi M, Salavatian S, Rajendran PS, Yagishita D, Woodward WR, Hamon D, Yamakawa K, Irie T, Habecker BA and Shivkumar K: Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction. JCI Insight. 2:e867152017. View Article : Google Scholar : PubMed/NCBI | |
Yperzeele L, van Hooff RJ, Nagels G, De Smedt A, De Keyser J and Brouns R: Heart rate variability and baroreceptor sensitivity in acute stroke: A systematic review. Int J Stroke. 10:796–800. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grilletti JVF, Scapini KB, Bernardes N, Spadari J, Bigongiari A, Mazuchi FAES, Caperuto EC, Sanches IC, Rodrigues B and De Angelis K: Impaired baroreflex sensitivity and increased systolic blood pressure variability in chronic post-ischemic stroke. Clinics (Sao Paulo). 73:e2532018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Venkat P, Seyfried D, Chopp M, Yan T and Chen J: Brain-heart interaction: Cardiac complications after stroke. Circ Res. 121:451–468. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Xiong L, Fan Y, Mok VCT, Wong KS and Leung TW: Stroke outcome prediction by blood pressure variability, heart rate variability, and baroreflex sensitivity. Stroke. 51:1317–1320. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aftyka J, Staszewski J, Dębiec A, Pogoda-Wesołowska A and Żebrowski J: Heart rate variability as a predictor of stroke course, functional outcome, and medical complications: A systematic review. Front Physiol. 14:11151642023. View Article : Google Scholar : PubMed/NCBI | |
Giunta S, Xia S, Pelliccioni G and Olivieri F: Autonomic nervous system imbalance during aging contributes to impair endogenous anti-inflammaging strategies. Geroscience. 46:113–127. 2024. View Article : Google Scholar : | |
Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S and Grassi G: Sympathetic regulation of vascular function in health and disease. Front Physiol. 3:2842012. View Article : Google Scholar : PubMed/NCBI | |
Amiya E, Watanabe M and Komuro I: The relationship between vascular function and the autonomic nervous system. Ann Vasc Dis. 7:109–119. 2014. View Article : Google Scholar : PubMed/NCBI | |
He Z: The control mechanisms of heart rate dynamics in a new heart rate nonlinear time series model. Sci Rep. 10:48142020. View Article : Google Scholar : PubMed/NCBI | |
Valensi P: Autonomic nervous system activity changes in patients with hypertension and overweight: Role and therapeutic implications. Cardiovasc Diabetol. 20:1702021. View Article : Google Scholar : PubMed/NCBI | |
Monahan KD, Feehan RP, Sinoway LI and Gao Z: Contribution of sympathetic activation to coronary vasodilatation during the cold pressor test in healthy men: Effect of ageing. J Physiol. 591:2937–2947. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hoffman JIE and Buckberg GD: The myocardial oxygen supply: Demand index revisited. J Am Heart Assoc. 3:e0002852014. View Article : Google Scholar | |
Hartupee J and Mann DL: Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 14:30–38. 2017. View Article : Google Scholar : | |
Remme WJ: The sympathetic nervous system and ischaemic heart disease. Eur Heart J. 19(Suppl F): F62–F71. 1998.PubMed/NCBI | |
Szczepanska-Sadowska E: Neuromodulation of cardiac ischemic pain: Role of the autonomic nervous system and vasopressin. J Integr Neurosci. 23:492024. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Tai Y, Hu S, Zhang M, Wang R, Zhou W, Tao J, Han Y, Wang Q and Wei W: Bidirectional role of β2-adrenergic receptor in autoimmune diseases. Front Pharmacol. 9:13132018. View Article : Google Scholar | |
Grisanti LA, Perez DM and Porter JE: Modulation of immune cell function by α(1)-adrenergic receptor activation. Curr Top Membr. 67:113–138. 2011. View Article : Google Scholar | |
Perez DM: α1-Adrenergic receptors: insights into potential therapeutic opportunities for COVID-19, heart failure, and Alzheimer's disease. Int J Mol Sci. 24:41882023. View Article : Google Scholar | |
Kinugawa T, Kato M, Ogino K, Osaki S, Tomikura Y, Igawa O, Hisatome I and Shigemasa C: Interleukin-6 and tumor necrosis factor-alpha levels increase in response to maximal exercise in patients with chronic heart failure. Int J Cardiol. 87:83–90. 2003. View Article : Google Scholar | |
Li M, Yao W, Li S and Xi J: Norepinephrine induces the expression of interleukin-6 via β-adrenoreceptor-NAD(P)H oxidase system-NF-κB dependent signal pathway in U937 macrophages. Biochem Biophys Res Commun. 460:1029–1034. 2015. View Article : Google Scholar : PubMed/NCBI | |
Al-Sharea A, Lee MKS, Whillas A, Michell DL, Shihata WA, Nicholls AJ, Cooney OD, Kraakman MJ, Veiga CB, Jefferis AM, et al: Chronic sympathetic driven hypertension promotes atherosclerosis by enhancing hematopoiesis. Haematologica. 104:456–467. 2019. View Article : Google Scholar : | |
Stone PH, Libby P and Boden WE: Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management-the plaque hypothesis: A narrative review. JAMA Cardiol. 8:192–201. 2023. View Article : Google Scholar | |
Wang Y, Anesi J, Maier MC, Myers MA, Oqueli E, Sobey CG, Drummond GR and Denton KM: Sympathetic nervous system and atherosclerosis. Int J Mol Sci. 24:131322023. View Article : Google Scholar : PubMed/NCBI | |
Chen YC, Smith M, Ying YL, Makridakis M, Noonan J, Kanellakis P, Rai A, Salim A, Murphy A, Bobik A, et al: Quantitative proteomic landscape of unstable atherosclerosis identifies molecular signatures and therapeutic targets for plaque stabilization. Commun Biol. 6:2652023. View Article : Google Scholar : PubMed/NCBI | |
Apolloni S and D'Ambrosi N: Inflammation in the CNS and PNS: From molecular basis to therapy. Int J Mol Sci. 24:94172023. View Article : Google Scholar : PubMed/NCBI | |
Zanos S: Closed-loop neuromodulation in physiological and translational research. Cold Spring Harb Perspect Med. 9:a0343142019. View Article : Google Scholar | |
Ali R and Schwalb JM: History and future of spinal cord stimulation. Neurosurgery. 94:20–28. 2024. | |
Ferraro MC, Gibson W, Rice ASC, Vase L, Coyle D and O'Connell NE: Spinal cord stimulation for chronic pain. Lancet Neurol. 21:4052022. View Article : Google Scholar : PubMed/NCBI | |
Augustinsson LE, Linderoth B, Mannheimer C and Eliasson T: Spinal cord stimulation in cardiovascular disease. Neurosurg Clin N Am. 6:157–165. 1995. View Article : Google Scholar : PubMed/NCBI | |
Theofilis P, Oikonomou E, Sagris M, Papageorgiou N, Tsioufis K and Tousoulis D: Novel concepts in the management of angina in coronary artery disease. Curr Pharm Des. 29:1825–1834. 2023. View Article : Google Scholar : PubMed/NCBI | |
Greco S, Auriti A, Fiume D, Gazzeri G, Gentilucci G, Antonini L and Santini M: Spinal cord stimulation for the treatment of refractory angina pectoris: A two-year follow-up. Pacing Clin Electrophysiol. 22:26–32. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jessurun GA, DeJongste MJ, Hautvast RW, Tio RA, Brouwer J, van Lelieveld S and Crijns HJ: Clinical follow-up after cessation of chronic electrical neuromodulation in patients with severe coronary artery disease: A prospective randomized controlled study on putative involvement of sympathetic activity. Pacing Clin Electrophysiol. 22:1432–1439. 1999. View Article : Google Scholar : PubMed/NCBI | |
Eddicks S, Maier-Hauff K, Schenk M, Müller A, Baumann G and Theres H: Thoracic spinal cord stimulation improves functional status and relieves symptoms in patients with refractory angina pectoris: The first placebo-controlled randomised study. Heart. 93:585–590. 2007. View Article : Google Scholar : PubMed/NCBI | |
de Jongste MJ, Hautvast RW, Hillege HL and Lie KI: Efficacy of spinal cord stimulation as adjuvant therapy for intractable angina pectoris: A prospective, randomized clinical study. Working group on neurocardiology. J Am Coll Cardiol. 23:1592–1597. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hautvast RW, Blanksma PK, DeJongste MJ, Pruim J, van der Wall EE, Vaalburg W and Lie KI: Effect of spinal cord stimulation on myocardial blood flow assessed by positron emission tomography in patients with refractory angina pectoris. Am J Cardiol. 77:462–467. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hautvast RW, DeJongste MJ, Staal MJ, van Gilst WH and Lie KI: Spinal cord stimulation in chronic intractable angina pectoris: A randomized, controlled efficacy study. Am Heart J. 136:1114–1120. 1998. View Article : Google Scholar : PubMed/NCBI | |
Vulink NC, Overgaauw DM, Jessurun GA, Tenvaarwerk IA, Kropmans TJ, van der Schans CP, Middel B, Staal MJ and Dejongste MJ: The effects of spinal cord stimulation on quality of life in patients with therapeutically chronic refractory angina pectoris. Neuromodulation. 2:33–40. 1999. View Article : Google Scholar : PubMed/NCBI | |
McNab D, Khan SN, Sharples LD, Ryan JY, Freeman C, Caine N, Tait S, Hardy I and Schofield PM: An open label, single-centre, randomized trial of spinal cord stimulation vs percutaneous myocardial laser revascularization in patients with refractory angina pectoris: The SPiRiT trial. Eur Heart J. 27:1048–1053. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dyer MT, Goldsmith KA, Khan SN, Sharples LD, Freeman C, Hardy I, Buxton MJ and Schofield PM: Clinical and cost-effectiveness analysis of an open label, single-centre, randomised trial of spinal cord stimulation (SCS) versus percutaneous myocardial laser revascularisation (PMR) in patients with refractory angina pectoris: The SPiRiT trial. Trials. 9:402008. View Article : Google Scholar : PubMed/NCBI | |
Bondesson S, Pettersson T, Erdling A, Hallberg IR, Wackenfors A and Edvinsson L: Comparison of patients undergoing enhanced external counterpulsation and spinal cord stimulation for refractory angina pectoris. Coron Artery Dis. 19:627–634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Andréll P, Yu W, Gersbach P, Gillberg L, Pehrsson K, Hardy I, Ståhle A, Andersen C and Mannheimer C: Long-term effects of spinal cord stimulation on angina symptoms and quality of life in patients with refractory angina pectoris-results from the European angina registry link study (EARL). Heart. 96:1132–1136. 2010. View Article : Google Scholar | |
Lanza GA, Grimaldi R, Greco S, Ghio S, Sarullo F, Zuin G, De Luca A, Allegri M, Di Pede F, Castagno D, et al: Spinal cord stimulation for the treatment of refractory angina pectoris: A multicenter randomized single-blind study (the SCS-ITA trial). Pain. 152:45–52. 2011. View Article : Google Scholar | |
Saraste A, Ukkonen H, Varis A, Vasankari T, Tunturi S, Taittonen M, Rautakorpi P, Luotolahti M, Airaksinen KE and Knuuti J: Effect of spinal cord stimulation on myocardial perfusion reserve in patients with refractory angina pectoris. Eur Heart J Cardiovasc Imaging. 16:449–455. 2015. View Article : Google Scholar | |
Latif OA, Nedeljkovic SS and Stevenson LW: Spinal cord stimulation for chronic intractable angina pectoris: A unified theory on its mechanism. Clin Cardiol. 24:533–541. 2001. View Article : Google Scholar : PubMed/NCBI | |
Southerland EM, Milhorn DM, Foreman RD, Linderoth B, DeJongste MJ, Armour JA, Subramanian V, Singh M, Singh K and Ardell JL: Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. Am J Physiol Heart Circ Physio. 292:H311–H327. 2007. View Article : Google Scholar | |
Dale EA, Kipke J, Kubo Y, Sunshine MD, Castro PA, Ardell JL and Mahajan A: Spinal cord neural network interactions: Implications for sympathetic control of the porcine heart. Am J Physiol Heart Circ Physiol. 318:H830–H839. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salavatian S, Kuwabara Y, Wong B, Fritz JR, Howard-Quijano K, Foreman RD, Armour JA, Ardell JL and Mahajan A: Spinal neuromodulation mitigates myocardial ischemia-induced sympathoexcitation by suppressing the intermediolateral nucleus hyperactivity and spinal neural synchrony. Front Neurosci. 17:11802942023. View Article : Google Scholar : PubMed/NCBI | |
Saddic LA, Howard-Quijano K, Kipke J, Kubo Y, Dale EA, Hoover D, Shivkumar K, Eghbali M and Mahajan A: Progression of myocardial ischemia leads to unique changes in immediate-early gene expression in the spinal cord dorsal horn. Am J Physiol Heart Circ Physiol. 315:H1592–H1601. 2018. View Article : Google Scholar : PubMed/NCBI | |
Minisi AJ and Thames MD: Activation of cardiac sympathetic afferents during coronary occlusion. Evidence for reflex activation of sympathetic nervous system during transmural myocardial ischemia in the dog. Circulation. 84:357–367. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ajijola OA and Shivkumar K: Neural remodeling and myocardial infarction: The stellate ganglion as a double agent. J Am Coll Cardiol. 59:962–964. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Ardell JL, Hua F, McAuley RJ, Sutherly K, Daniel JJ and Williams CA: Modulation of cardiac ischemia-sensitive afferent neuron signaling by preemptive C2 spinal cord stimulation: Effect on substance P release from rat spinal cord. Am J Physiol Regul Integr Comp Physiol. 294:R93–R101. 2008. View Article : Google Scholar | |
Law M, Sachdeva R, Darrow D and Krassioukov A: Cardiovascular effects of spinal cord stimulation: The highs, the lows, and the don't knows. Neuromodulation. 27:1164–1176. 2024. View Article : Google Scholar | |
Tse HF, Turner S, Sanders P, Okuyama Y, Fujiu K, Cheung CW, Russo M, Green MDS, Yiu KH, Chen P, et al: Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): First-in-man experience. Heart Rhythm. 12:588–595. 2015. View Article : Google Scholar | |
Wu M, Linderoth B and Foreman RD: Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: A review of experimental studies. Auton Neurosci. 138:9–23. 2008. View Article : Google Scholar | |
Gouveia FV, Warsi NM, Suresh H, Matin R and Ibrahim GM: Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics. 21:e003082024. View Article : Google Scholar : PubMed/NCBI | |
Austelle CW, O'Leary GH, Thompson S, Gruber E, Kahn A, Manett AJ, Short B and Badran BW: A comprehensive review of vagus nerve stimulation for depression. Neuromodulation. 25:309–315. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gidron Y, Kupper N, Kwaijtaal M, Winter J and Denollet J: Vagus-brain communication in atherosclerosis-related inflammation: A neuroimmunomodulation perspective of CAD. Atherosclerosis. 195:e1–e9. 2007. View Article : Google Scholar | |
Giordano F, Zicca A, Barba C, Guerrini R and Genitori L: Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia. 58(Suppl 1): S85–S90. 2017. View Article : Google Scholar | |
Winston GM, Guadix S, Lavieri MT, Uribe-Cardenas R, Kocharian G, Williams N, Sholle E, Grinspan Z and Hoffman CE: Closed-loop vagal nerve stimulation for intractable epilepsy: A single-center experience. Seizure. 88:95–101. 2021. View Article : Google Scholar : PubMed/NCBI | |
Skarpaas TL and Morrell MJ: Intracranial stimulation therapy for epilepsy. Neurotherapeutics. 6:238–243. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun FT and Morrell MJ: Closed-loop neurostimulation: The clinical experience. Neurotherapeutics. 11:553–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ottaviani MM, Vallone F, Micera S and Recchia FA: Closed-loop vagus nerve stimulation for the treatment of cardiovascular diseases: State of the art and future directions. Front Cardiovasc Med. 9:8669572022. View Article : Google Scholar : PubMed/NCBI | |
Vilaine JP, Berdeaux A and Giudicelli JF: Effects of vagal stimulation on regional myocardial flows and ischemic injury in dogs. Eur J Pharmacol. 66:243–247. 1980. View Article : Google Scholar : PubMed/NCBI | |
Zuanetti G, De Ferrari GM, Priori SG and Schwartz PJ: Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res. 61:429–435. 1987. View Article : Google Scholar : PubMed/NCBI | |
Rosenshtraukh L, Danilo P Jr, Anyukhovsky EP, Steinberg SF, Rybin V, Brittain-Valenti K, Molina-Viamonte V and Rosen MR: Mechanisms for vagal modulation of ventricular repolarization and of coronary occlusion-induced lethal arrhythmias in cats. Circ Res. 75:722–732. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ando M, Katare RG, Kakinuma Y, Zhang D, Yamasaki F, Muramoto K and Sato T: Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation. 112:164–170. 2005. View Article : Google Scholar : PubMed/NCBI | |
Uemura K, Li M, Tsutsumi T, Yamazaki T, Kawada T, Kamiya A, Inagaki M, Sunagawa K and Sugimachi M: Efferent vagal nerve stimulation induces tissue inhibitor of metalloproteinase-1 in myocardial ischemia-reperfusion injury in rabbit. Am J Physiol Heart Circ Physiol. 293:H2254–H2261. 2007. View Article : Google Scholar : PubMed/NCBI | |
Del Rio CL, Dawson TA, Clymer BD, Paterson DJ and Billman GE: Effects of acute vagal nerve stimulation on the early passive electrical changes induced by myocardial ischaemia in dogs: Heart rate-mediated attenuation. Exp Physiol. 93:931–944. 2008. View Article : Google Scholar : PubMed/NCBI | |
Beaumont E, Southerland EM, Hardwick JC, Wright GL, Ryan S, Li Y, KenKnight BH, Armour JA and Ardell JL: Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol. 309:H1198–H1206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zamotrinsky A, Afanasiev S, Karpov RS and Cherniavsky A: Effects of electrostimulation of the vagus afferent endings in patients with coronary artery disease. Coron Artery Dis. 8:551–557. 1997.PubMed/NCBI | |
Zamotrinsky AV, Kondratiev B and de Jong JW: Vagal neurostimulation in patients with coronary artery disease. Auton Neurosci. 88:109–116. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Huang B, Po SS, Tan T, Wang M, Zhou L, Meng G, Yuan S, Zhou X, Li X, et al: Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: A proof-of-concept study. JACC Cardiovasc Interv. 10:1511–1520. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bonaz B, Sinniger V and Pellissier S: Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J Physiol. 594:5781–5790. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li S, Qi D, Li JN, Deng XY and Wang DX: Vagus nerve stimulation enhances the cholinergic anti-inflammatory pathway to reduce lung injury in acute respiratory distress syndrome via STAT3. Cell Death Discovery. 7:632021. View Article : Google Scholar : PubMed/NCBI | |
Hachuła M, Kosowski M, Basiak M and Okopień B: Influence of dulaglutide on serum biomarkers of atherosclerotic plaque instability: An interventional analysis of cytokine profiles in diabetic subjects-a pilot study. Medicina (Kaunas). 60:9082024. View Article : Google Scholar | |
Shinlapawittayatorn K, Chinda K, Palee S, Surinkaew S, Thunsiri K, Weerateerangkul P, Chattipakorn S, KenKnight BH and Chattipakorn N: Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm. 10:1700–1707. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Chen K, Zhao W, Hua Y, Bao S, Zhang J, Wu T, Ge G, Yu Y, Sun J and Zhang F: Magnetic vagus nerve stimulation alleviates myocardial ischemia-reperfusion injury by the inhibition of pyroptosis through the M2AChR/OGDHL/ROS axis in rats. J Nanobiotechnology. 21:4212023. View Article : Google Scholar | |
Luo B, Wu Y, Liu SL, Li XY, Zhu HR, Zhang L, Zheng F, Liu XY, Guo LY, Wang L, et al: Vagus nerve stimulation optimized cardiomyocyte phenotype, sarcomere organization and energy metabolism in infarcted heart through FoxO3A-VEGF signaling. Cell Death Dis. 11:9712020. View Article : Google Scholar : PubMed/NCBI | |
Munhoz RP and Albuainain G: Deep brain stimulation: New programming algorithms and teleprogramming. Expert Rev Neurother. 23:467–478. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee DJ, Lozano CS, Dallapiazza RF and Lozano AM: Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg. 131:333–342. 2019. View Article : Google Scholar : PubMed/NCBI | |
Basiago A and Binder DK: Effects of deep brain stimulation on autonomic function. Brain Sci. 6:332016. View Article : Google Scholar : PubMed/NCBI | |
Fontes MAP, Dos Santos Machado LR, Viana ACR, Cruz MH, Nogueira ÍS, Oliveira MGL, Neves CB, Godoy ACV, Henderson LA and Macefield VG: The insular cortex, autonomic asymmetry and cardiovascular control: Looking at the right side of stroke. Clin Auton Res. 34:549–560. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hyam JA, Kringelbach ML, Silburn PA, Aziz TZ and Green AL: The autonomic effects of deep brain stimulation-a therapeutic opportunity. Nat Rev Neurol. 8:391–400. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marins FR, Limborço-Filho M, Xavier CH, Biancardi VC, Vaz GC, Stern JE, Oppenheimer SM and Fontes MA: Functional topography of cardiovascular regulation along the rostrocaudal axis of the rat posterior insular cortex. Clin Exp Pharmacol Physiol. 43:484–493. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, De Ferrari GM, Fishbein MC, Goldberger JJ, Harper RM, et al: Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol. 594:3911–3954. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sumi K, Katayama Y, Otaka T, Obuchi T, Kano T, Kobayashi K, Oshima H, Fukaya C, Yamamoto T, Ogawa Y and Iwasaki K: Effect of subthalamic nucleus deep brain stimulation on the autonomic nervous system in Parkinson's disease patients assessed by spectral analyses of R-R interval variability and blood pressure variability. Stereotact Funct Neurosurg. 90:248–254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Xu J, Wu B, Ling Y, Guo Q, Wang S, Liu L, Jiang N, Chen L and Liu J: Subthalamic nucleus deep brain stimulation treats Parkinson's disease patients with cardiovascular disease comorbidity: A retrospective study of a single center experience. Brain Sci. 13:702022. View Article : Google Scholar | |
Rajkumar S, Venkatraman V, Yang LZ, Parente B, Lee HJ and Lad SP: Short-term health care costs of high-frequency spinal cord stimulation for the treatment of postsurgical persistent spinal pain syndrome. Neuromodulation. 26:1450–1458. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kumar K, Caraway DL, Rizvi S and Bishop S: Current challenges in spinal cord stimulation. Neuromodulation. 17(Suppl 1): S22–S35. 2014. View Article : Google Scholar | |
Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR and Kameneva T: Critical review of transcutaneous vagus nerve stimulation: Challenges for translation to clinical practice. Front Neurosci. 14:2842020. View Article : Google Scholar : PubMed/NCBI | |
Austelle CW, Cox SS, Wills KE and Badran BW: Vagus nerve stimulation (VNS): Recent advances and future directions. Clin Auton Res. 34:529–547. 2024. View Article : Google Scholar : PubMed/NCBI | |
Javan-Noughabi J, Rezapour A, Hajahmadi M and Alipour V: Economic evaluation of single-photon emission-computed tomography versus stress echocardiography in stable chest pain patients. Sci Rep. 12:152232022. View Article : Google Scholar : PubMed/NCBI | |
Hijazi W, Vandenberk B, Rennert-May E, Quinn A, Sumner G and Chew DS: Economic evaluation in cardiac electrophysiology: Determining the value of emerging technologies. Front Cardiovasc Med. 10:11424292023. View Article : Google Scholar : PubMed/NCBI | |
Tabaja H, Yuen J, Tai DBG, Campioli CC, Chesdachai S, DeSimone DC, Hassan A, Klassen BT, Miller KJ, Lee KH and Mahmood M: Deep brain stimulator device infection: The mayo clinic rochester experience. Open Forum Infect Dis. 10:ofac6312022. View Article : Google Scholar | |
Jung IH, Chang KW, Park SH, Chang WS, Jung HH and Chang JW: Complications After deep brain stimulation: A 21-year experience in 426 patients. Front Aging Neurosci. 14:8197302022. View Article : Google Scholar : PubMed/NCBI | |
Olson MC, Shill H, Ponce F and Aslam S: Deep brain stimulation in PD: Risk of complications, morbidity, and hospitalizations: A systematic review. Front Aging Neurosci. 15:12581902023. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Lee D, Christiansen S, Hagedorn JM, Chen Z and Deer T: Spinal cord stimulation in special populations: Best practices from the american society of pain and neuroscience to improve safety and efficacy. J Pain Res. 15:3263–3273. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ki YM, Park HJ, Yi SH, Sim WS and Lee JY: Latent infection after spinal cord stimulation device implantation for complex regional pain syndrome: A case report. Medicine (Baltimore). 102:e337502023. View Article : Google Scholar : PubMed/NCBI | |
Vu PD, Pinkhasova D, Sarwary ZB, Rita Markaryan A, Mousa B, Viswanath O, Robinson CL, Varrassi G, Orhurhu V, Urits I and Hasoon J: Biologic complications associated with cylindrical lead spinal cord stimulator implants: A narrative review. Orthop Rev (Pavia). 16:1234432024. View Article : Google Scholar : PubMed/NCBI | |
Das S, Matias CM, Ramesh S, Velagapudi L, Barbera JP, Katz S, Baldassari MP, Rasool M, Kremens D, Ratliff J, et al: Capturing initial understanding and impressions of surgical therapy for Parkinson's disease. Front Neurol. 12:6059592021. View Article : Google Scholar : PubMed/NCBI | |
Salinas M, Yazdani U, Oblack A, McDaniels B, Ahmed N, Haque B, Pouratian N and Chitnis S: Know DBS: Patient perceptions and knowledge of deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord. 17:175628642412330382024. View Article : Google Scholar : PubMed/NCBI | |
Müller O and Rotter S: Neurotechnology: Current developments and ethical issues. Front Syst Neurosci. 11:932017. View Article : Google Scholar | |
Faltus T, Freise J, Fluck C and Zillmann H: Ethics and regulation of neuronal optogenetics in the European Union. Pflugers Arch. 475:1505–1517. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jog MA, Anderson C, Kubicki A, Boucher M, Leaver A, Hellemann G, Iacoboni M, Woods R and Narr K: Transcranial direct current stimulation (tDCS) in depression induces structural plasticity. Sci Rep. 13:28412023. View Article : Google Scholar : PubMed/NCBI | |
Lapa JDS, Duarte JFS, Campos ACP, Davidson B, Nestor SM, Rabin JS, Giacobbe P, Lipsman N and Hamani C: Adverse effects of deep brain stimulation for treatment-resistant depression: A scoping review. Neurosurgery. 95:509–516. 2024. View Article : Google Scholar : PubMed/NCBI | |
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, et al: Transcranial magnetic stimulation of the brain: What is stimulated?-A consensus and critical position paper. Clin Neurophysiol. 140:59–97. 2022. View Article : Google Scholar : PubMed/NCBI | |
Iseger TA, van Bueren NER, Kenemans JL, Gevirtz R and Arns M: A frontal-vagal network theory for major depressive disorder: Implications for optimizing neuromodulation techniques. Brain Stimul. 13:1–9. 2020. View Article : Google Scholar | |
Jiao Y, Cheng C, Jia M, Chu Z, Song X, Zhang M, Xu H, Zeng X, Sun JB, Qin W and Yang XJ: Neuro-cardiac-guided transcranial magnetic stimulation: Unveiling the modulatory effects of low-frequency and high-frequency stimulation on heart rate. Psychophysiology. 61:e146312024. View Article : Google Scholar : PubMed/NCBI | |
Zou N, Zhou Q, Zhang Y, Xin C, Wang Y, Claire-Marie R, Rong P, Gao G and Li S: Transcutaneous auricular vagus nerve stimulation as a novel therapy connecting the central and peripheral systems: A review. Int J Surg. 110:4993–5006. 2024. View Article : Google Scholar : PubMed/NCBI | |
Afra P, Adamolekun B, Aydemir S and Watson GDR: Evolution of the vagus nerve stimulation (VNS) therapy system technology for drug-resistant epilepsy. Front Med Technol. 3:6965432021. View Article : Google Scholar | |
Habibagahi I, Omidbeigi M, Hadaya J, Lyu H, Jang J, Ardell JL, Bari AA and Babakhani A: Vagus nerve stimulation using a miniaturized wirelessly powered stimulator in pigs. Sci Rep. 12:81842022. View Article : Google Scholar : PubMed/NCBI | |
Mirza KB, Golden CT, Nikolic K and Toumazou C: Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring. Front Neurosci. 13:8082019. View Article : Google Scholar : PubMed/NCBI | |
de Faria GM, Lopes EG, Tobaldini E, Montano N, Cunha TS, Casali KR and de Amorim HA: Advances in non-invasive neuromodulation: Designing closed-loop devices for respiratory-controlled transcutaneous vagus nerve stimulation. Healthcare (Basel). 12:312023. View Article : Google Scholar | |
Van Horn JD, Grafton ST and Miller MB: Individual variability in brain activity: A nuisance or an opportunity? Brain Imaging Behav. 2:327–334. 2008. View Article : Google Scholar | |
Li LM, Uehara K and Hanakawa T: The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 9:1812015. View Article : Google Scholar : PubMed/NCBI | |
Seghier ML and Price CJ: Interpreting and utilising intersubject variability in brain function. Trends Cogn Sci. 22:517–530. 2018. View Article : Google Scholar : PubMed/NCBI | |
Johnson MD, Lim HH, Netoff TI, Connolly AT, Johnson N, Roy A, Holt A, Lim KO, Carey JR, Vitek JL and He B: Neuromodulation for brain disorders: Challenges and opportunities. IEEE Trans Biomed Eng. 60:610–624. 2013. View Article : Google Scholar : PubMed/NCBI | |
Völzke H, Schmidt CO, Baumeister SE, Ittermann T, Fung G, Krafczyk-Korth J, Hoffmann W, Schwab M, Meyer zu Schwabedissen HE, Dörr M, et al: Personalized cardiovascular medicine: Concepts and methodological considerations. Nat Rev Cardiol. 10:308–316. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thompson N, Mastitskaya S and Holder D: Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: Neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve. J Neurosci Methods. 325:1083252019. View Article : Google Scholar : PubMed/NCBI | |
Fitchett A, Mastitskaya S and Aristovich K: Selective neuromodulation of the vagus nerve. Front Neurosci. 15:6858722021. View Article : Google Scholar : PubMed/NCBI | |
Sclocco R, Garcia RG, Gabriel A, Kettner NW, Napadow V and Barbieri R: Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) effects on autonomic outflow in hypertension. Annu Int Conf IEEE Eng Med Biol Soc. 2017:3130–3133. 2017.PubMed/NCBI | |
Garcia RG, Cohen JE, Stanford AD, Gabriel A, Stowell J, Aizley H, Barbieri R, Gitlin D, Napadow V and Goldstein JM: Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) modulates brain response to stress in major depression. J Psychiatr Res. 142:188–197. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cook DN, Thompson S, Stomberg-Firestein S, Bikson M, George MS, Jenkins DD and Badran BW: Design and validation of a closed-loop, motor-activated auricular vagus nerve stimulation (MAAVNS) system for neurorehabilitation. Brain Stimul. 13:800–803. 2020. View Article : Google Scholar : PubMed/NCBI | |
Badran BW, Peng X, Baker-Vogel B, Hutchison S, Finetto P, Rishe K, Fortune A, Kitchens E, O'Leary GH, Short A, et al: Motor activated auricular vagus nerve stimulation as a potential neuromodulation approach for post-stroke motor rehabilitation: A pilot study. Neurorehabil Neural Repair. 37:374–383. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Ling J, Yu L, Liu P and Jiang M: Closed-loop transcutaneous auricular vagal nerve stimulation: Current situation and future possibilities. Front Hum Neurosci. 15:7856202022. View Article : Google Scholar : PubMed/NCBI | |
Forrest IS, Petrazzini BO, Duffy Á, Park JK, Marquez-Luna C, Jordan DM, Rocheleau G, Cho JH, Rosenson RS, Narula J, et al: Machine learning-based marker for coronary artery disease: Derivation and validation in two longitudinal cohorts. Lancet. 401:215–225. 2023. View Article : Google Scholar : | |
Upton R, Mumith A, Beqiri A, Parker A, Hawkes W, Gao S, Porumb M, Sarwar R, Marques P, Markham D, et al: Automated echocardiographic detection of severe coronary artery disease using artificial intelligence. JACC Cardiovasc Imaging. 15:715–727. 2022. View Article : Google Scholar | |
Alizadehsani R, Abdar M, Roshanzamir M, Khosravi A, Kebria PM, Khozeimeh F, Nahavandi S, Sarrafzadegan N and Acharya UR: Machine learning-based coronary artery disease diagnosis: A comprehensive review. Comput Biol Med. 111:1033462019. View Article : Google Scholar : PubMed/NCBI | |
Obst MA, Al-Zubaidi A, Heldmann M, Nolde JM, Blümel N, Kannenberg S and Münte TF: Five weeks of intermittent transcutaneous vagus nerve stimulation shape neural networks: A machine learning approach. Brain Imaging Behav. 16:1217–1233. 2022. View Article : Google Scholar : | |
Tarasenko A, Guazzotti S, Minot T, Oganesyan M and Vysokov N: Determination of the effects of transcutaneous auricular vagus nerve stimulation on the heart rate variability using a machine learning pipeline. Bioelectricity. 4:168–177. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Lai H, Chi H, Fan W, Huang J, Zhang S, Jiang C, Jiang L, Hu Q, Yan X, et al: Multi-modal transcriptomics: integrating machine learning and convolutional neural networks to identify immune biomarkers in atherosclerosis. Front Cardiovasc Med. 11:13974072024. View Article : Google Scholar : PubMed/NCBI |