
Nitric oxide‑mediated S‑Nitrosylation contributes to signaling transduction in human physiological and pathological status (Review)
- Authors:
- Yan Xu
- Xuesong Wang
- Xiaolei Zhou
- Lulu Peng
- Jiayi Yuan
- Yichi Zhang
- Nan Wu
- Junsong Ye
-
Affiliations: Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, First Clinical College of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China - Published online on: July 21, 2025 https://doi.org/10.3892/ijmm.2025.5593
- Article Number: 152
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Fan S, Kong C, Zhou R, Zheng X, Ren D and Yin Z: Protein post-translational modifications based on proteomics: A potential regulatory role in animal science. J Agric Food Chem. 72:6077–6088. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T and Lipton SA: Nitrosative stress in the nervous system: Guidelines for designing experimental strategies to study protein S-Nitrosylation. Neurochem Res. 41:510–514. 2016. View Article : Google Scholar | |
Zhao Q, Ma J, Xie F, Wang Y, Zhang Y, Li H, Sun Y, Wang L, Guo M and Han K: Recent advances in predicting protein S-nitrosylation sites. Biomed Res Int. 2021:55422242021. View Article : Google Scholar : PubMed/NCBI | |
Kaya E, Zinnuroglu M and Tugcu I: Kinesio taping compared to physical therapy modalities for the treatment of shoulder impingement syndrome. Clin Rheumatol. 30:201–207. 2011. View Article : Google Scholar | |
Yu B, Ichinose F, Bloch DB and Zapol WM: Inhaled nitric oxide. Br J Pharmacol. 176:246–255. 2019. View Article : Google Scholar | |
Lundberg JO and Weitzberg E: Nitric oxide signaling in health and disease. Cell. 185:2853–2878. 2022. View Article : Google Scholar : PubMed/NCBI | |
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B and Xie J: Nitric oxide: Physiological functions, delivery, and biomedical applications. Adv Sci (Weinh). 10:e23032592023. View Article : Google Scholar : PubMed/NCBI | |
Alderton WK, Cooper CE and Knowles RG: Nitric oxide synthases: Structure, function and inhibition. Biochemical J. 357:593–615. 2001. View Article : Google Scholar | |
Förstermann U and Sessa WC: Nitric oxide synthases: Regulation and function. Eur Heart J. 33:829–837. 2012. View Article : Google Scholar : | |
Guo Y, Wen J, He A, Qu C, Peng Y, Luo S and Wang X: iNOS contributes to heart failure with preserved ejection fraction through mitochondrial dysfunction and Akt S-nitrosylation. J Adv Res. 43:175–186. 2023. View Article : Google Scholar : | |
Anavi S and Tirosh O: iNOS as a metabolic enzyme under stress conditions. Free Radical Biol Med. 146:16–35. 2020. View Article : Google Scholar | |
Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS and Sessa WC: Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 101:731–736. 1998. View Article : Google Scholar : PubMed/NCBI | |
Radomski MW, Palmer RM and Moncada S: The antiaggregating properties of vascular endothelium: Interactions between prostacyclin and nitric oxide. Br J Pharmacol. 92:639–646. 1987. View Article : Google Scholar : PubMed/NCBI | |
Kubes P, Suzuki M and Granger DN: Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 88:4651–4655. 1991. View Article : Google Scholar : PubMed/NCBI | |
Zhou L and Zhu DY: Neuronal nitric oxide synthase: Structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. 20:223–230. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schwarz PM, Kleinert H and Förstermann U: Potential functional significance of brain-type and muscle-type nitric oxide synthase I expressed in adventitia and media of rat aorta. Arterioscler Thromb Vasc Biol. 19:2584–2590. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fernando V, Zheng X, Walia Y, Sharma V, Letson J and Furuta S: S-Nitrosylation: An emerging paradigm of redox signaling. Antioxidants (Basel). 8:4042019. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Ruiz A, Araújo IM, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S and Serrador J: Specificity in S-nitrosylation: A short-range mechanism for NO signaling? Antioxid Redox Signal. 19:1220–1235. 2013. View Article : Google Scholar : | |
Tegeder I: Nitric oxide mediated redox regulation of protein homeostasis. Cell Signal. 53:348–356. 2019. View Article : Google Scholar | |
Bradley SA and Steinert JR: Nitric oxide-mediated posttranslational modifications: Impacts at the synapse. Oxid Med Cell Longev. 2016:56810362016. View Article : Google Scholar | |
Penna C, Sorge M, Femminò S, Pagliaro P and Brancaccio M: Redox aspects of chaperones in cardiac function. Front Physiol. 9:2162018. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Steenbergen C and Murphy E: S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal. 8:1693–1705. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D and Furuta S: S-Nitrosylation in tumor microenvironment. Int J Mol Sci. 22:46002021. View Article : Google Scholar : PubMed/NCBI | |
Anand P, Hausladen A, Wang YJ, Zhang GF, Stomberski C, Brunengraber H, Hess DT and Stamler JS: Identification of S-nitroso-CoA reductases that regulate protein S-nitrosylation. Proc Natl Acad Sci USA. 111:18572–18577. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hess DT and Stamler JS: Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem. 287:4411–4418. 2012. View Article : Google Scholar : | |
Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ and Loscalzo J: S-nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA. 89:444–448. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hess DT, Matsumoto A, Kim SO, Marshall HE and Stamler JS: Protein S-nitrosylation: Purview and parameters. Nat Rev Mol Cell Biol. 6:150–166. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lancaster JR Jr: Nitric oxide: A brief overview of chemical and physical properties relevant to therapeutic applications. Future Sci OA. 1:Fso592015. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T and Lipton SA: Protein S-Nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci. 37:73–84. 2016. View Article : Google Scholar : | |
Möller MN, Li Q, Vitturi DA, Robinson JM, Lancaster JR Jr and Denicola A: Membrane 'lens' effect: Focusing the formation of reactive nitrogen oxides from the *NO/O2 reaction. Chem Res Toxicol. 20:709–714. 2007. View Article : Google Scholar | |
Jia J, Arif A, Terenzi F, Willard B, Plow EF, Hazen SL and Fox PL: Target-selective protein S-nitrosylation by sequence motif recognition. Cell. 159:623–634. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng S, Shi T, Wang XL, Liang J, Wu H, Xie L, Li Y and Zhao YL: Features of S-nitrosylation based on statistical analysis and molecular dynamics simulation: Cysteine acidity, surrounding basicity, steric hindrance and local flexibility. Mol Biosyst. 10:2597–2606. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Mato I, Castro C, Ruiz FA, Corrales FJ and Mato JM: Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J Biol Chem. 274:17075–17079. 1999. View Article : Google Scholar : PubMed/NCBI | |
Doulias PT, Greene JL, Greco TM, Tenopoulou M, Seeholzer SH, Dunbrack RL and Ischiropoulos H: Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Natl Acad Sci USA. 107:16958–16963. 2010. View Article : Google Scholar : PubMed/NCBI | |
Beltrán B, Orsi A, Clementi E and Moncada S: Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol. 129:953–960. 2000. View Article : Google Scholar : PubMed/NCBI | |
Treuer AV and Gonzalez DR: Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities (review). Mol Med Rep. 11:1555–1565. 2015. View Article : Google Scholar | |
Rizza S and Filomeni G: Chronicles of a reductase: Biochemistry, genetics and physio-pathological role of GSNOR. Free Radic Biol Med. 110:19–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Zhao S, Liu J, Liu X, Sha X, Huang C, Hu L, Sun S, Gao Y, Chen H, et al: Mitochondrial GSNOR alleviates cardiac dysfunction via ANT1 denitrosylation. Circ Res. 133:220–236. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR and Stoyanovsky DA: Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry. 46:8472–8483. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kalinina E and Novichkova M: Glutathione in protein redox modulation through S-Glutathionylation and S-Nitrosylation. Molecules. 26:4352021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wu R, Feng J, Feng T, Wang C, Hu J, Zhan N, Li Y, Ma X, Ren B, et al: Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants. Dev Cell. 53:444–457. 2020. View Article : Google Scholar : PubMed/NCBI | |
Furuta S: Basal S-Nitrosylation is the guardian of tissue homeostasis. Trends Cancer. 3:744–748. 2017. View Article : Google Scholar : PubMed/NCBI | |
Murray CI, Uhrigshardt H, O'meally RN, Cole RN and Van Eyk JE: Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol Cell Proteomics. 11:M111.0134412012. View Article : Google Scholar : | |
Liu LS, Ma H, Zhu JY, Han XX and Zhao B: Quantification of protein S-nitrosylation probed by resonance Raman spectroscopy. Spectroscopy and Spectral Analysis. 40:141–142. 2020.In Chinese. | |
Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P and Snyder SH: Protein S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat Cell Biol. 3:193–197. 2001. View Article : Google Scholar : PubMed/NCBI | |
Forrester MT, Foster MW, Benhar M and Stamler JS: Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med. 46:119–126. 2009. View Article : Google Scholar | |
Qu Z, Meng F, Bomgarden RD, Viner RI, Li J, Rogers JC, Cheng J, Greenlief CM, Cui J, Lubahn DB, et al: Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J Proteome Res. 13:3200–3211. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL and Zahedi RP: Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun. 10:21952019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Shang P, Chen C, Zhou J and Zhu S: Surface plasmon resonance spectroscopy for detection of S-nitrosylated proteins. Methods Mol Biol. 1747:103–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin G, Qu M, Jia B, Wang W, Luo Z, Song CP, Tao WA and Wang P: FAT-switch-based quantitative S-nitrosoproteomics reveals a key role of GSNOR1 in regulating ER functions. Nat Commun. 14:32682023. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, Ching WC, Lin YP and Chen Y: Methods for detection and characterization of protein S-nitrosylation. Methods. 62:138–150. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K and Yamamoto M: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol. 26:221–229. 2006. View Article : Google Scholar : | |
Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M and Maes M: The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev. 84:453–469. 2018. View Article : Google Scholar | |
Palmieri MC, Lindermayr C, Bauwe H, Steinhauser C and Durner J: Regulation of plant glycine decarboxylase by s-nitrosylation and glutathionylation. Plant Physiol. 152:1514–1528. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gietler M, Nykiel M, Orzechowski S, Fettke J and Zagdańska B: Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances. Plant Physiol Biochem. 108:507–518. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ and Chu C: Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol. 158:451–464. 2012. View Article : Google Scholar : | |
Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM and Romero-Puertas MC: S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: Changes under abiotic stress. J Exp Bot. 63:2089–2103. 2012. View Article : Google Scholar : PubMed/NCBI | |
Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ and Buchanan B: Thioredoxin targets in plants: The first 30 years. J Proteomics. 72:452–474. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Vinocur B, Shoseyov O and Altman A: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244–252. 2004. View Article : Google Scholar : PubMed/NCBI | |
Balmant KM, Parker J, Yoo MJ, Zhu N, Dufresne C and Chen S: Redox proteomics of tomato in response to Pseudomonas syringae infection. Hortic Res. 2:150432015. View Article : Google Scholar : PubMed/NCBI | |
Ozawa K, Komatsubara AT, Nishimura Y, Sawada T, Kawafune H, Tsumoto H, Tsuji Y, Zhao J, Kyotani Y, Tanaka T, et al: S-nitrosylation regulates mitochondrial quality control via activation of parkin. Sci Rep. 3:22022013. View Article : Google Scholar : PubMed/NCBI | |
Matthews JR, Botting CH, Panico M, Morris HR and Hay RT: Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res. 24:2236–2242. 1996. View Article : Google Scholar : PubMed/NCBI | |
Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW and Li CY: Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell. 26:63–74. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fourquet S, Guerois R, Biard D and Toledano MB: Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem. 285:8463–8471. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A and Stamler J: OxyR: A molecular code for redox-related signaling. Cell. 109:383–396. 2002. View Article : Google Scholar : PubMed/NCBI | |
Barrett DM, Black SM, Todor H, Schmidt-Ullrich RK, Dawson KS and Mikkelsen RB: Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J Biol Chem. 280:14453–14461. 2005. View Article : Google Scholar : PubMed/NCBI | |
Caviedes A, Maturana B, Corvalán K, Engler A, Gordillo F, Varas-Godoy M, Smalla KH, Batiz LF, Lafourcade C, Kaehne T and Wyneken U: eNOS-dependent S-nitrosylation of the NF-κB subunit p65 has neuroprotective effects. Cell Death Dis. 12:42021. View Article : Google Scholar | |
Sanhueza C, Bennett JC, Valenzuela-Valderrama M, Contreras P, Lobos-González L, Campos A, Wehinger S, Lladser Á, Kiessling R, Leyton L and Quest AFG: Caveolin-1-mediated tumor suppression is linked to reduced HIF1α S-Nitrosylation and transcriptional activity in hypoxia. Cancers (Basel). 12:23492020. View Article : Google Scholar | |
Yi W, Zhang Y, Liu B, Zhou Y, Liao D, Qiao X, Gao D, Xie T, Yao Q, Zhang Y, et al: Protein S-nitrosylation regulates proteostasis and viability of hematopoietic stem cell during regeneration. Cell Rep. 34:1089222021. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Zhao S, Li X, Miao Z, Cao J, Chen Y, Shi Z, Zhang J, Wang D, Chen S, et al: Cathepsin B S-nitrosylation promotes ADAR1-mediated editing of its own mRNA transcript via an ADD1/MATR3 regulatory axis. Cell Res. 33:546–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, Soldner F, Sunico CR, Nagar S, Talantova M, et al: Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell. 155:1351–1364. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou HL, Zhang R, Anand P, Stomberski CT, Qian Z, Hausladen A, Wang L, Rhee EP, Parikh SM, Karumanchi SA and Stamler JS: Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature. 565:96–100. 2019. View Article : Google Scholar | |
Foster MW, Mcmahon TJ and Stamler JS: S-nitrosylation in health and disease. Trends Mol Med. 9:160–168. 2003. View Article : Google Scholar : PubMed/NCBI | |
Foster MW, Hess DT and Stamler JS: Protein S-nitrosylation in health and disease: A current perspective. Trends Mol Med. 15:391–404. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yoon S, Kim M, Lee H, Kang G, Bedi K, Margulies KB, Jain R, Nam KI, Kook H and Eom GH: S-Nitrosylation of histone deacetylase 2 by neuronal nitric oxide synthase as a mechanism of diastolic dysfunction. Circulation. 143:1912–1925. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nogi M, Satoh K, Sunamura S, Kikuchi N, Satoh T, Kurosawa R, Omura J, Elias-Al-Mamun M, Siddique MA, Numano K, et al: Small GTP-binding protein GDP dissociation stimulator prevents thoracic aortic aneurysm formation and rupture by phenotypic preservation of aortic smooth muscle cells. Circulation. 138:2413–2433. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pan L, Lin Z, Tang X, Tian J, Zheng Q, Jing J, Xie L, Chen H, Lu Q, Wang H, et al: S-Nitrosylation of plastin-3 exacerbates thoracic aortic dissection formation via endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol. 40:175–188. 2020. View Article : Google Scholar | |
Zhang Y, Zhang H, Zhao S, Qi Z, He Y, Zhang X, Wu W, Yan K, Hu L, Sun S, et al: S-Nitrosylation of Septin2 exacerbates aortic aneurysm and dissection by coupling the TIAM1-RAC1 axis in macrophages. Circulation. 149:1903–1920. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S and Lipton SA: Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron. 78:596–614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okamoto S, Nakamura T, Cieplak P, Chan SF, Kalashnikova E, Liao L, Saleem S, Han X, Clemente A, Nutter A, et al: S-nitrosylation-mediated redox transcriptional switch modulates neurogenesis and neuronal cell death. Cell Rep. 8:217–228. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z and Lipton SA: S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 324:102–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Su B, Lee HG, Li X, Perry G, Smith MA and Zhu X: Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci. 29:9090–9103. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Oh CK, Liao L, Zhang X, Lopez KM, Gibbs D, Deal AK, Scott HR, Spencer B, Masliah E, et al: Noncanonical transnitrosylation network contributes to synapse loss in Alzheimer's disease. Science. 371:eaaw08432021. View Article : Google Scholar | |
Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL and Dawson TM: S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science. 304:1328–1331. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM and Chung KK: S-nitrosylation of XIAP compromises neuronal survival in Parkinson's disease. Proc Natl Acad Sci USA. 106:4900–4905. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Cao Y, Zhang T, Wang P, Ji D, Liu X, Shi H, Hua L, Yu R and Gao S: Effects of ERK1/2 S-nitrosylation on ERK1/2 phosphorylation and cell survival in glioma cells. Int J Mol Med. 41:1339–1348. 2018. | |
Shen X, Burguillos MA, Osman AM, Frijhoff J, Carrillo-Jiménez A, Kanatani S, Augsten M, Saidi D, Rodhe J, Kavanagh E, et al: Glioma-induced inhibition of caspase-3 in microglia promotes a tumor-supportive phenotype. Nat Immunol. 17:1282–1290. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiu F, Liu Y and Liu Z: The role of protein S-nitrosylation in mitochondrial quality control in central nervous system Diseases. Aging Dis. 25: View Article : Google Scholar : 2024. | |
Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, et al: Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA. 101:10810–10814. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yang S, He P, Schetter AJ, Gaedcke J, Ghadimi BM, Ried T, Yfantis HG, Lee DH, Gaida MM, et al: Endothelial nitric oxide synthase traffic inducer (NOSTRIN) is a negative regulator of disease aggressiveness in pancreatic cancer. Clin Cancer Res. 22:5992–6001. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, He P, Gaida M, Yang S, Schetter AJ, Gaedcke J, Ghadimi BM, Ried T, Yfantis H, Lee D, et al: Inducible nitric oxide synthase enhances disease aggressiveness in pancreatic cancer. Oncotarget. 7:52993–53004. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan C, Li Y, Huang X, Wei M, Huang Y, Tang Z, Huang H, Zhou W, Wang Y and Hu J: Extensive protein S-nitrosylation associated with human pancreatic ductal adenocarcinoma pathogenesis. Cell Death Dis. 10:9142019. View Article : Google Scholar : PubMed/NCBI | |
Deng WW, Zhou ZK, Zhang HY, Du ZX and Wang HQ: Effect of NO on apoptosis of human thyroid cancer cells induced by tumor necrosis factor-related apoptosis-inducing ligand. Chin J Cancer Prev Treat. 15:1691–1694. 2008.In Chinese. | |
Tang CH, Wei W, Hanes MA and Liu L: Hepatocarcinogenesis driven by GSNOR deficiency is prevented by iNOS inhibition. Cancer Res. 73:2897–2904. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Yang Z, Tang CH and Liu L: Targeted deletion of GSNOR in hepatocytes of mice causes nitrosative inactivation of O6-alkylguanine-DNA alkyltransferase and increased sensitivity to genotoxic diethylnitrosamine. Carcinogenesis. 32:973–977. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li G, Guo Y, Song Y, Chen L, Ruan Q, Wang Y, Sun L, Hu Y, Zhou J, et al: Regulation of ezrin tension by S-nitrosylation mediates non-small cell lung cancer invasion and metastasis. Theranostics. 9:2555–2571. 2019. View Article : Google Scholar : PubMed/NCBI | |
Okuda K, Nakahara K, Ito A, Iijima Y, Nomura R, Kumar A, Fujikawa K, Adachi K, Shimada Y, Fujio S, et al: Pivotal role for S-nitrosylation of DNA methyltransferase 3B in epigenetic regulation of tumorigenesis. Nat Commun. 14:6212023. View Article : Google Scholar : PubMed/NCBI | |
Liang F, Wang M, Li J and Guo J: The evolution of S-nitrosylation detection methodology and the role of protein S-nitrosylation in various cancers. Cancer Cell Int. 24:4082024. View Article : Google Scholar : PubMed/NCBI | |
Zhou HL, Grimmett ZW, Venetos NM, Stomberski CT, Qian Z, McLaughlin PJ, Bansal PK, Zhang R, Reynolds JD, Premont RT and Stamler JS: An enzyme that selectively S-nitrosylates proteins to regulate insulin signaling. Cell. 186:5812–5825.e21. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou HL, Premont RT and Stamler JS: The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol. 18:111–128. 2022. View Article : Google Scholar : | |
Li Y, Zhang Y, Wang L, Wang P, Xue Y, Li X, Qiao X, Zhang X, Xu T, Liu G, et al: Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Autophagy. 13:1145–1160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Carvalho-Filho MA, Ropelle ER, Pauli RJ, Cintra DE, Tsukumo DM, Silveira LR, Curi R, Carvalheira JB, Velloso LA and Saad MJ: Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRbeta/IRS-1 and Akt. Diabetologia. 52:2425–2434. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Nakamura T, Cho DH, Gu Z and Lipton SA: S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc Natl Acad Sci USA. 104:18742–18747. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li K, Huang M, Xu P, Wang M, Ye S, Wang Q, Zeng S, Chen X, Gao W, Chen J, et al: Microcystins-LR induced apoptosis via S-nitrosylation of GAPDH in colorectal cancer cells. Ecotoxicol Environ Saf. 190:1100962020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wang D, Kong C, Li S, Xie L, Lin Z, Zheng Y, Zhou J, Han Y and Ji Y: eNOS S-nitrosylation mediated OxLDL-induced endothelial dysfunction via increasing the interaction of eNOS with β-catenin. Biochim Biophys Acta Mol Basic Dis. 1865:1793–1801. 2019. View Article : Google Scholar | |
Ye H, Zhang C, Li L, Li C, Yu J, Ji D, Liang Z, Wu J and Huang Z: A fluorescent probe for imaging and treating S-nitrosation stress in OGD/R cells. Antioxidants (Basel). 14:3112025. View Article : Google Scholar : PubMed/NCBI | |
Marley R, Feelisch M, Holt S and Moore K: A chemiluminescense-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radic Res. 32:1–9. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gow AJ, Chen Q, Hess DT, Day BJ, Ischiropoulos H and Stamler JS: Basal and stimulated protein S-nitrosylation in multiple cell types and tissues. J Biol Chem. 277:9637–9640. 2002. View Article : Google Scholar : PubMed/NCBI | |
Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA and Stamler JS: Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol. 27:557–559. 2009. View Article : Google Scholar : PubMed/NCBI | |
Seneviratne U, Nott A, Bhat VB, Ravindra KC, Wishnok JS, Tsai LH and Tannenbaum SR: S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration. Proc Natl Acad Sci USA. 113:4152–4157. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu J: Effects and mechanisms of S-nitrosylated ANT1 on pathological cardiac hypertrophy. Nanjing Medical University; Master's thesis. 2017, In Chinese. | |
Zamorano P, Marín N, Córdova F, Aguilar A, Meininger C, Boric MP, Golenhofen N, Contreras JE, Sarmiento J, Durán WN and Sánchez FA: S-nitrosylation of VASP at cysteine 64 mediates the inflammation-stimulated increase in microvascular permeability. Am J Physiol Heart Circ Physiol. 313:H66–H71. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang Y, Zhang Y, Lü S, Miao Y, Yang J, Huang S, Ma X, Han L, Deng J, et al: GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation. Redox Biol. 17:386–399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Majumdar U, Manivannan S, Basu M, Ueyama Y, Blaser MC, Cameron E, McDermott MR, Lincoln J, Cole SE, Wood S, et al: Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Sci Adv. 7:eabe37062021. View Article : Google Scholar : PubMed/NCBI | |
Chao ML, Luo S, Zhang C, Zhou X, Zhou M, Wang J, Kong C, Chen J, Lin Z, Tang X, et al: S-nitrosylation-mediated coupling of G-protein alpha-2 with CXCR5 induces Hippo/YAP-dependent diabetes-accelerated atherosclerosis. Nat Commun. 12:44522021. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Ruiz A, Villanueva L, González De Orduña C, López-Ferrer D, Higueras MA, Tarín C, Rodríguez-Crespo I, Vázquez J and Lamas S: S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci USA. 102:8525–8530. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, Dawson TM, Sawa A and Snyder SH: Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci USA. 103:3887–3889. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kwak YD, Ma T, Diao S, Zhang X, Chen Y, Hsu J, Lipton SA, Masliah E, Xu H and Liao FF: NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol Neurodegener. 5:492010. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA, et al: Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell. 39:184–195. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abrams AJ, Farooq A and Wang G: S-nitrosylation of ApoE in Alzheimer's disease. Biochemistry. 50:3405–3407. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Nakamura T, Cao G, Holland EA, McKercher SR and Lipton SA: S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci USA. 108:14330–143305. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD and Snyder SH: GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol. 12:1094–1100. 2010. View Article : Google Scholar : PubMed/NCBI | |
Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas S, Paul C, Godard C, Martinez-Ruiz A, Legembre P, Jeannin JF and Bettaieb A: S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology. 140:2009–2018. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Zheng K, Ma C, Li J, Zhuo L, Huang W, Chen T and Jiang Y: PTPS facilitates compartmentalized LTBP1 S-nitrosylation and promotes tumor growth under hypoxia. Mol Cell. 77:95–107.e5. 2020. View Article : Google Scholar |