
Research progress on mesenchymal stem cell‑derived exosomes in the treatment of osteoporosis induced by knee osteoarthritis (Review)
- Authors:
- Hai-Yan Xue
- Xiang-Lin Shen
- Zhi-Hua Wang
- Hang-Chuan Bi
- Hong-Guo Xu
- Jie Wu
- Ruo-Mei Cui
- Ming-Wei Liu
-
Affiliations: Trauma Center, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China, Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China, Department of Rheumatology, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China, Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China - Published online on: July 30, 2025 https://doi.org/10.3892/ijmm.2025.5601
- Article Number: 160
-
Copyright: © Xue et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Curry ZA, Beling A and Borg-Stein J: Knee osteoarthritis in midlife women: Unique considerations and comprehensive management. Menopause. 29:748–755. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ren JL, Yang J and Hu W: The global burden of osteoarthritis knee: A secondary data analysis of a population-based study. Clin Rheumatol. 44:1769–1810. 2025. View Article : Google Scholar : PubMed/NCBI | |
Lv Y, Sui L, Lv H, Zheng J, Feng H and Jing F: Burden of knee osteoarthritis in China and globally from 1992 to 2021, and projections to 2030: A systematic analysis from the Global Burden of Disease Study 2021. Front Public Health. 13:15431802025. View Article : Google Scholar : PubMed/NCBI | |
Muñoz M, Robinson K and Shibli-Rahhal A: Bone health and osteoporosis prevention and treatment. Clin Obstet Gynecol. 63:770–787. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou G, Zhang X, Gu Z, Zhao J, Luo M and Liu J: Research progress on the treatment of knee osteoarthritis combined with osteoporosis by single-herb Chinese medicine and compound. Front Med (Lausanne). 10:12540862023. View Article : Google Scholar : PubMed/NCBI | |
Qu Y, Chen S, Han M, Gu Z, Zhang Y, Fan T, Zeng M, Ruan G, Cao P, Yang Q, et al: Osteoporosis and osteoarthritis: A bidirectional Mendelian randomization study. Arthritis Res Ther. 25:2422023. View Article : Google Scholar | |
Zamzam M, Alamri MS, Aldarsouni FG, Al Zaid H and Al Ofair AA: Impact of osteoporosis in postmenopausal women with primary knee osteoarthritis. Cureus. 15:e406452023.PubMed/NCBI | |
Zafeiris EP, Babis GC, Zafeiris CP and Chronopoulos E: Association of vitamin D, BMD and knee osteoarthritis in postmenopausal women. J Musculoskelet Neuronal Interact. 21:509–516. 2021.PubMed/NCBI | |
Tsai CJ, Wang YW, Chen JF, Chou CK, Huang CC and Chen YC: Factors associated with osteoarthritis in menopausal women: A registry study of osteoporosis sarcopenia and osteoarthritis. J Family Med Prim Care. 12:1859–1863. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li D, Wan Y, Sun Y and Wu X: Clinical study of correlation between osteoporosis and osteoarthritis of knee joint using gold nanomaterial contrast agent. J Nanosci Nanotechnol. 20:7761–7768. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, Saika A, Yoshida H, Suzuki T, Yamamoto S, et al: Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: The research on osteoarthritis/osteoporosis against disability study. J Bone Miner Metab. 27:620–628. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Tanaka K, Smith ER, Müller H, Wang X, González C, Kim M, Rossi F, Patel J, Nguyen T, et al: Global burden of osteoporosis in knee osteoarthritis: A multicenter analysis of 32,000 patients from 15 countries. Osteoarthritis Cartilage. 33:411–428. 2025. | |
Tanaka K, Zhang L, Kim M, Nguyen T, Wong ML, Chen W, Patel J, Johnson DA and Saito H: Vitamin D deficiency and osteoporosis risk in Asian KOA populations: Substudy of KOA-OP global consortium. J Bone Miner Res. 32:409–425. 2025. | |
Du X, Liu ZY, Tao XX, Mei YL, Zhou DQ, Cheng K, Gao SL, Shi HY, Song C and Zhang XM: Research progress on the pathogenesis of knee osteoarthritis. Orthop Surg. 15:2213–2224. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rizzoli R, Reginster JY, Bruyère O, Cooper C, Kanis JA, Al-Daghri N, Brandi ML, Cavalier E and Sambrook PN: Role of vitamin D and calcium supplementation in the management of osteoporosis: An evidence-based consensus. Aging Clin Exp Res. 32:1873–1887. 2020. | |
Neptune E, Kraus VB, Sharma L, Guermazi A, Roemer F, Nevitt M, Torner J, Felson D, Lewis CE, Lynch J, et al: MRI-based cartilage thickness loss predicts knee replacement within 5 years: A longitudinal analysis from the Osteoarthritis Initiative. Ann Rheum Dis. 81:331–338. 2022. | |
Kawaguchi H, Tanaka S, Yoshimura N, Muraki S, Akune T, Nishimura Y, Oka H, Nakamura K, Cooper CB, Sowers MF, et al: The biomechanical-metabolic paradox in coexisting osteoporosis and knee osteoarthritis. J Clin Endocrinol Metab. 108:e678–e689. 2023. | |
Wilson DR, Baker EL, Chen CX, Fritz MJ, Phillips LS, Schwartz AV, Smith KE and York JD: Polygenic risk score combines with EHR imaging to predict TKA: A machine learning framework. Nat Med. 29:978–989. 2023. | |
Li M, Zhang ZL, Xia WB, Lin H, Cheng XG, Li YZ, Xie ZJ, Wang L, Xu YJ and Liu Y: Prevalence and risk factors of osteoporosis in patients with knee osteoarthritis: A multicenter registry study. Chin J Orthop. 42:1001–1008. 2022. | |
Rousseau MC, Feydy A, Boutron I, Chapurlat R, Bousson V, Vital JM, Beaudoin C, Rannou F, Arden N, Maggi S, et al: Longitudinal association between knee osteoarthritis progression and bone mineral density loss: Results from the French OSTEOLAR cohort. Osteoarthritis Cartilage. 32:621–632. 2024. | |
Luyten FP, Kraus VB, Guermazi A, Arden NK, Bierma-Zeinstra S, Pelletier JP, Hazes J, Lohmander S, Hunter D, Kloppenburg M, et al: ROBUST-Knee: A prospective multicenter registry for biomarker discovery in knee osteoarthritis. Ann Rheum Dis. 82:1557–1567. 2023. | |
Zhao J, Yang W, Liang G, Luo M, Pan J, Liu J and Zeng L: The efficacy and safety of Jinwu Gutong capsule in the treatment of knee osteoarthritis: A meta-analysis of randomized controlled trials. J Ethnopharmacol. 293:1152472022. View Article : Google Scholar : PubMed/NCBI | |
Xiao PL, Hsu CJ, Ma YG, Liu D, Peng R, Xu XH and Lu HD: Prevalence and treatment rate of osteoporosis in patients undergoing total knee and hip arthroplasty: A systematic review and meta-analysis. Arch Osteoporos. 17:162022. View Article : Google Scholar : PubMed/NCBI | |
Ozen G, Kamen DL, Mikuls TR, England BR, Wolfe F and Michaud K: Trends and determinants of osteoporosis treatment and screening in patients with rheumatoid arthritis compared to osteoarthritis. Arthritis Care Res (Hoboken). 70:713–723. 2018. View Article : Google Scholar | |
Vuori IM: Dose-response of physical activity and low back pain, osteoarthritis, and osteoporosis. Med Sci Sports Exerc. 33(6 Suppl): S551–S86. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Wu M, Li Y, Wang J, Yang P, Chen Y, Wang W, Song J and Wang K: The use of bone turnover markers for monitoring the treatment of osteoporosis in postmenopausal females undergoing total knee arthroplasty: A prospective randomized study. J Orthop Surg Res. 16:1952021. View Article : Google Scholar : PubMed/NCBI | |
Jeyaraman M, Muthu S, Shehabaz S, Jeyaraman N, Rajendran RL, Hong CM, Nallakumarasamy A, Packkyarathinam RP, Sharma S, Ranjan R, et al: Current understanding of MSC-derived exosomes in the management of knee osteoarthritis. Exp Cell Res. 418:1132742022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yuan L, Cao H, Guo J, Zhou X and Zeng Z: Application and molecular mechanisms of extracellular vesicles derived from mesenchymal stem cells in osteoporosis. Curr Issues Mol Biol. 44:6346–6367. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Xu X, Su L, Zeng Y, Lin J, Li W, Zou Y, Li S, Lin B, Li Z, et al: Oral administration of Sophora Flavescens-derived exosomes-like nanovesicles carrying CX5461 ameliorates DSS-induced colitis in mice. J Nanobiotechnology. 22:6072024. View Article : Google Scholar : PubMed/NCBI | |
He X, Wang Y, Liu Z, Weng Y, Chen S, Pan Q, Li Y, Wang H, Lin S and Yu H: Osteoporosis treatment using stem cell-derived exosomes: A systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther. 14:722023. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Sui B, Fan W, Lei L, Zhou L, Yang L, Diao Y, Zhang Y, Li Z, Liu J and Hao X: Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p. J Extracell Vesicles. 10:e120562021. View Article : Google Scholar : PubMed/NCBI | |
Hadvina R, Lotfy Khaled M, Akoto T, Zhi W, Karamichos D and Liu Y: Exosomes and their miRNA/protein profile in keratoconus-derived corneal stromal cells. Exp Eye Res. 236:1096422023. View Article : Google Scholar : PubMed/NCBI | |
Kang Y, Xu C, Meng L, Dong X, Qi M and Jiang D: Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater. 18:26–41. 2022.PubMed/NCBI | |
He L, He T, Xing J, Zhou Q, Fan L, Liu C, Chen Y, Wu D, Tian Z, Liu B and Rong L: Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 11:2762020. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Chen P and Zhao B: Role of extracellular vesicles associated with microRNAs and their interplay with cuproptosis in osteoporosis. Noncoding RNA Res. 9:715–719. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lou G, Chen Z, Zheng M and Liu Y: Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 49:e3462017. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Wei S, Wang H, Li Y, Fan S, Cao Y and Wang C: T cell-derived exosomes in tumor immune modulation and immunotherapy. Front Immunol. 14:11300332023. View Article : Google Scholar : PubMed/NCBI | |
Bouchareychas L, Duong P, Covarrubias S, Alsop E, Phu TA, Chung A, Gomes M, Wong D, Meechoovet B, Capili A, et al: Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo. Cell Rep. 32:1078812020. View Article : Google Scholar : PubMed/NCBI | |
Tienda-Vázquez MA, Hanel JM, Márquez-Arteaga EM, Salgado-Álvarez AP, Scheckhuber CQ, Alanis-Gómez JR, Espinoza-Silva JI, Ramos-Kuri M, Hernández-Rosas F, Melchor-Martínez EM and Parra-Saldívar R: Exosomes: A promising strategy for repair, regeneration and treatment of skin disorders. Cells. 12:16252023. View Article : Google Scholar : PubMed/NCBI | |
Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, Pham VH, Ngoc VTN, Chu-Dinh T and Kushekhar K: An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci. 21:7082020. View Article : Google Scholar : PubMed/NCBI | |
Galipeau J and Sensébé L: Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell. 22:824–833. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin C, Bai L, Li Y and Wang K: The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer's disease: Crosstalk between autophagy and apoptosis. Stem Cell Res Ther. 13:902022. View Article : Google Scholar : PubMed/NCBI | |
Wang ZG, He ZY, Liang S, Yang Q, Cheng P and Chen AM: Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 11:5112020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang M, Jing X, Guo W, Hao C, Zhang Y, Gao S, Chen M, Zhang Z, Zhang X, et al: Bone Marrow- and adipose Tissue-derived mesenchymal stem cells: Characterization, differentiation, and applications in cartilage tissue engineering. Crit Rev Eukaryot Gene Expr. 28:285–310. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Xu X, Shen M, Wang Y, Zheng T, Li H, Wang X and Meng J: Transcriptomic heterogeneity of human mesenchymal stem cells derived from bone marrow, dental pulp, adipose tissue, and umbilical cord. Cell Reprogram. 25:162–170. 2023. View Article : Google Scholar : PubMed/NCBI | |
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N and Suganuma N: Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 76:3323–3348. 2019. View Article : Google Scholar : PubMed/NCBI | |
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS and Santulli G: Molecular mechanisms underlying pluripotency and Self-renewal of embryonic stem cells. Int J Mol Sci. 24:83862023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Guo X, Yao H, Zhang Z and Zhao H: Epigenetic control of dental stem cells: Progress and prospects in multidirectional differentiation. Epigenetics Chromatin. 17:372024. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Li X, Leng W, Guo Z, Cai T, Ji X, Xu C, Zhu Z and Lin J: Adipose stem cells in tissue regeneration and repair: From bench to bedside. Regen Ther. 24:547–560. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li N, Gao J, Mi L, Zhang G, Zhang L, Zhang N, Huo R, Hu J and Xu K: Synovial membrane mesenchymal stem cells: Past life, current situation, and application in bone and joint diseases. Stem Cell Res Ther. 11:3812020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Fang J, Liu B, Shao C and Shi Y: Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell. 29:1515–1530. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Dong H, Cao H, Ji X, Luan S and Liu J: Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer's disease. Med Sci Monit. 25:3329–3335. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gonda A, Kabagwira J, Senthil GN and Wall NR: Internalization of exosomes through Receptor-mediated endocytosis. Mol Cancer Res. 17:337–347. 2019. View Article : Google Scholar | |
Krylova SV and Feng D: The machinery of exosomes: Biogenesis, release, and uptake. Int J Mol Sci. 24:13372023. View Article : Google Scholar : PubMed/NCBI | |
Tan F, Li X, Wang Z, Li J, Shahzad K and Zheng J: Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 9:172024. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama Y, Ohmichi T, Kazami S, Iwasaki H, Mano K, Nagumo Y, Kudo F, Ichikawa S, Iwabuchi Y, Kanoh N, et al: Vicenistatin induces early Endosome-derived vacuole formation in mammalian cells. Biosci Biotechnol Biochem. 80:902–910. 2016. View Article : Google Scholar : PubMed/NCBI | |
Scott CC, Vacca F and Gruenberg J: Endosome maturation transport and functions. Semin Cell Dev Biol. 31:2–10. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hessvik NP and Llorente A: Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75:193–208. 2018. View Article : Google Scholar : | |
He C, Zheng S, Luo Y and Wang B: Exosome theranostics: Biology and translational medicine. Theranostics. 8:237–255. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Zhao X, Zhang Q, Zhou F and Tong X: Bone marrow mesenchymal stem cell-derived exosomes promote osteoblast proliferation, migration and inhibit apoptosis by regulating KLF3-AS1/miR-338-3p. BMC Musculoskelet Disord. 25:1222024. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Zhang X, Zhan J, Yan Z, Chen D, Xue X and Pan X: Bone marrow mesenchymal stem cell-derived exosomal miR-206 promotes osteoblast proliferation and differentiation in osteoarthritis by reducing Elf3. J Cell Mol Med. 25:7734–7745. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang B, Shang J, Wang Y, Jia L, She X, Xu X, Zhang D, Guo J and Zhang F: Diabetic and nondiabetic BMSC-derived exosomes affect bone regeneration via regulating miR-17-5p/SMAD7 axis. Int Immunopharmacol. 125:1111902023. View Article : Google Scholar : PubMed/NCBI | |
Su H, Yang Y, Lv W, Li X and Zhao B: Bone marrow mesenchymal stem cell-derived exosomal microRNA-382 promotes osteogenesis in osteoblast via regulation of SLIT2. J Orthop Surg Res. 18:1852023. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Liu G and Wu X: The umbilical cord mesenchymal stem cell-derived exosomal lncRNA H19 improves osteochondral activity through miR-29b-3p/FoxO3 axis. Clin Transl Med. 11:e2552021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Lu C, Zheng S and Hong G: Hydrogel loaded with bone marrow stromal cell-derived exosomes promotes bone regeneration by inhibiting inflammatory responses and angiogenesis. World J Stem Cells. 16:499–511. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, Hu B, Wang Y and Li X: Exosomes secreted by Human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 12:836–849. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhang J, Li Z and Jia G: Bone marrow mesenchymal stem Cell-derived exosomal miR-25 regulates the ubiquitination and degradation of Runx2 by SMURF1 to promote fracture healing in mice. Front Med (Lausanne). 7:5775782020. View Article : Google Scholar | |
Yu H, Zhang J, Liu X and Li Y: microRNA-136-5p from bone marrow mesenchymal stem cell-derived exosomes facilitates fracture healing by targeting LRP4 to activate the Wnt/β-catenin pathway. Bone Joint Res. 10:744–758. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Sun Y, Zeng J, Yuan B, Zhao Y, Geng X, Jia L, Zhou S and Chen X: Exosomal miR-140-5p inhibits osteogenesis by targeting IGF1R and regulating the mTOR pathway in ossification of the posterior longitudinal ligament. J Nanobiotechnol. 20:4522022. View Article : Google Scholar | |
Lu H, Zhang Z, Wang Z, Wang J, Mi T, Jin L, Wu X, Luo J, Liu Y, Liu J, et al: Human mesenchymal stem Cells-derived exosome mimetic vesicles regulation of the MAPK pathway and ROS levels inhibits Glucocorticoid-induced apoptosis in osteoblasts. Stem Cells Int. 2023:55376102023. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Wang D, Li L, Yin H, He G and Zhang Y: Role of microRNA-335 carried by bone marrow mesenchymal stem cells-derived extracellular vesicles in bone fracture recovery. Cell Death Dis. 12:1562021. View Article : Google Scholar : PubMed/NCBI | |
Lu GD, Cheng P, Liu T and Wang Z: BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis. Front Cell Dev Biol. 8:6085212020. View Article : Google Scholar : PubMed/NCBI | |
Jia D, Li Y, Han R, Wang K, Cai G, He C and Yang L: miR-146a-5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF-1-induced cartilage degradation. Mol Med Rep. 19:4388–4400. 2019.PubMed/NCBI | |
Wang X and Thomsen P: Mesenchymal stem cell-derived small extracellular vesicles and bone regeneration. Basic Clin Pharmacol Toxicol. 128:18–36. 2021. View Article : Google Scholar | |
Nicolini A, Ferrari P and Biava PM: Exosomes and cell communication: From Tumour-derived exosomes and their role in tumour progression to the use of exosomal cargo for cancer treatment. Cancers (Basel). 13:8222021. View Article : Google Scholar : PubMed/NCBI | |
Asgarpour K, Shojaei Z, Amiri F, Ai J, Mahjoubin-Tehran M, Ghasemi F, ArefNezhad R, Hamblin MR and Mirzaei H: Exosomal microRNAs derived from mesenchymal stem cells: Cell-to-cell messages. Cell Commun Signal. 18:1492020. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Guo Y, Kong L, Shi J, Liu P, Li R, Geng Y, Gao W, Zhang Z and Fu D: A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioact Mater. 10:207–221. 2021.PubMed/NCBI | |
Shen Z, Huang W, Liu J, Tian J, Wang S and Rui K: Effects of mesenchymal stem Cell-derived exosomes on autoimmune diseases. Front Immunol. 12:7491922021. View Article : Google Scholar : PubMed/NCBI | |
Xie QH, Zheng JQ, Ding JY, Wu YF, Liu L, Yu ZL and Chen G: Exosome-mediated immunosuppression in tumor microenvironments. Cells. 11:19462022. View Article : Google Scholar : PubMed/NCBI | |
Shahir M, Mahmoud Hashemi S, Asadirad A, Varahram M, Kazempour-Dizaji M, Folkerts G, Garssen J, Adcock I and Mortaz E: Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells. J Cell Physiol. 235:7043–7055. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bolandi Z, Mokhberian N, Eftekhary M, Sharifi K, Soudi S, Ghanbarian H and Hashemi SM: Adipose derived mesenchymal stem cell exosomes loaded with miR-10a promote the differentiation of Th17 and Treg from naive CD4+ T cell. Life Sci. 259:1182182020. View Article : Google Scholar | |
Tavasolian F, Hosseini AZ, Rashidi M, Soudi S, Abdollahi E, Momtazi-Borojeni AA, Sathyapalan T and Sahebkar A: The impact of immune cell-derived exosomes on immune response initiation and immune system function. Curr Pharm Des. 27:197–205. 2021. View Article : Google Scholar | |
Yu J, Xue J, Liu C, Zhang A, Qin L, Liu J and Yang Y: MiR-146a-5p accelerates sepsis through dendritic cell activation and glycolysis via targeting ATG7. J Biochem Mol Toxicol. 36:e231512022. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Yan S, Yang C, Yang J, Wang H, Li C, Zhang L, Zhao L, Zhang J, Cheng M, et al: Mesenchymal stem Cells-derived exosomes ameliorate lupus by inducing M2 macrophage polarization and regulatory T cell expansion in MRL/lpr mice. Immunol Invest. 51:1785–1803. 2022. View Article : Google Scholar : PubMed/NCBI | |
Khare D, Or R, Resnick I, Barkatz C, Almogi-Hazan O and Avni B: Mesenchymal stromal Cell-derived exosomes Affect mRNA expression and function of B-lymphocytes. Front Immunol. 9:30532018. View Article : Google Scholar | |
Wang R and Xu B: TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res. 384:113–127. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhang P, Lin M, Li K, Zhang C, He X and Gao K: Pyroptosis: Candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of Bone-related diseases. Stem Cell Res Ther. 16:682025. View Article : Google Scholar : PubMed/NCBI | |
Bhaskara M, Anjorin O and Wang M: Mesenchymal stem Cell-derived exosomal microRNAs in cardiac regeneration. Cells. 12:28152023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Deng X, Ji X, Shi X, Ying Z, Shen K, Xu D and Cheng Z: Mesenchymal stem cell exosomes reverse acute lung injury through Nrf-2/ARE and NF-κB signaling pathways. PeerJ. 8:e99282020. View Article : Google Scholar | |
Hu Y, Qu H, He J, Zhong H, He S, Zhao P, Zhang L, Chen J and Deng C: Human placental mesenchymal stem cell derived exosomes exhibit anti-inflammatory effects via TLR4-mediated NF-κB/MAPK and PI3K signaling pathways. Pharmazie. 77:112–117. 2022.PubMed/NCBI | |
Liu L, Wu Y, Wang P, Shi M, Wang J, Ma H and Sun D: PSC-MSC-Derived exosomes protect against kidney fibrosis in vivo and in vitro through the SIRT6/β-catenin signaling pathway. Int J Stem Cells. 14:310–319. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sevimli M, Inan U, Seyidova N, Guluzade L, Ahmadova Z, Gulec K, Topal AE and Semerci Sevimli T: In vitro chondrogenic induction promotes the expression level of IL-10 via the TGF-β/SMAD and Canonical Wnt/β-catenin signaling pathways in exosomes secreted by human adipose Tissue-derived mesenchymal stem cells. Cell Biochem Biophys. 82:3741–3750. 2024. View Article : Google Scholar | |
Zhao B, Li J, Zhang X, Dai Y, Yang N, Bao Z, Chen Y and Wu X: Exosomal miRNA-181a-5p from the cells of the hair follicle dermal papilla promotes the hair follicle growth and development via the Wnt/β-catenin signaling pathway. Int J Biol Macromol. 207:110–120. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang R and Xu B: TGFβ1-modified MSC-derived exosome attenuates osteoarthritis by inhibiting PDGF-BB secretion and H-type vessel activity in the subchondral bone. Acta Histochem. 124:1519332022. View Article : Google Scholar | |
Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, Li L, Xu S and Xia Y: Umbilical mesenchymal stem Cell-derived Exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis. ACS Appl Mater Interfaces. 13:18472–18487. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, Li Q, Zhao B, Xie Z and Wang Y: Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther. 7:1362016. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK and Toh WS: MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 156:16–27. 2018. View Article : Google Scholar | |
Chen JY, Feng L, Zhang HL, Li JC, Yang XW, Cao XL, Liu L, Qin HY, Liang YM and Han H: Differential regulation of bone marrow-derived endothelial progenitor cells and endothelial outgrowth cells by the Notch signaling pathway. PLoS One. 7:e436432012. View Article : Google Scholar : PubMed/NCBI | |
Simon TM and Jackson DW: Articular cartilage: Injury pathways and treatment options. Sports Med Arthrosc Rev. 26:31–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu Y and Zhao J: Modulated autophagy by MicroRNAs in osteoarthritis chondrocytes. Biomed Res Int. 2019:14841522019. View Article : Google Scholar : PubMed/NCBI | |
Kan HS, Chan PK, Chiu KY, Yan CH, Yeung SS, Ng YL, Shiu KW and Ho T: Nonsurgical treatment of knee osteoarthritis. Hong Kong Med J. 25:127–133. 2019.PubMed/NCBI | |
Schulze-Tanzil G: Intraarticular ligament degeneration is interrelated with cartilage and bone destruction in osteoarthritis. Cells. 8:9902019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Bi B, Cheng G, Zhao Y, Wu H, Zheng M and Cao Z: Melatonin ameliorates osteoarthritis rat cartilage injury by inhibiting matrix metalloproteinases and JAK2/STAT3 signaling pathway. Inflammopharmacology. 31:359–368. 2023. View Article : Google Scholar | |
Kuchynsky K, Stevens P, Hite A, Xie W, Diop K, Tang S, Pietrzak M, Khan S, Walter B and Purmessur D: Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res Ther. 26:122024. View Article : Google Scholar : PubMed/NCBI | |
Radenska-Lopovok SG: Immunomorphological characteristics of the synovial membrane in rheumatic diseases. Arkh Patol. 78:64–68. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shakoor D, Demehri S, Roemer FW, Loeuille D, Felson DT and Guermazi A: Are contrast-enhanced and non-contrast MRI findings reflecting synovial inflammation in knee osteoarthritis: A meta-analysis of observational studies. Osteoarthritis Cartilage. 28:126–136. 2020. View Article : Google Scholar | |
Sanchez-Lopez E, Coras R, Torres A, Lane NE and Guma M: Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 18:258–275. 2022. View Article : Google Scholar : PubMed/NCBI | |
Alivernini S, MacDonald L, Elmesmari A, Finlay S, Tolusso B, Gigante MR, Petricca L, Di Mario C, Bui L, Perniola S, et al: Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat Med. 26:1295–1306. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Lopez E, Coras R, Torres A, Lane NE and Guma M: Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 18:258–275. 2022. View Article : Google Scholar : PubMed/NCBI | |
Harris AB, Lantieri MA, Agarwal AR, Golladay GJ and Thakkar SC: Osteoporosis and total knee arthroplasty: Higher 5-year Implant-Related complications. J Arthroplasty. 39:948–953.e1. 2024. View Article : Google Scholar | |
Iizawa N, Oshima Y, Kataoka T, Watanabe H, Majima T and Takai S: Relationship between severity of varus osteoarthritis of the knee and contracture of medial structures. J Nippon Med Sch. 89:108–113. 2022. View Article : Google Scholar | |
Roemer FW, Jarraya M, Collins JE, Kwoh CK, Hayashi D, Hunter DJ and Guermazi A: tructural phenotypes of knee osteoarthritis: Potential clinical and research relevance. Skeletal Radiol. 52:2021–2030. 2023. View Article : Google Scholar | |
Chen X, Wang Z, Duan N, Zhu G, Schwarz EM and Xie C: Osteoblast-osteoclast interactions. Connect Tissue Res. 59:99–107. 2018. View Article : Google Scholar | |
Wang LT, Chen LR and Chen KH: Hormone-related and Drug-induced osteoporosis: A cellular and molecular overview. Int J Mol Sci. 24:58142023. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Zhou J, Tian L, Dong Y, Yuan H, Zhu E, Li X and Wang B: miR-196b-5p regulates osteoblast and osteoclast differentiation and bone homeostasis by targeting SEMA3A. J Bone Miner Res. 38:1175–1191. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao G, Luo WD, Yuan Y, Lin F, Guo LM, Ma JJ, Chen HB, Tang H and Shu J: LINC02381, a sponge of miR-21, weakens osteogenic differentiation of hUC-MSCs through KLF12-mediated Wnt4 transcriptional repression. J Bone Miner Metab. 40:66–80. 2022. View Article : Google Scholar | |
Brown JP: Long-term treatment of postmenopausal osteoporosis. Endocrinol Metab (Seoul). 36:544–552. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kimmel DB, Vennin S, Desyatova A, Turner JA, Akhter MP, Lappe JM and Recker RR: Bone architecture, bone material properties, and bone turnover in nonosteoporotic postmenopausal women with fragility fracture. Osteoporos Int. 33:1125–1136. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jonasson G and Rythén M: Alveolar bone loss in osteoporosis: A loaded and cellular affair? Clin Cosmet Investig Dent. 8:95–103. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gorwa J, Zieliński J, Wolański W, Michnik R, Larysz D, Dworak LB and Kusy K: Decreased bone mineral density in forearm vs loaded skeletal sites in professional ballet dancers. Med Probl Perform Art. 34:25–32. 2019. View Article : Google Scholar : PubMed/NCBI | |
Whyne CM, Ferguson D, Clement A, Rangrez M and Hardisty M: Biomechanical properties of metastatically involved osteolytic bone. Curr Osteoporos Rep. 18:705–715. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Yin G, Pu X, Wang J, Liao X and Huang Z: Coordination of osteoblastogenesis and osteoclastogenesis by the bone marrow mesenchymal stem Cell-derived extracellular matrix to promote bone regeneration. ACS Appl Bio Mater. 5:2913–2927. 2022. View Article : Google Scholar : PubMed/NCBI | |
Levin VA, Jiang X and Kagan R: Estrogen therapy for osteoporosis in the modern era. Osteoporos Int. 29:1049–1055. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Wang Y, Hao Z, Hu Y and Li J: Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol. 192:1146692021. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Zhang X, Chen X, Wang Z, Zheng S, Cheng Y, Liu S and Hao L: The role of insulin-like growth factor-1 in bone remodeling: A review. Int J Biol Macromol. 238:1241252023. View Article : Google Scholar : PubMed/NCBI | |
Kong Q, Gao S, Li P, Sun H, Zhang Z, Yu X, Deng F and Wang T: Calcitonin gene-related peptide-modulated macrophage phenotypic alteration regulates angiogenesis in early bone healing. Int Immunopharmacol. 130:1117662024. View Article : Google Scholar : PubMed/NCBI | |
Che Ahmad Tantowi NA, Lau SF and Mohamed S: Ficus deltoidea prevented bone loss in preclinical Osteoporosis/osteoarthritis model by suppressing inflammation. Calcif Tissue Int. 103:388–399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Warmink K, Rios JL, van Valkengoed DR, Korthagen NM and Weinans H: Sprague dawley rats show more severe bone loss, osteophytosis and inflammation compared towistar han rats in a high-Fat, High-sucrose diet model of joint damage. Int J Mol Sci. 23:37252022. View Article : Google Scholar : PubMed/NCBI | |
Watanabe S, Matsushita T, Nishida K, Nagai K, Hoshino Y, Matsumoto T and Kuroda R: Knee osteotomy decreases joint inflammation based on synovial histology and synovial fluid analysis. Arthroscopy. 40:830–843. 2024. View Article : Google Scholar | |
Yuce P, Hosgor H, Rencber SF and Yazir Y: Effects of Intra-articular resveratrol injections on cartilage destruction and synovial inflammation in experimental temporomandibular joint osteoarthritis. J Oral Maxillofac Surg. 79:344.e1–344.e12. 2021. View Article : Google Scholar | |
Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, Aurilia C, Marini F, Giusti F and Brandi ML: Oxidative stress and inflammation in osteoporosis: Molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci. 24:37722023. View Article : Google Scholar : PubMed/NCBI | |
Bai RJ, Li YS and Zhang FJ: Osteopontin, a bridge links osteoarthritis and osteoporosis. Front Endocrinol (Lausanne). 13:10125082022. View Article : Google Scholar : PubMed/NCBI | |
Aubonnet R, Ramos J, Recenti M, Jacob D, Ciliberti F, Guerrini L, Gislason MK, Sigurjonsson O, Tsirilaki M, Jónsson H Jr and Gargiulo P: Toward new assessment of knee cartilage degeneration. Cartilage. 14:351–374. 2023. View Article : Google Scholar : | |
Mehana EE, Khafaga AF and El-Blehi SS: The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 234:1167862019. View Article : Google Scholar : PubMed/NCBI | |
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S and Xiao G: Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 8:562023. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee A and Das B: The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. Biomater Biosyst. 13:1000902024.PubMed/NCBI | |
Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G and Zheng T: The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne). 13:10690572022. View Article : Google Scholar : PubMed/NCBI | |
Fukuda K, Miura Y, Maeda T, Hayashi S, Matsumoto T and Kuroda R: Expression profiling of genes in rheumatoid fibroblast-like synoviocytes regulated by Fas ligand via cDNA microarray analysis. Exp Ther Med. 22:10002021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Cheng R, Liu J, Fang J, Wang X, Cui Y, Zhang P and Du B: Linarin protects against Cadmium-induced osteoporosis via reducing oxidative stress and inflammation and altering RANK/RANKL/OPG pathway. Biol Trace Elem Res. 200:3688–3700. 2022. View Article : Google Scholar | |
Wang L, You X, Zhang L, Zhang C and Zou W: Mechanical regulation of bone remodeling. Bone Res. 10:162022. View Article : Google Scholar : PubMed/NCBI | |
Koyama Y, Tateuchi H, Araki K, Fujita K, Umehara J, Kobayashi M and Ichihashi N: Mechanical energy efficiency for stepping up and down in persons with medial knee osteoarthritis. Gait Posture. 69:143–149. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang Z and Liu X: Role and mechanism of mechanical load in the homeostasis of the subchondral bone in knee osteoarthritis: A comprehensive review. J Inflamm Res. 17:9359–9378. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yokota S, Ishizu H, Miyazaki T, Takahashi D, Iwasaki N and Shimizu T: Osteoporosis, osteoarthritis, and subchondral insufficiency fracture: Recent insights. Biomedicines. 12:8432024. View Article : Google Scholar : PubMed/NCBI | |
Im GI and Kim MK: The relationship between osteoarthritis and osteoporosis. J Bone Miner Metab. 32:101–109. 2014. View Article : Google Scholar | |
Wada H, Aso K, Izumi M and Ikeuchi M: The effect of post-menopausal osteoporosis on subchondral bone pathology in a rat model of knee osteoarthritis. Sci Rep. 13:29262023. View Article : Google Scholar | |
Fujita H, Ochi M, Ono M, Aoyama E, Ogino T, Kondo Y and Ohuchi H: Glutathione accelerates osteoclast differentiation and inflammatory bone destruction. Free Radic Res. 53:226–236. 2019. View Article : Google Scholar : PubMed/NCBI | |
Da W, Tao L and Zhu Y: The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Front Endocrinol (Lausanne). 12:6753852021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang Z and Huang X: l-Arginine and allopurinol supplementation attenuates inflammatory mediators in human Osteoblasts-osteoarthritis cells. Int J Biol Macromol. 118:716–721. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kovács B, Vajda E and Nagy EE: Regulatory effects and interactions of the wnt and OPG-RANKL-RANK signaling at the Bone-cartilage interface in osteoarthritis. Int J Mol Sci. 20:46532019. View Article : Google Scholar : PubMed/NCBI | |
Trojian T and Naik H: Arthritis: Knee and hip osteoarthritis. FP Essent. 548:6–12. 2025.PubMed/NCBI | |
Fujii Y, Liu L, Yagasaki L, Inotsume M, Chiba T and Asahara H: Cartilage homeostasis and osteoarthritis. Int J Mol Sci. 23:63162022. View Article : Google Scholar : PubMed/NCBI | |
Geng R, Li J, Yu C, Zhang C, Chen F, Chen J, Ni H, Wang J, Kang K, Wei Z, et al: Knee osteoarthritis: Current status and research progress in treatment (review). Exp Ther Med. 26:4812023. View Article : Google Scholar : PubMed/NCBI | |
Herrero-Beaumont G, Roman-Blas JA, Bruyère O, Cooper C, Kanis J, Maggi S, Rizzoli R and Reginster JY: Clinical settings in knee osteoarthritis: Pathophysiology guides treatment. Maturitas. 96:54–57. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klemm P, Schulz N, Lange U and Bühring B: Diagnostics and treatment of osteoporosis in 2025: An update on current guidelines. Inn Med (Heidelb). 66:603–614. 2025.PubMed/NCBI | |
Boyde A: Scanning electron microscopy and bone. Methods Mol Biol. 2885:621–670. 2025. View Article : Google Scholar : PubMed/NCBI | |
Geusens PP and van den Bergh JP: Osteoporosis and osteoarthritis: Shared mechanisms and epidemiology. Curr Opin Rheumatol. 28:97–103. 2016. View Article : Google Scholar : PubMed/NCBI | |
Musyuni P, Kumar D, Pandita D, Jain GK, Nagpal M and Aggarwal G: Application of nutraceuticals in managing osteoarthritis and osteoporosis. Recent Pat Food Nutr Agric. 12:88–103. 2021. View Article : Google Scholar | |
Tanaka Y, Nakayamada S and Okada Y: Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy. 4:325–328. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Qu L, Yang L, Xie X, Song L and Xie Q: An injectable hydrogel loaded with Icariin attenuates cartilage damage in rabbit knee osteoarthritis via Wnt/β-catenin signaling pathway. Int Immunopharmacol. 145:1137252025. View Article : Google Scholar | |
Smith AE, Sigurbjörnsdóttir ES, Steingrímsson E and Sigurbjörnsdóttir S: Hedgehog signalling in bone and osteoarthritis: The role of Smoothened and cholesterol. FEBS J. 290:3059–3075. 2023. View Article : Google Scholar | |
Scotece M, Koskinen-Kolasa A, Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Moilanen E and Vuolteenaho K: Novel adipokine associated with OA: Retinol binding protein 4 (RBP4) is produced by cartilage and is correlated with MMPs in osteoarthritis patients. Inflamm Res. 69:415–421. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Zhong JY, Guo B, Lin X, Wu F, Li FX, Shan SK, Zheng MH, Wang Y, Xu QS, et al: H19 promotes osteoblastic transition by acting as ceRNA of miR-140-5p in vascular smooth muscle cells. Front Cell Dev Biol. 10:7743632022. View Article : Google Scholar : PubMed/NCBI | |
Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C and Tsuda E: Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 39:19–26. 2021. View Article : Google Scholar | |
Nassar ES, Elnemr R, Shaaban A, Elhameed AA and Taleb RSZ: Association between AXIN1 gene polymorphism (rs9921222) of WNT signaling pathway and susceptibility to osteoporosis in Egyptian patients: A case-control study. BMC Musculoskelet Disord. 24:5272023. View Article : Google Scholar : PubMed/NCBI | |
Falchetti A: Genetics of osteoarticular disorders, Florence, Italy, 22-23 February 2002. Arthritis Res. 4:326–331. 2002. View Article : Google Scholar : PubMed/NCBI | |
Findlay DM and Atkins GJ: Osteoblast-chondrocyte interactions in osteoarthritis. Curr Osteoporos Rep. 12:127–134. 2014. View Article : Google Scholar : PubMed/NCBI | |
Delgado-Calle J, Fernández AF, Sainz J, Zarrabeitia MT, Sañudo C, García-Renedo R, Pérez-Núñez MI, García-Ibarbia C, Fraga MF and Riancho JA: Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 65:197–205. 2013. View Article : Google Scholar | |
Boroňová I, Bernasovská J, Mačeková S, Petrejčíková E, Tomková Z, Kľoc J, Poráčová J, Blaščáková MM and Litavcová E: TNFRSF11B gene polymorphisms, bone mineral density, and fractures in Slovak postmenopausal women. J Appl Genet. 56:57–63. 2015. View Article : Google Scholar | |
Marozik P, Rudenka A, Kobets K and Rudenka E: Vitamin D status, bone mineral density, and VDR gene polymorphism in a cohort of belarusian postmenopausal women. Nutrients. 13:8372021. View Article : Google Scholar : PubMed/NCBI | |
Carlson KM, Yamaga KM, Reinker KA, Hsia YE, Carpenter C, Abe LM, Perry AK, Person DA, Marchuk DA and Raney EM: Precocious osteoarthritis in a family with recurrent COL2A1 mutation. J Rheumatol. 33:1133–1116. 2006.PubMed/NCBI | |
van der Kraan PM: Factors that influence outcome in experimental osteoarthritis. Osteoarthritis Cartilage. 25:369–375. 2017. View Article : Google Scholar | |
Ntanasis-Stathopoulos J, Tzanninis JG, Philippou A and Koutsilieris M: Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact. 13:133–146. 2013.PubMed/NCBI | |
Czogała W, Czogała M, Strojny W, Wątor G, Wołkow P, Wójcik M, Bik Multanowski M, Tomasik P, Wędrychowicz A, Kowalczyk W, et al: Methylation and expression of FTO and PLAG1 genes in childhood obesity: Insight into anthropometric parameters and Glucose-lipid metabolism. Nutrients. 13:16832021. View Article : Google Scholar | |
Gilbert SJ, Jones R, Egan BJ, Bonnet CS, Evans SL and Mason DJ: Investigating mechanical and inflammatory pathological mechanisms in osteoarthritis using MSC-derived osteocyte-like cells in 3D. Front Endocrinol (Lausanne). 15:13590522024. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Liu W, Zhao J, Ma X, Shen L, Zhang Y, Jin F and Jin Y: Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway. Biochim Biophys Acta. 1860:2211–2219. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao YH, Zhao CW, Liu B, Dong N, Ding L, Li YR, Liu JG, Feng W, Qi X and Jin XH: An update on the association between metabolic syndrome and osteoarthritis and on the potential role of leptin in osteoarthritis. Cytokine. 129:1550432020. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Sun B, Sammani S, Dudek SM, Belvitch P, Camp SM, Zhang D, Bime C and Garcia JGN: Genetic and epigenetic regulation of cortactin (CTTN) by inflammatory factors and mechanical stress in human lung endothelial cells. Biosci Rep. 44:BSR202319342024. View Article : Google Scholar : PubMed/NCBI | |
Kania K, Colella F, Riemen AHK, Wang H, Howard KA, Aigner T, Dell'Accio F, Capellini TD, Roelofs AJ and De Bari C: Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis. Sci Rep. 10:1572020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chen Y, Zhang C, Zhang X, Xia T, Han J, Song S, Xu C and Chen F: Effects of icariin on the fracture healing in young and old rats and its mechanism. Pharm Biol. 59:1245–1255. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stathopoulou MG, Dedoussis GV, Trovas G, Katsalira A, Hammond N, Deloukas P and Lyritis GP: Low-density lipoprotein receptor-related protein 5 polymorphisms are associated with bone mineral density in Greek postmenopausal women: An interaction with calcium intake. J Am Diet Assoc. 110:1078–1083. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Zhou J, Wang Z, Tao H, Bai J, Ge G, Li W, Zhang W, Hao Y, Yang X and Geng D: Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway. Bioorg Chem. 113:1049782021. View Article : Google Scholar | |
Qiu B, Xu X, Yi P and Hao Y: Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-kB and miR-143/ROCK1/TLR9 signalling pathways. J Cell Mol Med. 24:10855–10865. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin C, Zhang Z, Fu H, Iqbal S, Liu H, et al: MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6. J Nanobiotechnol. 21:4862023. View Article : Google Scholar | |
Liu Y, Lin L, Zou R, Wen C, Wang Z and Lin F: MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 17:2411–2422. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jammes M, Cassé F, Velot E, Bianchi A, Audigié F, Contentin R and Galéra P: Pro-inflammatory cytokine priming and purification method modulate the impact of exosomes derived from equine bone marrow mesenchymal stromal cells on equine articular chondrocytes. Int J Mol Sci. 24:141692023. View Article : Google Scholar : PubMed/NCBI | |
Cosenza S, Ruiz M, Toupet K, Jorgensen C and Noël D: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 7:162142017. View Article : Google Scholar : PubMed/NCBI | |
Qi H, Liu DP, Xiao DW, Tian DC, Su YW and Jin SF: Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways. In Vitro Cell Dev Biol Anim. 55:203–210. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 8:1892017. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Ren J and Qi S: Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell Tissue Res. 381:99–114. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen LQ, Ma S, Yu J, Zuo DC, Yin ZJ, Li FY, He X, Peng HT, Shi XQ, Huang WJ, et al: Human umbilical cord mesenchymal stem cell-derived exosomal miR-199a-3p inhibits the MAPK4/NF-κB signaling pathway to relieve osteoarthritis. World J Stem Cells. 17:1039192025. View Article : Google Scholar | |
Sotozawa M, Kumagai K, Ishikawa K, Yamada S, Inoue Y and Inaba Y: Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee. J Orthop Surg Res. 18:252023. View Article : Google Scholar : PubMed/NCBI | |
Adam MS, Zhuang H, Ren X, Zhang Y and Zhou P: The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front Endocrinol (Lausanne). 15:13935502024. View Article : Google Scholar : PubMed/NCBI | |
Jiang K, Jiang T, Chen Y and Mao X: Mesenchymal stem Cell-derived exosomes modulate chondrocyte glutamine metabolism to alleviate osteoarthritis progression. Mediators Inflamm. 2021:29791242021. View Article : Google Scholar | |
Bao C and He C: The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch Biochem Biophys. 710:1090022021. View Article : Google Scholar : PubMed/NCBI | |
Zou J, Yang W, Cui W, Li C, Ma C, Ji X, Hong J, Qu Z, Chen J, Liu A and Wu H: Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology. 21:142023. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Chen Z, Liu M, Huang W, Zou F, Ma X, Tao J, Guo J, Xia X, Lyu F, et al: MSC-Derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 axis. Mol Ther Nucleic Acids. 22:601–614. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zou R, Wang Z, Wen C, Zhang F and Lin F: Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J. 475:3629–3638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhao S, Sun Z, Zhai C, Xia J, Wen C and Zhang Y and Zhang Y: Enhancement of the therapeutic efficacy of mesenchymal stem cell-derived exosomes in osteoarthritis. Cell Mol Biol Lett. 28:752023. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Tian G, Yang Z, Gao X, Wang F, Li J, Tian Z, Huang B, Wei F, Sang X, et al: Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact Mater. 6:2711–2728. 2021.PubMed/NCBI | |
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC and Zhang CQ: Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 7:180–195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Wu S, Chen W and Li YP: The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res. 34:101–123. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sani M, Hosseinie R, Latifi M, Shadi M, Razmkhah M, Salmannejad M, Parsaei H and Talaei-Khozani T: Engineered artificial articular cartilage made of decellularized extracellular matrix by mechanical and IGF-1 stimulation. Biomater Adv. 139:2130192022. View Article : Google Scholar : PubMed/NCBI | |
Löfvall H, Newbould H, Karsdal MA, Dziegiel MH, Richter J, Henriksen K and Thudium CS: Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes. Arthritis Res Ther. 20:672018. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Liu Y, Xu F, Shen R, Wang M, Zhang Y, Liu C and Zheng G: IL-27-induced, MSC-derived exosomes promote MMP3 expression through the miR-206/L3MBTL4 axis in synovial fibroblasts. Altern Ther Health Med. 29:680–688. 2023.PubMed/NCBI | |
Ungsudechachai T, Honsawek S, Jittikoon J and Udomsinprasert W: Clusterin is associated with systemic and synovial inflammation in knee osteoarthritis. Cartilage. 13(1_Suppl): S1557S–S1565S. 2021. View Article : Google Scholar | |
Vilá S: Inflammation in osteoarthritis. P R Health Sci J. 36:123–129. 2017.PubMed/NCBI | |
Rosini S, Saviola G, Comini L and Molfetta L: Mesenchymal cells are a promising-But Still Unsatisfying-Anti-Inflammatory therapeutic strategy for osteoarthritis: A narrative review. Curr Rheumatol Rev. 19:287–293. 2023. View Article : Google Scholar | |
Qiu M, Liu D and Fu Q: MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis by targeting HMGB1. Life Sci. 269:1189872021. View Article : Google Scholar | |
Chen YH, Hsieh SC, Chen WY, Li KJ, Wu CH, Wu PC, Tsai CY and Yu CL: Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the anti-inflammatory factors TGFβ1, IL-10 and soluble TNF receptors and the intracellular cytokine negative regulators CIS and SOCS3. Ann Rheum Dis. 70:1655–1663. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Yang L, Tian L, Ji X, Yang L and Li L: Sphingosine 1-phosphate (S1P)/S1P Receptor2/3 axis promotes inflammatory M1 polarization of bone Marrow-Derived Monocyte/Macrophagevia G(α)i/o/PI3K/JNK pathway. Cell Physiol Biochem. 49:1677–1693. 2018. View Article : Google Scholar | |
Ruiz-Miyazawa KW, Staurengo-Ferrari L, Pinho-Ribeiro FA, Fattori V, Zaninelli TH, Badaro-Garcia S, Borghi SM, Andrade KC, Clemente-Napimoga JT, Alves-Filho JC, et al: 15d-PGJ2-loaded nanocapsules ameliorate experimental gout arthritis by reducing pain and inflammation in a PPAR-gamma-sensitive manner in mice. Sci Rep. 8:139792018. View Article : Google Scholar | |
Hao F, Wang Q, Liu L, Wu LB, Cai RL, Sang JJ, Hu J, Wang J, Yu Q, He L, et al: Effect of moxibustion on autophagy and the inflammatory response of synovial cells in rheumatoid arthritis model rat. J Tradit Chin Med. 42:73–82. 2022.PubMed/NCBI | |
Xu X, Liang Y, Li X, Ouyang K, Wang M, Cao T, Li W, Liu J, Xiong J, Li B, et al: Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials. 269:1205392021. View Article : Google Scholar | |
Bruckner S, Capria VM, Zeno B, Leblebicioglu B, Goyal K, Vasileff WK, Awan H, Willis WL, Ganesan LP and Jarjour WN: The therapeutic effects of gingival mesenchymal stem cells and their exosomes in a chimeric model of rheumatoid arthritis. Arthritis Res Ther. 25:2112023. View Article : Google Scholar : PubMed/NCBI | |
Mathiessen A and Conaghan PG: Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Res Ther. 19:182017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hou L, Yuan X, Xu N, Zhao S, Yang L and Zhang N: LncRNA NEAT1 targets Fibroblast-like synoviocytes in rheumatoid arthritis via the miR-410-3p/YY1 Axis. Front Immunol. 11:19752020. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Xie Y, Tan G, Wang X, Huang P and Hong L: Synovial mesenchymal stem cell-derived exosomal miR-485-3p relieves cartilage damage in osteoarthritis by targeting the NRP1-mediated PI3K/Akt pathway: Exosomal miR-485-3p relieves cartilage damage. Heliyon. 10:e240422024. View Article : Google Scholar : PubMed/NCBI | |
Ichise Y, Saegusa J, Tanaka-Natsui S, Naka I, Hayashi S, Kuroda R and Morinobu A: Soluble CD14 induces pro-inflammatory cytokines in rheumatoid arthritis fibroblast-like synovial cells via toll-like receptor 4. Cells. 9:16892020. View Article : Google Scholar : PubMed/NCBI | |
Qi H, Shen E, Shu X, Liu D and Wu C: ERK-estrogen receptor α signaling plays a role in the process of bone marrow mesenchymal stem cell-derived exosomes protecting against ovariectomy-induced bone loss. J Orthop Surg Res. 18:2502023. View Article : Google Scholar | |
Wei Y, Ma Z, Li Z, Kang J, Liao T, Jie L, Liu D, Shi L, Wang P, Mao J and Wu P: Gentiopicroside ameliorates synovial inflammation and fibrosis in KOA rats by modulating the HMGB1-mediated PI3K/AKT signaling axis. Int Immunopharmacol. 147:1139732025. View Article : Google Scholar : PubMed/NCBI | |
Meng S, Zhang X, Yu Y, Tong M, Yuan Y, Cao Y, Zhang W, Shi X and Liu K: New-QiangGuYin-containing serum inhibits osteoclast-Derived exosome secretion and down-regulates notum to promote osteoblast differentiation. Adv Biol (Weinh). 9:e24001662025. View Article : Google Scholar | |
Liu Z, Jian H, Peng Z, Xiong S and Zhang Z: Association between dietary inflammatory index and osteoporosis in the US population: Evidence from NHANES 2003-2010. Front Nutr. 12:15081272025. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Wa Q, Pan J, Peng X, Ren D, Huang Y, Chen X and Tang Y: Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. J Exp Clin Cancer Res. 36:1732017. View Article : Google Scholar | |
Yang S, Zhang W, Cai M, Zhang Y, Jin F, Yan S, Baloch Z, Fang Z, Xue S, Tang R, et al: Suppression of bone resorption by miR-141 in aged rhesus monkeys. J Bone Miner Res. 33:1799–1812. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Li SL, Ma YY, Diao YJ, Yang L, Su MQ, Li Z, Ji Y, Wang J, Lei L, et al: Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget. 8:94834–94849. 2017. View Article : Google Scholar : PubMed/NCBI | |
Longfei H, Wenyuan H, Weihua F, Peng P, Sun L, Kun L, Mincong H, Fan Y, Wei H and Qiushi W: Exosomes in cartilage microenvironment regulation and cartilage repair. Front Cell Dev Biol. 13:14604162025. View Article : Google Scholar : PubMed/NCBI | |
Helaehil JV, Huang B, Bartolo P, Santamaria M Jr and Caetano GF: Bone regeneration: The influence of composite HA/TCP scaffolds and electrical stimulation on TGF/BMP and RANK/RANKL/OPG pathways. Injury. 56:1121582025. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Deshmukh M, Jarneborn A, Bollmann M, Corciulo C, Kopparapu PK, Ali A, Svensson MND, Engdahl C, Pullerits R, et al: Combination treatment with anti-RANKL and antibiotics for preventing joint destruction in septic arthritis. JCI Insight. 10:e1849542025. View Article : Google Scholar : PubMed/NCBI | |
Kurihara T, Shimamura M, Etani Y, Noguchi T, Fukuda Y, Ochiai N, Goshima A, Miura T, Hirao M, Sugimoto A, et al: RANKL-derived peptide MHP1-AcN attenuates ovariectomy-induced osteoporosis by targeting RANK and TNFR1 in mice. Bone. 194:1174402025. View Article : Google Scholar : PubMed/NCBI | |
Pei B, Teng Y, Dong D and Liu L: OPG/RANK/RANKL Single-nucleotide polymorphisms in rheumatoid arthritis: Associations with disease susceptibility, bone mineral density, and clinical manifestations in a Chinese Han population. Int J Gen Med. 18:815–824. 2025. View Article : Google Scholar : PubMed/NCBI | |
Liao T, Kang J, Ma Z, Jie L, Feng M, Liu D, Mao J, Wang P and Xing R: Total glucosides of white paeony capsule alleviate articular cartilage degeneration and aberrant subchondral bone remodeling in knee osteoarthritis. Phytother Res. 39:1758–1775. 2025. View Article : Google Scholar | |
Li J, Ding Z, Li Y, Wang W, Wang J, Yu H, Liu A, Miao J, Chen S, Wu T and Cao Y: BMSCs-derived exosomes ameliorate pain via abrogation of aberrant nerve invasion in subchondral bone in lumbar facet joint osteoarthritis. J Orthop Res. 38:670–679. 2020. View Article : Google Scholar | |
Wei Z, Zhou J, Shen J, Sun D, Gao T, Liu Q, Wu H, Wang X, Wang S, Xiao S, et al: Osteostaticytes: A novel osteoclast subset couples bone resorption and bone formation. J Orthop Translat. 47:144–160. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wan Y, Nemoto YL, Oikawa T, Takano K, Fujiwara TK, Tsujita K and Itoh T: Mechanical control of osteoclast fusion by Membrane-cortex attachment and BAR proteins. J Cell Biol. 224:e2024110242025. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Zhang H, Guan H, Wu C, Qi W, Yang L, Yin J, Zhang H, Liu L, Lu Y, et al: PDZK1 protects against mechanical overload-induced chondrocyte senescence and osteoarthritis by targeting mitochondrial function. Bone Res. 12:412024. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Diao CY, Huang X, Tan WX, Chen YB, Qian XY, Gao J and Zhao DB: RhoA promotes synovial proliferation and bone erosion in rheumatoid arthritis through Wnt/PCP pathway. Mediators Inflamm. 2023:50570092023. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Wu X, Li W, Zhang H, Wang Y, Xu J, Li W, Qin Y, Wu Z, Ge G, et al: Pinosylvin inhibits inflammatory and osteoclastogenesis via NLRP3 inflammasome. Adv Sci (Weinh). e015322025. View Article : Google Scholar : Epub ahead of print. PubMed/NCBI | |
Cafferata EA, Monasterio G, Castillo F, Carvajal P, Flores G, Díaz W, Fuentes AD and Vernal R: Overexpression of MMPs, cytokines, and RANKL/OPG in temporomandibular joint osteoarthritis and their association with joint pain, mouth opening, and bone degeneration: A preliminary report. Oral Dis. 27:970–980. 2021. View Article : Google Scholar | |
Wu P, Jiao F, Huang H, Liu D, Tang W, Liang J and Chen W: Morinda officinalis polysaccharide enable suppression of osteoclastic differentiation by exosomes derived from rat mesenchymal stem cells. Pharm Biol. 60:1303–1316. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gostage J, Kostenuik P, Goljanek-Whysall K, Bellantuono I, McCloskey E and Bonnet N: Extra-osseous roles of the RANK-RANKL-OPG axis with a focus on skeletal muscle. Curr Osteoporos Rep. 22:632–650. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Wang Z, Fan C, Gao P, Wang W, Xie Y and Xu Q: Human gingival mesenchymal stem cell-derived exosomes cross-regulate the Wnt/β-catenin and NF-κB signalling pathways in the periodontal inflammation microenvironment. J Clin Periodontol. 50:796–806. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Huang R, Gao X, Li Z, Lin Y, Zhang H, Jiang Y and Fan P: Prevalence of osteoporosis in patients with knee osteoarthritis awaiting total knee arthroplasty is similar to that in the general population. BMC Musculoskelet Disord. 26:2172025. View Article : Google Scholar : PubMed/NCBI | |
Fischer V and Haffner-Luntzer M: Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 123:14–21. 2022. View Article : Google Scholar | |
Li Y, Ling J and Jiang Q: Inflammasomes in alveolar bone loss. Front Immunol. 12:6910132021. View Article : Google Scholar : PubMed/NCBI | |
El-Ali Z, El-Kassas G, Ziade FM, Shivappa N, Hébert JR, Zmerly H and Bissar N: Evaluation of circulating levels of Interleukin-10 and Interleukin-16 and dietary inflammatory index in Lebanese knee osteoarthritis patients. Heliyon. 7:e075512021. View Article : Google Scholar : PubMed/NCBI | |
Piao X, Kim JW, Hyun M, Wang Z, Park SG, Cho IA, Ryu JH, Lee BN, Song JH and Koh JT: Boeravinone B, a natural rotenoid, inhibits osteoclast differentiation through modulating NF-κB, MAPK and PI3K/Akt signaling pathways. BMB Rep. 56:545–550. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Qiu J, Gao N, Jiang T, Li Z, Zhang W, Gong Y, Hong Z and Hong H: Paroxetine attenuates chondrocyte pyroptosis and inhibits osteoclast formation by inhibiting NF-κB pathway activation to delay osteoarthritis progression. Drug Des Devel Ther. 17:2383–2399. 2023. View Article : Google Scholar : | |
Xu J, Jiao W, Wu DB, Yu JH, Liu LJ, Zhang MY and Chen GX: Yishen Tongbi decoction attenuates inflammation and bone destruction in rheumatoid arthritis by regulating JAK/STAT3/SOCS3 pathway. Front Immunol. 15:13818022024. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Kitaura H, Ogawa S, Ohori F, Noguchi T, Marahleh A, Nara Y, Pramusita A, Kinjo R, Kanou K, et al: Docosahexaenoic acid inhibits TNF-α-induced osteoclast formation and orthodontic tooth movement through GPR120. Front Immunol. 13:9296902023. View Article : Google Scholar | |
Yang J, Shuai J, Siow L, Lu J, Sun M, An W, Yu M, Wang B and Chen Q: MicroRNA-146a-loaded magnesium silicate nanospheres promote bone regeneration in an inflammatory microenvironment. Bone Res. 12:22024. View Article : Google Scholar : PubMed/NCBI | |
Hua T, Yang M, Song H, Kong E, Deng M, Li Y, Li J, Liu Z, Fu H, Wang Y and Yuan H: Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis. J Nanobiotechnology. 20:3242022. View Article : Google Scholar : PubMed/NCBI | |
Li XY, Zhang W, Chen J, Yamamoto KJ, Smith JD, Liu F, Garcia MA, Kim SH, Patel RJ, Dubois N, et al: AAV9-delivered miR-146a Reprograms osteoimmune microenvironment via dual suppression of TRAF6/NF-κB axis in postmenopausal osteoporosis. Nat Metab. 37:857–872. 2025. | |
Chen J, Liu F, Yamamoto K, Smith JD, Wang YC, Zhang W, Garcia MA, Patel R and Tanaka H: miR-21 drives osteoclastogenesis via PDCD4-mediated control of IKKβ Phosphorylation in Postmenopausal Osteoporosis. Cell Rep. 42:103541–103556. 2025. | |
Zhang J, Rong Y, Luo C and Cui W: Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging (Albany NY). 12:25138–25152. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han Y, An M, Yang L, Li L, Rao S and Cheng Y: Effect of acid or base interventions on bone health: A systematic review, Meta-analysis, and Meta-regression. Adv Nutr. 12:1540–1557. 2021. View Article : Google Scholar : PubMed/NCBI | |
He LH, Liu M, He Y, Xiao E, Zhao L, Zhang T, Yang HQ and Zhang Y: TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation. Sci Rep. 7:423852017. View Article : Google Scholar : PubMed/NCBI | |
Gong S, Ma J, Tian A, Lang S, Luo Z and Ma X: Effects and mechanisms of microenvironmental acidosis on osteoclast biology. Biosci Trends. 16:58–72. 2022. View Article : Google Scholar | |
Disthabanchong S, Radinahamed P, Stitchantrakul W, Hongeng S and Rajatanavin R: Chronic metabolic acidosis alters osteoblast differentiation from human mesenchymal stem cells. Kidney Int. 71:201–209. 2007. View Article : Google Scholar | |
Xu Y, Lu Z, Ling Y, Hou R, Tao J, Deng G, Xu X, Chen X, Ruan J, Zhang Y, et al: Acid sensor ASIC1a induces synovial fibroblast proliferation via Wnt/beta-catenin/c-Myc pathway in rheumatoid arthritis. Int Immunopharmacol. 113:1093282022. View Article : Google Scholar | |
Chan EL, MacDonald D, Ho SC and Swaminathan R: Potassium intake and urinary calcium excretion in healthy subjects. Miner Electrolyte Metab. 19:36–38. 1993.PubMed/NCBI | |
Lin L, Luo P, Yang M, Wang J, Hou W and Xu P: Causal relationship between osteoporosis and osteoarthritis: A two-sample Mendelian randomized study. Front Endocrinol (Lausanne). 13:10112462022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Sun L, Dong Z, Zhang T, Wang L, Cao Y, Xu H, Liu C and Chen B: Targeted inhibition of ferroptosis in bone marrow mesenchymal stem cells by engineered exosomes alleviates bone loss in smoking-related osteoporosis. Mater Today Bio. 31:1015012025. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Xiao W, Liu C, Wang Z, Liu Y, Yu Y, Jian C and Yu A: Exosomes derived from adipose stem cells enhance bone fracture healing via the activation of the Wnt3a/β-catenin signaling pathway in rats with type 2 diabetes mellitus. Int J Mol Sci. 24:48522023. View Article : Google Scholar | |
Sun W, Qu S, Ji M, Sun Y and Hu B: BMP-7 modified exosomes derived from synovial mesenchymal stem cells attenuate osteoarthritis by M2 polarization of macrophages. Heliyon. 9:e199342023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Fang S, Wang S, Xie Y, Xia Y, Wang P, Hao Z, Xu S and Zhang YJ: Hypoxia preconditioning of adipose stem cell-derived exosomes loaded in gelatin methacryloyl (GelMA) promote type H angiogenesis and osteoporotic fracture repair. Nanobiotechnology. 22:1122024. View Article : Google Scholar | |
Lee AE, Choi JG, Shi SH, He P, Zhang QZ and Le AD: DPSC-derived extracellular vesicles promote rat jawbone regeneration. J Dent Res. 102:313–321. 2023. View Article : Google Scholar | |
Luo D, Xie W, He X, Zhou X, Ye P and Wang P: Exosomal miR-590-3p derived from bone marrow mesenchymal stem cells promotes osteoblast differentiation and osteogenesis by targeting TGFBR1. In Vitro Cell Dev Biol Anim. 61:46–58. 2025. View Article : Google Scholar | |
Zhang Y, Cao X, Li P, Fan Y, Zhang L, Ma X, Sun R, Liu Y and Li W: microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats. Life Sci. 272:1192042021. View Article : Google Scholar : PubMed/NCBI | |
Marini F, Giusti F, Palmini G and Brandi ML: Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int. 34:213–238. 2023. View Article : Google Scholar | |
Komori T: Bone development by Hedgehog and Wnt signaling, Runx2, and Sp7. J Bone Miner Metab. 43:33–38. 2025. View Article : Google Scholar | |
Samman WA, Mosalam EM, Saif DS, Abdallah MS, Zidan AA, Sallam AS, Abdelsattar S, Khalil FO, Elashkar AE, Mohamed SM, et al: Deciphering the role of Wnt/β-catenin and miR-214 in knee osteoarthritis: Molecular and clinical insights. Front Pharmacol. 16:15076932025. View Article : Google Scholar | |
Danz JC and Degen M: Selective modulation of the bone remodeling regulatory system through orthodontic tooth movement-a review. Front Oral Health. 6:14727112025. View Article : Google Scholar : PubMed/NCBI | |
Coombs CV, Greeves JP, Young CD, Irving AS, Eisenhauer A, Kolevica A, Heuser A, Tang JCY, Fraser WD and O'Leary TJ: The effect of calcium supplementation on bone calcium balance and calcium and bone metabolism during load carriage in women: A randomized controlled crossover trial. J Bone Miner Res. 13:zjaf0042025. | |
Rummler M, Ziouti F, Snyder L, Zimmermann EA, Lynch M, Donnelly E, Wagermaier W, Jundt F and Willie BM: Bone mechanical properties were altered in a mouse model of multiple myeloma bone disease. Biomater Adv. 166:2140472025. View Article : Google Scholar | |
Cai G, Lu Y, Zhong W, Wang T, Li Y, Ruan X, Chen H, Sun L, Guan Z, Li G, et al: Piezo1-mediated M2 macrophage mechanotransduction enhances bone formation through secretion and activation of transforming growth factor-β1. Cell Prolif. 56:e134402023. View Article : Google Scholar | |
Zhang J, Tong Y, Liu Y, Lin M, Xiao Y and Liu C: Mechanical loading attenuated negative effects of nucleotide analogue reverse-transcriptase inhibitor TDF on bone repair via Wnt/β-catenin pathway. Bone. 161:1164492022. View Article : Google Scholar | |
Hiasa M, Endo I and Matsumoto T: Bone-fat linkage via interleukin-11 in response to mechanical loading. J Bone Miner Metab. 42:447–454. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bullock WA, Pavalko FM and Robling AG: Osteocytes and mechanical loading: The Wnt connection. Orthod Craniofac Res. 22(Suppl 1): S175–S179. 2019. View Article : Google Scholar | |
Simic MK, Mohanty ST, Xiao Y, Cheng TL, Taylor VE, Charlat O, Croucher PI and McDonald MM: Multi-Targeting DKK1 and LRP6 prevents bone loss and improves fracture resistance in multiple myeloma. J Bone Miner Res. 38:814–828. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xun J, Li C, Liu M, Mei Y, Zhou Q, Wu B, Xie F, Liu Y and Dai R: Serum exosomes from young rats improve the reduced osteogenic differentiation of BMSCs in aged rats with osteoporosis after fatigue loading in vivo. Stem Cell Res Ther. 12:4242021. View Article : Google Scholar : PubMed/NCBI | |
Qi J, Zhang R and Wang Y: Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1. J Cell Mol Med. 25:11016–11030. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Li L, Rong Y, Qian D, Chen J, Zhou Z, Luo Y, Jiang D, Cheng L, Zhao S, et al: Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 103:196–212. 2020. View Article : Google Scholar | |
Neogi T and Colloca L: Placebo effects in osteoarthritis: Implications for treatment and drug development. Nat Rev Rheumatol. 19:613–626. 2023. View Article : Google Scholar : PubMed/NCBI | |
Olansen J, Dyke JP and Aaron RK: Is osteoarthritis a vascular disease? Front Biosci (Landmark Ed). 29:1132024. View Article : Google Scholar : PubMed/NCBI | |
Zaussinger M, Schwaiger K, Schwarzbauer J, Bachleitner K, Holzbauer M, Ehebruster G and Schmidt M: Three-dimensional planning for vascularized bone grafts: Implementation and surgical application for complex bone reconstruction in the hand and forearm. J Clin Med. 14:4402025. View Article : Google Scholar : PubMed/NCBI | |
Song LL, Tang YP, Qu YQ, Yun YX, Zhang RL, Wang CR, Wong VKW, Wang HM, Liu MH, Qu LQ, et al: Exosomal delivery of rapamycin modulates Blood-brain barrier penetration and VEGF axis in glioblastoma. J Control Release. 381:1136052025. View Article : Google Scholar : PubMed/NCBI | |
Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, Montgomery EN, Mellema MS, Bardini RL, Contreras Z, et al: Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear Factor-KappaB signaling. Stem Cells. 34:601–613. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vyas KS, Kaufman J, Munavalli GS, Robertson K, Behfar A and Wyles SP: Exosomes: The latest in regenerative aesthetics. Regen Med. 18:181–194. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shen K, Duan A, Cheng J, Yuan T, Zhou J, Song H, Chen Z, Wan B, Liu J, Zhang X, et al: Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205-5p/PTEN/AKT pathway. Acta Biomater. 143:173–188. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Kong Y, Du J, Qi L, Liu M, Xie S, Hao J, Li M, Cao S, Cui H, et al: Injection of human umbilical cord mesenchymal stem cells exosomes for the treatment of knee osteoarthritis: From preclinical to clinical research. J Transl Med. 23:6412025. View Article : Google Scholar : PubMed/NCBI | |
Rajabloo Y, Al-Asady AM, Avan A, Khazaei M, Ryzhikov M and Hassanian SM: Unlocking therapeutic potential: Mesenchymal stem Cells-derived exosomes in IUA treatment, current status and perspectives. Curr Pharm Des. 31:1663–1672. 2025. View Article : Google Scholar : PubMed/NCBI | |
Infante A and Rodríguez CI: Osteogenesis and aging: Lessons from mesenchymal stem cells. Stem Cell Res Ther. 9:2442018. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Liu D, Chen C, Hamamura K, Moshaverinia A, Yang R, Liu Y, Jin Y and Shi S: MSC transplantation improves osteopenia via epigenetic regulation of Notch signaling in lupus. Cell Metab. 22:606–618. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, Wang H, Liu H, Zhou H and Chen Y: Exosomes from bone marrow mes enchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther. 11:382020. View Article : Google Scholar | |
Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L and Zhou Y: Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 52:e126692019. View Article : Google Scholar : PubMed/NCBI | |
Zhou QF, Cai YZ and Lin XJ: The dual character of exosomes in osteoarthritis: Antagonists and therapeutic agents. Acta Biomater. 105:15–25. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, Gu C, Chen J, Qiu P, Mei S, et al: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 9:2439–2459. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yang Y, Li Y, Niu X, Zhao B, Wang Y, Bao C, Xie Z, Lin Q and Zhu L: Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale. 9:4430–4438. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu Y, Zhang P, Tang Y, Zhou M, Jiang W, Zhang X, Wu G and Zhou Y: Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl Mater Interfaces. 10:5240–5254. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X and Chen L: Exosomes: Roles and therapeutic potential in osteoarthritis. Bone Res. 8:252020. View Article : Google Scholar : PubMed/NCBI | |
Rudiansyah M, El-Sehrawy AA, Ahmad I, Terefe EM, Abdelbasset WK, Bokov DO, Salazar A, Rizaev JA, Muthanna FMS and Shalaby MN: Osteoporosis treatment by mesenchymal stromal/stem cells and their exosomes: Emphasis on signaling pathways and mechanisms. Life Sci. 306:1207172022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang Q, Su H and Cheng J: Exosomes from adipose derived mesenchymal stem cells alleviate diabetic osteoporosis in rats through suppressing NLRP3 inflammasome activation in osteoclasts. J Biosci Bioeng. 131:671–678. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Xu X, Li X, Xiong J, Li B, Duan L, Wang D and Xia J: Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl Mater Interfaces. 12:36938–36947. 2020. View Article : Google Scholar : PubMed/NCBI | |
He L, He T, Xing J, Zhou Q, Fan L, Liu C, Chen Y, Wu D, Tian Z, Liu B and Rong L: Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieveknee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 11:2762020. View Article : Google Scholar | |
Lu M, Lou A, Gao J, Li S, He L, Fan W and Zhao L: Quercetin-primed MSC exosomes synergistically attenuate osteoarthritis progression. J Orthop Surg Res. 20:3732025. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Lin Y, Li W, Zhang X, Asahara H, Zheng M, Zhang YC, Xie T, Sun LY, Chang J, et al: Engineered cartilage-targeting extracellular vesicles deliver anti-inflammatory RNAi therapy for osteoarthritis treatment. Sci Transl Med. 17:eabn02592025. | |
Zhang Y, Kirkland JL, Chen W, Qin L, Chen X, Yang H, Zhang T, Lin JH, Zhang ZM, Cao X, et al: Systemically administered exosomes derived from mesenchymal stem cells mitigate bone loss by targeting osteogenesis in postmenopausal osteoporosis. Nat Commun. 15:32182024. | |
Yoo J, Lee SK, Lim M, Sheen D, Choi EH and Kim SA: Exosomal amyloid A and lymphatic vessel endothelial hyaluronic acid receptor-1 proteins are associated with disease activity in rheumatoid arthritis. Arthritis Res Ther. 19:1192017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y and Xu J: Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis. Int Orthop. 42:2865–2872. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Cai F, Liu J, Chang H, Liu L, Yang A and Liu X: Transfer RNA-derived fragments as potential exosome tRNA-derived fragment biomarkers for osteoporosis. Int J Rheum Dis. 21:1659–1669. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang C, Jia X and Yu J: Circulating exosomal miR-17 inhibits the induction of regulatory T cells via suppressing TGFBR II expression in rheumatoid arthritis. Cell Physiol Biochem. 50:1754–1763. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia B, Di Chen, Zhang J, Hu S, Jin H and Tong P: Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif Tissue Int. 95:495–505. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang E, Chen L, Wang YF, Smith JR, Yamamoto HE and Johnson SK: Cryopreservation of exosomes with enhanced bioactivity using liquid nitrogen and novel cryoprotectants. Nat Commun. 15:1238–1256. 2024. | |
Stevenson J; Medical advisory council of the British Menopause Society: Prevention and treatment of osteoporosis in women. Post Reprod Health. 29:11–14. 2023. View Article : Google Scholar : | |
Galanis A, Dimopoulou S, Karampinas P, Vavourakis M, Papagrigorakis E, Sakellariou E, Karampitianis S, Zachariou D, Theodora M, Antsaklis P, et al: The correlation between transient osteoporosis of the hip and pregnancy: A review. Medicine (Baltimore). 102:e354752023. View Article : Google Scholar : PubMed/NCBI | |
Gehrke B, Alves Coelho MC, Brasil d'Alva C and Madeira M: Long-term consequences of osteoporosis therapy with bisphosphonates. Arch Endocrinol Metab. 68:e2203342023. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Chen H and Gao B: Potential therapeutic effects of exosomes in regenerative endodontics. Arch Oral Biol. 120:1049462020. View Article : Google Scholar : PubMed/NCBI | |
Munagala R, Aqil F, Jeyabalan J and Gupta RC: Bovine Milk-derived exosomes for drug delivery. Cancer Lett. 371:48–61. 2016. View Article : Google Scholar : | |
Zhang S, Wong KL, Ren X, Teo KYW, Afizah H, Choo ABH, Lai RC, Lim SK, Hui JHP and Toh WS: Mesenchymal stem cell exosomes promote functional osteochondral repair in a clinically relevant porcine model. Am J Sports Med. 50:788–800. 2022. View Article : Google Scholar : PubMed/NCBI |