
How lactate and lactylation shape the immunity system in atherosclerosis (Review)
- Authors:
- Yan Xiong
- Jie Zhou
- Junru Wang
- Hui Huang
-
Affiliations: Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China, Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China - Published online on: July 31, 2025 https://doi.org/10.3892/ijmm.2025.5604
- Article Number: 163
-
Copyright: © Xiong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Luengo-Fernandez R, Walli-Attaei M, Gray A, Torbica A, Maggioni AP, Huculeci R, Bairami F, Aboyans V, Timmis AD, Vardas P and Leal J: Economic burden of cardiovascular diseases in the European Union: A population-based cost study. Eur Heart J. 44:4752–4767. 2023. View Article : Google Scholar : PubMed/NCBI | |
Weintraub WS: High costs of cardiovascular disease in the European Union. Eur Heart J. 44:4768–4770. 2023. View Article : Google Scholar : PubMed/NCBI | |
Goldsborough E III, Osuji N and Blaha MJ: Assessment of cardiovascular disease risk: A 2022 update. Endocrinol Metab Clin North Am. 51:483–509. 2022. View Article : Google Scholar : PubMed/NCBI | |
Raleigh V and Colombo F: Cardiovascular disease should be a priority for health systems globally. BMJ. 382:e0765762023. View Article : Google Scholar : PubMed/NCBI | |
Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47(Suppl 8): C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fan J and Watanabe T: Atherosclerosis: Known and unknown. Pathol Int. 72:151–160. 2022. View Article : Google Scholar : PubMed/NCBI | |
Libby P: The changing landscape of atherosclerosis. Nature. 592:524–533. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rocha VZ and Libby P: Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 6:399–409. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shoaran M and Maffia P: Tackling inflammation in atherosclerosis. Nat Rev Cardiol. 21:4422024. View Article : Google Scholar : PubMed/NCBI | |
Bäck M, Yurdagul A Jr, Tabas I, Öörni K and Kovanen PT: Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat Rev Cardiol. 16:389–406. 2019.PubMed/NCBI | |
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ and Han M: Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 7:1312022. View Article : Google Scholar : PubMed/NCBI | |
Wolf D and Ley K: Immunity and inflammation in atherosclerosis. Circ Res. 124:315–327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saigusa R, Winkels H and Ley K: T cell subsets and functions in atherosclerosis. Nat Rev Cardiol. 17:387–401. 2020. View Article : Google Scholar : PubMed/NCBI | |
Srikakulapu P and McNamara CA: B cells and atherosclerosis. Am J Physiol Heart Circ Physiol. 312:H1060–H1067. 2017. View Article : Google Scholar : PubMed/NCBI | |
Taghavie-Moghadam PL, Butcher MJ and Galkina EV: The dynamic lives of macrophage and dendritic cell subsets in atherosclerosis. Ann N Y Acad Sci. 1319:19–37. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tedgui A and Mallat Z: Cytokines in atherosclerosis: Pathogenic and regulatory pathways. Physiol Rev. 86:515–581. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kzhyshkowska J, Shen J and Larionova I: Targeting of TAMs: Can we be more clever than cancer cells? Cell Mol Immunol. 21:1376–1409. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun P, Ma L and Lu Z: Lactylation: Linking the Warburg effect to DNA damage repair. Cell Metab. 36:1637–1639. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T and Wei R: Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer. 23:902024. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Zheng Y and Gao Q: Lysine lactylation in the regulation of tumor biology. Trends Endocrinol Metab. 35:720–731. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li H, Sun L, Gao P and Hu H: Lactylation in cancer: Current understanding and challenges. Cancer Cell. 42:1803–1807. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Guo S, Sun J, Zhao Y and Liu C: Lactate and lactylation in cardiovascular diseases: Current progress and future perspectives. Metabolism. 158:1559572024. View Article : Google Scholar : PubMed/NCBI | |
Roy P, Orecchioni M and Ley K: How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat Rev Immunol. 22:251–265. 2022. View Article : Google Scholar | |
Ouyang J, Wang H and Huang J: The role of lactate in cardiovascular diseases. Cell Commun Signal. 21:3172023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Cai P, Tang X, Wu Y, Zhang Y and Rong X: Lactylation modification in cardiometabolic disorders: Function and mechanism. Metabolites. 14:2172024. View Article : Google Scholar : PubMed/NCBI | |
Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bonen A: Lactate transporters (MCT proteins) in heart and skeletal muscles. Med Sci Sports Exerc. 32:778–789. 2000. View Article : Google Scholar : PubMed/NCBI | |
Singh M, Afonso J, Sharma D, Gupta R and Kumar V, Rani R, Baltazar F and Kumar V: Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol. 90:1–14. 2023. View Article : Google Scholar : PubMed/NCBI | |
Certo M, Llibre A, Lee W and Mauro C: Understanding lactate sensing and signalling. Trends Endocrinol Metab. 33:722–735. 2022. View Article : Google Scholar : PubMed/NCBI | |
Apostolova P and Pearce EL: Lactic acid and lactate: Revisiting the physiological roles in the tumor microenvironment. Trends Immunol. 43:969–977. 2022. View Article : Google Scholar : PubMed/NCBI | |
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J and Liu B: Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B. 14:953–1008. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Patti GJ: The Warburg effect: A signature of mitochondrial overload. Trends Cell Biol. 33:1014–1020. 2023. View Article : Google Scholar : PubMed/NCBI | |
Magistretti PJ and Allaman I: Lactate in the brain: From metabolic end-product to signalling molecule. Nat Rev Neurosci. 19:235–249. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Wang G, Xu ZG, Tu H, Hu F, Dai J, Chang Y, Chen Y, Lu Y, Zeng H, et al: Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell. 178:176–189.e15. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brown TP and Ganapathy V: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 206:1074512020. View Article : Google Scholar | |
Li H, Liu C, Li R, Zhou L, Ran Y, Yang Q, Huang H, Lu H, Song H, Yang B, et al: AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases. Nature. 634:1229–1237. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee WD, Weilandt DR, Liang L, MacArthur MR, Jaiswal N, Ong O, Mann CG, Chu Q, Hunter CJ, Ryseck RP, et al: Lactate homeostasis is maintained through regulation of glycolysis and lipolysis. Cell Metab. 37:758–771.e8. 2025. View Article : Google Scholar : PubMed/NCBI | |
Feron O: Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 92:329–333. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang Y and Chen ZN: Metabolic interaction: Tumor-derived lactate inhibiting CD8+ T cell cytotoxicity in a novel route. Signal Transduct Target Ther. 8:522023. View Article : Google Scholar | |
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Liu Z, Yu X, Huang T, Chen J, Wang J, Wilhelm J, Li S, Song J, Li W, et al: Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity. Nat Commun. 13:49812022. View Article : Google Scholar | |
Mohazzab-H KM, Kaminski PM and Wolin MS: Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: Potential role of NADH oxidase. Circulation. 96:614–620. 1997. View Article : Google Scholar | |
Gaspar JA, Doss MX, Hengstler JG, Cadenas C, Hescheler J and Sachinidis A: Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ Res. 114:1346–1360. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wu H, Liu Y, Liu L, Houser SR and Wang WE: Metabolic reprogramming: A byproduct or a driver of cardiomyocyte proliferation? Circulation. 149:1598–1610. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chung S, Arrell DK, Faustino RS, Terzic A and Dzeja PP: Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol. 48:725–734. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dziegala M, Kobak KA, Kasztura M, Bania J, Josiak K, Banasiak W, Ponikowski P and Jankowska EA: Iron depletion affects genes encoding mitochondrial electron transport chain and genes of non-oxidative metabolism, pyruvate kinase and lactate dehydrogenase, in primary human cardiac myocytes cultured upon mechanical stretch. Cells. 7:1752018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhao L, Chen Z, Lin Y, Yu P and Mao L: Continuous electrochemical monitoring of extracellular lactate production from neonatal rat cardiomyocytes following myocardial hypoxia. Anal Chem. 84:5285–5291. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hammond GL, Nadal-Ginard B, Talner NS and Markert CL: Myocardial LDH isozyme distribution in the ischemic and hypoxic heart. Circulation. 53:637–643. 1976. View Article : Google Scholar : PubMed/NCBI | |
Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, Liao Y, Yan Y, Li Q, Zhou X, et al: Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 34:634–648.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Yu W, Fang Y, Zhou H, Liang Y, Huang C, Liu H and Zhao G: Pyruvate and lactate based hydrogel film inhibits UV radiation-induced skin inflammation and oxidative stress. Int J Pharm. 634:1226972023. View Article : Google Scholar : PubMed/NCBI | |
Huang YF, Wang G, Ding L, Bai ZR, Leng Y, Tian JW, Zhang JZ, Li YQ, Ahmad, Qin YH, et al: Lactate-upregulated NADPH-dependent NOX4 expression via HCAR1/PI3K pathway contributes to ROS-induced osteoarthritis chondrocyte damage. Redox Biol. 67:1028672023. View Article : Google Scholar : PubMed/NCBI | |
Groussard C, Morel I, Chevanne M, Monnier M, Cillard J and Delamarche A: Free radical scavenging and antioxidant effects of lactate ion: An in vitro study. J Appl Physiol (1985). 89:169–175. 2000. View Article : Google Scholar : PubMed/NCBI | |
Shantha GPS, Wasserman B, Astor BC, Coresh J, Brancati F, Sharrett AR and Young JH: Association of blood lactate with carotid atherosclerosis: The atherosclerosis risk in communities (ARIC) carotid MRI study. Atherosclerosis. 228:249–255. 2013. View Article : Google Scholar : PubMed/NCBI | |
Perrotta P, Van der Veken B, Van Der Veken P, Pintelon I, Roosens L, Adriaenssens E, Timmerman V, Guns PJ, De Meyer GRY and Martinet W: Partial Inhibition of glycolysis reduces atherogenesis independent of intraplaque neovascularization in mice. Arterioscler Thromb Vasc Biol. 40:1168–1181. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sneck M, Kovanen PT and Oörni K: Decrease in pH strongly enhances binding of native, proteolyzed, lipolyzed, and oxidized low density lipoprotein particles to human aortic proteoglycans. J Biol Chem. 280:37449–37454. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang M, Ma Q, Ye J and Sun G: Role of glycolysis in the development of atherosclerosis. Am J Physiol Cell Physiol. 323:C617–C629. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Chen M, Chen X, He X, Li X, Wei H, Tan Y, Min J, Azam T, Xue M, et al: TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation. Eur Heart J. 45:4219–4235. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou LJ, Lin WZ, Meng XQ, Zhu H, Liu T, Du LJ, Bai XB, Chen BY, Liu Y, Xu Y, et al: Periodontitis exacerbates atherosclerosis through Fusobacterium nucleatum-promoted hepatic glycolysis and lipogenesis. Cardiovasc Res. 119:1706–1717. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nilsson J and Hansson GK: Vaccination strategies and immune modulation of atherosclerosis. Circ Res. 126:1281–1296. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xue S, Su Z and Liu D: Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev. 90:1019932023. View Article : Google Scholar : PubMed/NCBI | |
Kim KW, Ivanov S and Williams JW: Monocyte recruitment, specification, and function in atherosclerosis. Cells. 10:152020. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Tang X, Yao L, Wang Y, Chen Z, Li M, Wu N, Wu D, Dai X, Jiang H and Ai D: Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. J Clin Invest. 132:e1542172022. View Article : Google Scholar : PubMed/NCBI | |
Tabas I and Bornfeldt KE: Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 118:653–667. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, Feng J, Yang D, Qin Z and Yan X: Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 27:352–372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, Jang MY, Seok Jang H, Yun TJ, Lee SH, et al: Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res. 123:1127–1142. 2018. View Article : Google Scholar : PubMed/NCBI | |
Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, et al: Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell. 151:138–152. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kojima Y, Weissman IL and Leeper NJ: The role of efferocytosis in atherosclerosis. Circulation. 135:476–489. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wanschel A, Seibert T, Hewing B, Ramkhelawon B, Ray TD, van Gils JM, Rayner KJ, Feig JE, O'Brien ER, Fisher EA, et al: Neuroimmune guidance cue Semaphorin 3E is expressed in atherosclerotic plaques and regulates macrophage retention. Arterioscler Thromb Vasc Biol. 33:886–893. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Gils JM, Derby MC, Fernandes LR, Ramkhelawon B, Ray TD, Rayner KJ, Parathath S, Distel E, Feig JL, Alvarez-Leite JI, et al: The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol. 13:136–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trogan E, Feig JE, Dogan S, Rothblat GH, Angeli V, Tacke F, Randolph GJ and Fisher EA: Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci USA. 103:3781–3786. 2006. View Article : Google Scholar : PubMed/NCBI | |
Feig JE, Parathath S, Rong JX, Mick SL, Vengrenyuk Y, Grauer L, Young SG and Fisher EA: Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation. 123:989–998. 2011. View Article : Google Scholar : PubMed/NCBI | |
Colin S, Chinetti-Gbaguidi G and Staels B: Macrophage phenotypes in atherosclerosis. Immunol Rev. 262:153–166. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, Robbins CS, Monaco C, Park I, McNamara CA, et al: Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ Res. 127:402–426. 2020. View Article : Google Scholar : PubMed/NCBI | |
Williams JW, Zaitsev K, Kim KW, Ivanov S, Saunders BT, Schrank PR, Kim K, Elvington A, Kim SH, Tucker CG, et al: Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat Immunol. 21:1194–1204. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ait-Oufella H, Taleb S, Mallat Z and Tedgui A: Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 31:969–979. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ley K, Laudanna C, Cybulsky MI and Nourshargh S: Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat Rev Immunol. 7:678–689. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ait-Oufella H, Sage AP, Mallat Z and Tedgui A: Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res. 114:1640–1660. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y and Mao L: The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol. 13:10796682023. View Article : Google Scholar : PubMed/NCBI | |
Kuan R, Agrawal DK and Thankam FG: Treg cells in atherosclerosis. Mol Biol Rep. 48:4897–4910. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Yang WY, Saaoud F, Drummer C IV, Sun Y, Xu K, Lu Y, Shan H, Shevach EM, Jiang X, et al: IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. JCI Insight. 6:e1525112021. View Article : Google Scholar : PubMed/NCBI | |
Klingenberg R, Gerdes N, Badeau RM, Gisterå A, Strodthoff D, Ketelhuth DFJ, Lundberg AM, Rudling M, Nilsson SK, Olivecrona G, et al: Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest. 123:1323–1334. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sharma M, Schlegel MP, Afonso MS, Brown EJ, Rahman K, Weinstock A, Sansbury BE, Corr EM, van Solingen C, Koelwyn GJ, et al: Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ Res. 127:335–353. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, et al: The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy. 77:3249–3266. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vinson A, Curran JE, Johnson MP, Dyer TD, Moses EK, Blangero J, Cox LA, Rogers J, Havill LM, Vandeberg JL and Mahaney MC: Genetical genomics of Th1 and Th2 immune response in a baboon model of atherosclerosis risk factors. Atherosclerosis. 217:387–394. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weinstock A, Rahman K, Yaacov O, Nishi H, Menon P, Nikain CA, Garabedian ML, Pena S, Akbar N, Sansbury BE, et al: Wnt signaling enhances macrophage responses to IL-4 and promotes resolution of atherosclerosis. Elife. 10:e679322021. View Article : Google Scholar : PubMed/NCBI | |
Engelbertsen D, Andersson L, Ljungcrantz I, Wigren M, Hedblad B, Nilsson J and Björkbacka H: T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler Thromb Vasc Biol. 33:637–644. 2013. View Article : Google Scholar : PubMed/NCBI | |
Knutsson A, Björkbacka H, Dunér P, Engström G, Binder CJ, Nilsson AH and Nilsson J: Associations of interleukin-5 with plaque development and cardiovascular events. JACC Basic Transl Sci. 4:891–902. 2019. View Article : Google Scholar | |
Cardilo-Reis L, Gruber S, Schreier SM, Drechsler M, Papac-Milicevic N, Weber C, Wagner O, Stangl H, Soehnlein O and Binder CJ: Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med. 4:1072–1086. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Jiang Y, Ma T, Zhu F, Gao F, Zhang P, Guo C, Wang Q, Wang X, Ma C, et al: A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol. 185:5820–5827. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gisterå A, Robertson AK, Andersson J, Ketelhuth DFJ, Ovchinnikova O, Nilsson SK, Lundberg AM, Li MO, Flavell RA and Hansson GK: Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci Transl Med. 5:196ra1002013. View Article : Google Scholar | |
Lu H and Daugherty A: Regulatory B cells, interleukin-10, and atherosclerosis. Curr Opin Lipidol. 26:470–471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bu T, Li Z, Hou Y, Sun W, Zhang R, Zhao L, Wei M, Yang G and Yuan L: Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics. 11:9988–10000. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Mao X and Liu J: Multi-faceted roles of C1q/TNF-related proteins family in atherosclerosis. Front Immunol. 14:12534332023. View Article : Google Scholar : PubMed/NCBI | |
Fanola CL, Morrow DA, Cannon CP, Jarolim P, Lukas MA, Bode C, Hochman JS, Goodrich EL, Braunwald E and O'Donoghue ML: Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: Observations from the SOLID-TIMI 52 (stabilization of plaque using darapladib-thrombolysis in myocardial infarction 52) trial. J Am Heart Assoc. 6:e0056372017. View Article : Google Scholar : PubMed/NCBI | |
Schieffer B, Schieffer E, Hilfiker-Kleiner D, Hilfiker A, Kovanen PT, Kaartinen M, Nussberger J, Harringer W and Drexler H: Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: Potential implications for inflammation and plaque instability. Circulation. 101:1372–1378. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rosenfeld SM, Perry HM, Gonen A, Prohaska TA, Srikakulapu P, Grewal S, Das D, McSkimming C, Taylor AM, Tsimikas S, et al: B-1b cells secrete atheroprotective IgM and attenuate atherosclerosis. Circ Res. 117:e28–e39. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ravandi A, Boekholdt SM, Mallat Z, Talmud PJ, Kastelein JJP, Wareham NJ, Miller ER, Benessiano J, Tedgui A, Witztum JL, et al: Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: Results from the EPIC-norfolk study. J Lipid Res. 52:1829–1836. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lappalainen J, Lindstedt KA, Oksjoki R and Kovanen PT: OxLDL-IgG immune complexes induce expression and secretion of proatherogenic cytokines by cultured human mast cells. Atherosclerosis. 214:357–363. 2011. View Article : Google Scholar | |
Tew JG, El Shikh ME, El Sayed RM and Schenkein HA: Dendritic cells, antibodies reactive with oxLDL, and inflammation. J Dent Res. 91:8–16. 2012. View Article : Google Scholar : | |
Yang H, Chen J, Liu S, Xue Y, Li Z, Wang T, Jiao L, An Q, Liu B, Wang J and Zhao H: Exosomes from IgE-stimulated mast cells aggravate asthma-mediated atherosclerosis through circRNA CDR1as-mediated endothelial cell dysfunction in mice. Arterioscler Thromb Vasc Biol. 44:e99–e115. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li J, Luo S, Wang M, Huang Q, Deng Z, de Febbo C, Daoui A, Liew PX, Sukhova GK, et al: IgE contributes to atherosclerosis and obesity by affecting macrophage polarization, macrophage protein network, and foam cell formation. Arterioscler Thromb Vasc Biol. 40:597–610. 2020. View Article : Google Scholar : PubMed/NCBI | |
Silvestre-Roig C, Braster Q, Ortega-Gomez A and Soehnlein O: Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol. 17:327–340. 2020. View Article : Google Scholar : PubMed/NCBI | |
Franck G: Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis. 318:60–69. 2021. View Article : Google Scholar | |
Ionita MG, van den Borne P, Catanzariti LM, Moll FL, de Vries JPPM, Pasterkamp G, Vink A and de Kleijn DPV: High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol. 30:1842–1848. 2010. View Article : Google Scholar : PubMed/NCBI | |
Palano MT, Cucchiara M, Gallazzi M, Riccio F, Mortara L, Gensini GF, Spinetti G, Ambrosio G and Bruno A: When a friend becomes your enemy: Natural killer cells in atherosclerosis and atherosclerosis-associated risk factors. Front Immunol. 12:7981552021. View Article : Google Scholar | |
Kovanen PT and Bot I: Mast cells in atherosclerotic cardiovascular disease-activators and actions. Eur J Pharmacol. 816:37–46. 2017. View Article : Google Scholar : PubMed/NCBI | |
Spinas E, Kritas SK, Saggini A, Mobili A, Caraffa A, Antinolfi P, Pantalone A, Tei M, Speziali A, Saggini R and Conti P: Role of mast cells in atherosclerosis: A classical inflammatory disease. Int J Immunopathol Pharmacol. 27:517–521. 2014. View Article : Google Scholar | |
Lin A, Miano JM, Fisher EA and Misra A: Chronic inflammation and vascular cell plasticity in atherosclerosis. Nat Cardiovasc Res. 3:1408–1423. 2024. View Article : Google Scholar : PubMed/NCBI | |
Moriya J: Critical roles of inflammation in atherosclerosis. J Cardiol. 73:22–27. 2019. View Article : Google Scholar | |
Song B, Bie Y, Feng H, Xie B, Liu M and Zhao F: Inflammatory factors driving atherosclerotic plaque progression new insights. J Transl Int Med. 10:36–47. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jing F, Zhang J, Zhang H and Li T: Unlocking the multifaceted molecular functions and diverse disease implications of lactylation. Biol Rev Camb Philos Soc. 100:172–189. 2025. View Article : Google Scholar | |
Zhang D, Gao J, Zhu Z, Mao Q, Xu Z, Singh PK, Rimayi CC, Moreno-Yruela C, Xu S, Li G, et al: Lysine L-lactylation is the dominant lactylation isomer induced by glycolysis. Nat Chem Biol. 21:91–99. 2025. View Article : Google Scholar | |
Hu XT, Wu XF, Xu JY and Xu X: Lactate-mediated lactylation in human health and diseases: Progress and remaining challenges. J Adv Res. S2090-1232(24)00529-02024.Epub ahead of print. PubMed/NCBI | |
Zhang N, Zhang Y, Xu J, Wang P, Wu B, Lu S, Lu X, You S, Huang X, Li M, et al: α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 33:679–698. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H, Guo D, Meng Y, Han H, Luo S, et al: ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. Cell Metab. 37:361–376.e7. 2025. View Article : Google Scholar | |
Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jia M, Yue X, Sun W, Zhou Q, Chang C, Gong W, Feng J, Li X, Zhan R, Mo K, et al: ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci Adv. 9:eadg49932023. View Article : Google Scholar : PubMed/NCBI | |
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, et al: KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 121:e23141281212024. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Cao M, Tao L, Wu S, Zhou H, Zhang Y, Chen Y, Ge Y, Ju Z and Luo S: Lactate triggers KAT8-mediated LTBP1 lactylation at lysine 752 to promote skin rejuvenation by inducing collagen synthesis in fibroblasts. Int J Biol Macromol. 277:1344822024. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, et al: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 8:eabi66962022. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Bai L, Wang D, Ding W, Cao Z, Yan P, Li Y, Xi L, Wang Y, Zheng X, et al: SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 24:e560522023. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Liu Z, Zhang N, Wei W, Cheng K, Sun H and Hao Q: Identification of SIRT3 as an eraser of H4K16la. iScience. 26:1077572023. View Article : Google Scholar : PubMed/NCBI | |
Li XM, Yang Y, Jiang FQ, Hu G, Wan S, Yan WY, He XS, Xiao F, Yang XM, Guo X, et al: Histone lactylation inhibits RARγ expression in macrophages to promote colorectal tumorigenesis through activation of TRAF6-IL-6-STAT3 signaling. Cell Rep. 43:1136882024. View Article : Google Scholar | |
Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, Xue W, Cai H, Zhan XY, Huang SY, et al: Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell. 176:1447–1460.e14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Ye Z, Li Z, Jing DS, Fan GX, Liu MQ, Zhuo QF, Ji SR, Yu XJ, Xu XW and Qin Y: Lactate-induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell Prolif. 56:e134782023. View Article : Google Scholar : PubMed/NCBI | |
Tian Q and Zhou LQ: Lactate activates germline and cleavage embryo genes in mouse embryonic stem cells. Cells. 11:5482022. View Article : Google Scholar : PubMed/NCBI | |
Li L, Chen K, Wang T, Wu Y, Xing G, Chen M, Hao Z, Zhang C, Zhang J, Ma B, et al: Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nat Metab. 2:882–892. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Wang P, Cao P, Wang S, Yang Y, Su H and Nashun B: Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice. Epigenetics Chromatin. 14:572021. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Zheng H, Lu W, Tian X, Sun Y and Peng H: Histone lactylation is involved in mouse oocyte maturation and embryo development. Int J Mol Sci. 25:48212024. View Article : Google Scholar : PubMed/NCBI | |
Merkuri F, Rothstein M and Simoes-Costa M: Histone lactylation couples cellular metabolism with developmental gene regulatory networks. Nat Commun. 15:902024. View Article : Google Scholar : PubMed/NCBI | |
Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M and Miyakawa T: Protein lactylation induced by neural excitation. Cell Rep. 37:1098202021. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Jia K, Cheng H, Xu H, Li Z, Zhang H, Xie H, Sun H, Yi L, Chen Z, et al: Orphan nuclear receptor NR4A3 promotes vascular calcification via histone lactylation. Circ Res. 134:1427–1447. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Hu M, Jiang H, Ma J, Xie C, Zhang Z, Zhou X, Zhao J, Tao Z, Meng Y, et al: Endothelial cell-derived lactate triggers bone mesenchymal stem cell histone lactylation to attenuate osteoporosis. Adv Sci (Weinh). 10:e23013002023. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhang F, Wang H, Tong Y, Fu Y, Wu K, Li J, Wang C, Wang Z, Jia Y, et al: NEDD4 lactylation promotes APAP induced liver injury through caspase11 dependent non-canonical pyroptosis. Int J Biol Sci. 20:1413–1435. 2024. View Article : Google Scholar : PubMed/NCBI | |
You X, Xie Y, Tan Q, Zhou C, Gu P, Zhang Y, Yang S, Yin H, Shang B, Yao Y, et al: Glycolytic reprogramming governs crystalline silica-induced pyroptosis and inflammation through promoting lactylation modification. Ecotoxicol Environ Saf. 283:1169522024. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Jia M, Feng Y and Cheng X: Lactate is a bridge linking glycolysis and autophagy through lactylation. Autophagy. 19:3240–3241. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Wang Y, Liu J, Yang Q, Zhang S, Hu X, Shi Z, Zhang Z, Tian J, Chu D and An L: Progesterone activates the histone lactylation-Hif1α-glycolysis feedback loop to promote decidualization. Endocrinology. 165:bqad1692023. View Article : Google Scholar | |
Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, et al: Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell. 187:294–311.e21. 2024. View Article : Google Scholar | |
Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar | |
Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H and Shen M: Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle. 14:2851–2865. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Zhang J, Zhou Q, He X, Zheng Z, Wei Y, Zhou K, Lin Y, Yu H, Zhang H, et al: Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Res. 34:13–30. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Lv Y, Hao P, Zhang Z, Zheng Y, Chen E and Fan Y: Immunological profile of lactylation-related genes in Crohn's disease: A comprehensive analysis based on bulk and single-cell RNA sequencing data. J Transl Med. 22:3002024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Gao Y, Wang Y, Jiang Y, Xiang Y, Wang X, Wang Z, Ding Y, Chen H, Rui B, et al: RBM25 is required to restrain inflammation via ACLY RNA splicing-dependent metabolism rewiring. Cell Mol Immunol. 21:1231–1250. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Gao Z, Xiang M, Feng Y, Wang J, Xu J, Wang Y and Liang J: Comprehensive analysis of lactate-related gene profiles and immune characteristics in lupus nephritis. Front Immunol. 15:13290092024. View Article : Google Scholar : PubMed/NCBI | |
Rho H, Terry AR, Chronis C and Hay N: Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 35:1406–1423.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li H, Jiang S, Fu D, Lu X, Lu M, Li Y, Luo D, Wu K, Xu Y, et al: The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney Int. 106:226–240. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Yang X, Wang J, Wang Z, Wang Q, Ding Y and Yu A: H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway. J Neuroinflammation. 20:2082023. View Article : Google Scholar | |
Huang Y, Wang C, Zhou T, Xie F, Liu Z, Xu H, Liu M, Wang S, Li L, Chi Q, et al: Lumican promotes calcific aortic valve disease through H3 histone lactylation. Eur Heart J. 45:3871–3885. 2024. View Article : Google Scholar : PubMed/NCBI | |
Maschari D, Saxena G, Law TD, Walsh E, Campbell MC and Consitt LA: Lactate-induced lactylation in skeletal muscle is associated with insulin resistance in humans. Front Physiol. 13:9513902022. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Li Y, Xu Z, Zhang F, Xu J, Hu Y, Yin J, Yang K, Sun L, Wang Q, et al: Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology. 78:1800–1815. 2023. View Article : Google Scholar : PubMed/NCBI | |
Si WY, Yang CL, Wei SL, Du T, Li LK, Dong J, Zhou Y, Li H, Zhang P, Liu QJ, et al: Therapeutic potential of microglial SMEK1 in regulating H3K9 lactylation in cerebral ischemia-reperfusion. Commun Biol. 7:17012024. View Article : Google Scholar : PubMed/NCBI | |
Liao Z, Chen B, Yang T, Zhang W and Mei Z: Lactylation modification in cardio-cerebral diseases: A state-of-the-art review. Ageing Res Rev. 104:1026312025. View Article : Google Scholar | |
Li W, Zhou J, Gu Y, Chen Y, Huang Y, Yang J, Zhu X, Zhao K, Yan Q, Zhao Z, et al: Lactylation of RNA m6A demethylase ALKBH5 promotes innate immune response to DNA herpesviruses and mpox virus. Proc Natl Acad Sci USA. 121:e24091321212024. View Article : Google Scholar | |
Yan Q, Zhou J, Gu Y, Huang W, Ruan M, Zhang H, Wang T, Wei P, Chen G, Li W and Lu C: Lactylation of NAT10 promotes N4-acetylcytidine modification on tRNASer-CGA-1-1 to boost oncogenic DNA virus KSHV reactivation. Cell Death Differ. 31:1362–1374. 2024. View Article : Google Scholar : | |
Wang Z, Mao Y, Wang Z, Li S, Hong Z, Zhou R, Xu S, Xiong Y and Zhang Y: Histone lactylation-mediated overexpression of RASD2 promotes endometriosis progression via upregulating the SUMOylation of CTPS1. Am J Physiol Cell Physiol. 328:C500–C513. 2025. View Article : Google Scholar | |
Ye L, Jiang Y and Zhang M: Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev. 68:81–92. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kes MMG, Van den Bossche J, Griffioen AW and Huijbers EJM: Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochim Biophys Acta Rev Cancer. 1874:1884272020. View Article : Google Scholar : PubMed/NCBI | |
Zhou HC, Xin-Yan Yan, Yu WW, Liang XQ, Du XY, Liu ZC, Long JP, Zhao GH and Liu HB: Lactic acid in macrophage polarization: The significant role in inflammation and cancer. Int Rev Immunol. 41:4–18. 2022. View Article : Google Scholar | |
Cai X, Ng CP, Jones O, Fung TS, Ryu KW, Li D and Thompson CB: Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol Cell. 83:3904–3920.e7. 2023. View Article : Google Scholar : PubMed/NCBI | |
Adam C, Paolini L, Gueguen N, Mabilleau G, Preisser L, Blanchard S, Pignon P, Manero F, Le Mao M, Morel A, et al: Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming. Nat Commun. 12:71152021. View Article : Google Scholar : PubMed/NCBI | |
Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, Bruntz RC, Kim EJ, Wise-Mitchell A, Barbosa de Souza Rizzo M, et al: Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci Adv. 7:eabi86022021. View Article : Google Scholar : PubMed/NCBI | |
Ajam-Hosseini M, Heydari R, Rasouli M, Akhoondi F, Asadi Hanjani N, Bekeschus S and Doroudian M: Lactic acid in macrophage polarization: A factor in carcinogenesis and a promising target for cancer therapy. Biochem Pharmacol. 222:1160982024. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Xu J, Fan M, Tu F, Wang X, Ha T, Williams DL and Li C: Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol. 11:5879132020. View Article : Google Scholar | |
Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X, Zhang X and Liu Y: Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci. 18:6210–6225. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dichtl S, Lindenthal L, Zeitler L, Behnke K, Schlösser D, Strobl B, Scheller J, El Kasmi KC and Murray PJ: Lactate and IL6 define separable paths of inflammatory metabolic adaptation. Sci Adv. 7:eabg35052021. View Article : Google Scholar : PubMed/NCBI | |
Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD and Pasare C: TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA. 117:30628–30638. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jiang H, Dong M, Min J, He X, Tan Y, Liu F, Chen M, Chen X, Yin Q, et al: Macrophage MCT4 inhibition activates reparative genes and protects from atherosclerosis by histone H3 lysine 18 lactylation. Cell Rep. 43:1141802024. View Article : Google Scholar : PubMed/NCBI | |
Hoque R, Farooq A, Ghani A, Gorelick F and Mehal WZ: Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 146:1763–1774. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Li Z, Yang L, Li W, Wang Y, Kong Z, Miao J, Chen Y, Bian Y and Zeng L: Emerging roles of lactate in acute and chronic inflammation. Cell Commun Signal. 22:2762024. View Article : Google Scholar : PubMed/NCBI | |
Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, et al: Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 30:1055–1074.e8. 2019. View Article : Google Scholar | |
Subudhi I, Konieczny P, Prystupa A, Castillo RL, Sze-Tu E, Xing Y, Rosenblum D, Reznikov I, Sidhu I, Loomis C, et al: Metabolic coordination between skin epithelium and type 17 immunity sustains chronic skin inflammation. Immunity. 57:1665–1680.e7. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Ming Y, Wu J and Cui G: Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell Mol Immunol. 21:419–435. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang YT, Xing ML, Fang HH, Li WD, Wu L and Chen ZP: Effects of lactate on metabolism and differentiation of CD4+T cells. Mol Immunol. 154:96–107. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Liao S, Zeng F, Liao Q, Luo G and Zhou Y: Effects of altered glycolysis levels on CD8+ T cell activation and function. Cell Death Dis. 14:4072023. View Article : Google Scholar | |
Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L and Sparwasser T: CD4+ T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol. 148:16–32. 2021. View Article : Google Scholar : PubMed/NCBI | |
Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D'Acquisto F, Bland EJ, Bombardieri M, Pitzalis C, Perretti M, et al: Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13:e10022022015. View Article : Google Scholar : PubMed/NCBI | |
Bechara R, McGeachy MJ and Gaffen SL: The metabolism-modulating activity of IL-17 signaling in health and disease. J Exp Med. 218:e202021912021. View Article : Google Scholar : PubMed/NCBI | |
Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SCC, van der Windt GJW, Blagih J, Qiu J, et al: Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 153:1239–1251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Choi SC, Xu Z, Zeumer L, Kanda N, Croker BP and Morel L: Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. J Immunol. 196:80–90. 2016. View Article : Google Scholar | |
Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, et al: Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 591:645–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tay C, Tanaka A and Sakaguchi S: Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell. 41:450–465. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fan W, Wang X, Zeng S, Li N, Wang G, Li R, He S, Li W, Huang J, Li X, et al: Global lactylome reveals lactylation-dependent mechanisms underlying TH17 differentiation in experimental autoimmune uveitis. Sci Adv. 9:eadh46552023. View Article : Google Scholar | |
Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar | |
Sharma R, Smolkin RM, Chowdhury P, Fernandez KC, Kim Y, Cols M, Alread W, Yen WF, Hu W, Wang ZM, et al: Distinct metabolic requirements regulate B cell activation and germinal center responses. Nat Immunol. 24:1358–1369. 2023. View Article : Google Scholar : PubMed/NCBI | |
Martinis E, Tonon S, Colamatteo A, La Cava A, Matarese G and Pucillo CEM: B cell immunometabolism in health and disease. Nat Immunol. 26:366–377. 2025. View Article : Google Scholar : PubMed/NCBI | |
Lee SC, Marzec M, Liu X, Wehrli S, Kantekure K, Ragunath PN, Nelson DS, Delikatny EJ, Glickson JD and Wasik MA: Decreased lactate concentration and glycolytic enzyme expression reflect inhibition of mTOR signal transduction pathway in B-cell lymphoma. NMR Biomed. 26:106–114. 2013. View Article : Google Scholar | |
Yao Y, Zhu J, Qin S, Zhou Z, Zeng Q, Long R, Mao Z, Dong X, Zhao R, Zhang R, et al: Resveratrol induces autophagy impeding BAFF-stimulated B-cell proliferation and survival by inhibiting the Akt/mTOR pathway. Biochem Pharmacol. 202:1151392022. View Article : Google Scholar : PubMed/NCBI | |
Lee P, Chandel NS and Simon MC: Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 21:268–283. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Asadi-Asadabad S, Cao S, Song R, Lin Z, Safhi M, Qin Y, Tcheumi Tactoum E, Taudte V, Ekici A, et al: Metabolic rewiring controlled by HIF-1α tunes IgA-producing B-cell differentiation and intestinal inflammation. Cell Mol Immunol. 22:54–67. 2025. View Article : Google Scholar | |
Lee DC, Sohn HA, Park ZY, Oh S, Kang YK, Lee K, Kang M, Jang YJ, Yang SJ, Hong YK, et al: A lactate-induced response to hypoxia. Cell. 161:595–609. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhang L, Joo D and Sun SC: NF-κB signaling in inflammation. Sig Transduct Target Ther. 2:170232017. View Article : Google Scholar | |
Ma N, Wang L, Meng M, Wang Y, Huo R, Chang G and Shen X: D-sodium lactate promotes the activation of NF-κB signaling pathway induced by lipopolysaccharide via histone lactylation in bovine mammary epithelial cells. Microb Pathog. 199:1071982025. View Article : Google Scholar | |
Chi W, Kang N, Sheng L, Liu S, Tao L, Cao X, Liu Y, Zhu C, Zhang Y, Wu B, et al: MCT1-governed pyruvate metabolism is essential for antibody class-switch recombination through H3K27 acetylation. Nat Commun. 15:1632024. View Article : Google Scholar : PubMed/NCBI |