1
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48.
2023.PubMed/NCBI
|
2
|
Rabinowitz JD and Enerbäck S: Lactate: The
ugly duckling of energy metabolism. Nat Metab. 2:566–5671.
2020.PubMed/NCBI
|
3
|
Koppenol WH, Bounds PL and Dang CV: Otto
Warburg's contributions to current concepts of cancer metabolism.
Nat Rev Cancer. 11:325–337. 2011.PubMed/NCBI
|
4
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y,
Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health
and disease. Signal Transduct Target Ther. 7:3052022.PubMed/NCBI
|
5
|
Ippolito L, Comito G, Parri M, Iozzo M,
Duatti A, Virgilio F, Lorito N, Bacci M, Pardella E, Sandrini G, et
al: Lactate rewires lipid metabolism and sustains a
metabolic-epigenetic axis in prostate cancer. Cancer Res.
82:1267–1282. 2022.PubMed/NCBI
|
6
|
Brown TP and Ganapathy V: Lactate/GPR81
signaling and proton motive force in cancer: Role in angiogenesis,
immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther.
206:1074512020.
|
7
|
Bergers G and Fendt SM: The metabolism of
cancer cells during metastasis. Nat Rev Cancer. 21:162–180.
2021.PubMed/NCBI
|
8
|
Végran F, Boidot R, Michiels C, Sonveaux P
and Feron O: Lactate influx through the endothelial cell
monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway
that drives tumor angiogenesis. Cancer Res. 71:2550–2560. 2011.
|
9
|
Annan DA, Maishi N, Soga T, Dawood R, Li
C, Kikuchi H, Hojo T, Morimoto M, Kitamura T, Alam MT, et al:
Carbonic anhydrase 2 (CAII) supports tumor blood endothelial cell
survival under lactic acidosis in the tumor microenvironment. Cell
Commun Signal. 17:1692019.PubMed/NCBI
|
10
|
Certo M, Tsai CH, Pucino V, Ho PC and
Mauro C: Lactate modulation of immune responses in inflammatory
versus tumour microenvironments. Nat Rev Immunol. 21:151–161.
2021.
|
11
|
Ye L, Jiang Y and Zhang M: Crosstalk
between glucose metabolism, lactate production and immune response
modulation. Cytokine Growth Factor Rev. 68:81–92. 2022.PubMed/NCBI
|
12
|
Fukushi A, Kim HD, Chang YC and Kim CH:
Revisited metabolic control and reprogramming cancers by means of
the Warburg effect in tumor cells. Int J Mol Sci.
23:100372022.PubMed/NCBI
|
13
|
Gnocchi D, Sabbà C and Mazzocca A: Lactic
acid fermentation: A maladaptive mechanism and an evolutionary
throwback boosting cancer drug resistance. Biochimie. 208:180–185.
2023.PubMed/NCBI
|
14
|
Zhang D, Tang Z, Huang H, Zhou G, Cui C,
Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic
regulation of gene expression by histone lactylation. Nature.
574:575–580. 2019.PubMed/NCBI
|
15
|
Chen AN, Luo Y, Yang YH, Fu JT, Geng XM,
Shi JP and Yang J: Lactylation, a novel metabolic reprogramming
code: Current status and prospects. Front Immunol.
12:6889102021.PubMed/NCBI
|
16
|
Jiang J, Huang D, Jiang Y, Hou J, Tian M,
Li J, Sun L, Zhang Y, Zhang T, Li Z, et al: Lactate modulates
cellular metabolism through histone lactylation-mediated gene
expression in non-small cell lung cancer. Front Oncol.
11:6475592021.PubMed/NCBI
|
17
|
Xiong J, He J, Zhu J, Pan J, Liao W, Ye H,
Wang H, Song Y, Du Y, Cui B, et al: Lactylation-driven
METTL3-mediated RNA m6A modification promotes
immunosuppression of tumor-infiltrating myeloid cells. Mol Cell.
82:1660–1677.e10. 2022.
|
18
|
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S,
Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests
lactylation-dependent mechanisms of metabolic adaptation in
hepatocellular carcinoma. Nat Metab. 5:61–79. 2023.PubMed/NCBI
|
19
|
Fan M, Yang K, Wang X, Chen L, Gill PS, Ha
T, Liu L, Lewis NH, Williams DL and Li C: Lactate promotes
endothelial-to-mesenchymal transition via Snail1 lactylation after
myocardial infarction. Sci Adv. 9:eadc94652023.PubMed/NCBI
|
20
|
Clara JA, Monge C, Yang Y and Takebe N:
Targeting signalling pathways and the immune microenvironment of
cancer stem cells-a clinical update. Nat Rev Clin Oncol.
17:204–232. 2020.
|
21
|
Bayik D and Lathia JD: Cancer stem
cell-immune cell crosstalk in tumour progression. Nat Rev Cancer.
21:526–536. 2021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Paul R, Dorsey JF and Fan Y: Cell
plasticity, senescence, and quiescence in cancer stem cells:
Biological and therapeutic implications. Pharmacol Ther.
231:1079852022. View Article : Google Scholar :
|
23
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu S, Zhao H, Hu Y, Yan C, Mi Y, Li X,
Tao D and Qin J: Lactate promotes metastasis of normoxic colorectal
cancer stem cells through PGC-1α-mediated oxidative
phosphorylation. Cell Death Dis. 13:6512022. View Article : Google Scholar
|
25
|
Zhao H, Yan C, Hu Y, Mu L, Liu S, Huang K,
Li Q, Li X, Tao D and Qin J: Differentiated cancer cell-originated
lactate promotes the self-renewal of cancer stem cells in
patient-derived colorectal cancer organoids. Cancer Lett.
493:236–244. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nimmakayala RK, Leon F, Rachagani S, Rauth
S, Nallasamy P, Marimuthu S, Shailendra GK, Chhonker YS, Chugh S,
Chirravuri R, et al: Metabolic programming of distinct cancer stem
cells promotes metastasis of pancreatic ductal adenocarcinoma.
Oncogene. 40:215–231. 2021. View Article : Google Scholar
|
27
|
Rives ML, Javitch JA and Wickenden AD:
Potentiating SLC transporter activity: Emerging drug discovery
opportunities. Biochem Pharmacol. 135:1–11. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pizzagalli MD, Bensimon A and
Superti-Furga G: A guide to plasma membrane solute carrier
proteins. FEBS J. 288:2784–2835. 2021. View Article : Google Scholar :
|
29
|
Lin L, Yee SW, Kim RB and Giacomini KM:
SLC transporters as therapeutic targets: Emerging opportunities.
Nat Rev Drug Discov. 14:543–560. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Marin JJG, Macias RIR, Cives-Losada C,
Peleteiro-Vigil A, Herraez E and Lozano E: Plasma membrane
transporters as biomarkers and molecular targets in
cholangiocarcinoma. Cells. 9:4982020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schlessinger A, Zatorski N, Hutchinson K
and Colas C: Targeting SLC transporters: Small molecules as
modulators and therapeutic opportunities. Trends Biochem Sci.
48:801–814. 2023. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nwosu ZC, Song MG, di Magliano MP,
Lyssiotis CA and Kim SE: Nutrient transporters: Connecting cancer
metabolism to therapeutic opportunities. Oncogene. 42:711–724.
2023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang ZH, Peng WB, Zhang P, Yang XP and
Zhou Q: Lactate in the tumour microenvironment: From immune
modulation to therapy. EBioMedicine. 73:1036272021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Qian Y, Galan-Cobo A, Guijarro I, Dang M,
Molkentine D, Poteete A, Zhang F, Wang Q, Wang J, Parra E, et al:
MCT4-dependent lactate secretion suppresses antitumor immunity in
LKB1-deficient lung adenocarcinoma. Cancer Cell. 41:1363–1380.e7.
2023. View Article : Google Scholar : PubMed/NCBI
|
35
|
Benjamin D, Robay D, Hindupur SK, Pohlmann
J, Colombi M, El-Shemerly MY, Maira SM, Moroni C, Lane HA and Hall
MN: Dual inhibition of the lactate transporters MCT1 and MCT4 is
synthetic lethal with metformin due to NAD+ depletion in cancer
cells. Cell Rep. 25:3047–3058.e4. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fang Y, Liu W, Tang Z, Ji X, Zhou Y, Song
S, Tian M, Tao C, Huang R, Zhu G, et al: Monocarboxylate
transporter 4 inhibition potentiates hepatocellular carcinoma
immunotherapy through enhancing T cell infiltration and immune
attack. Hepatology. 77:109–123. 2023. View Article : Google Scholar
|
37
|
Faubert B, Li KY, Cai L, Hensley CT, Kim
J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al:
Lactate metabolism in human lung tumors. Cell. 171:358–371.e9.
2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lee DG, Lee JH, Choi BK, Kim MJ, Kim SM,
Kim KS, Chang K, Park SH, Bae YS and Kwon BS:
H+-myo-inositol transporter SLC2A13 as a potential
marker for cancer stem cells in an oral squamous cell carcinoma.
Curr Cancer Drug Targets. 11:966–975. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yin Y, Jiang Z, Fu J, Li Y, Fang C, Yin X,
Chen Y, Chen N, Li J, Ji Y, et al: Choline-induced SLC5A7 impairs
colorectal cancer growth by stabilizing p53 protein. Cancer Lett.
525:55–66. 2022. View Article : Google Scholar
|
40
|
Romero MF, Chen AP, Parker MD and Boron
WF: The SLC4 family of bicarbonate (HCO3−)
transporters. Mol Aspects Med. 34:159–182. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sedlyarov V, Eichner R, Girardi E,
Essletzbichler P, Goldmann U, Nunes-Hasler P, Srndic I, Moskovskich
A, Heinz LX, Kartnig F, et al: The bicarbonate transporter SLC4A7
plays a key role in macrophage phagosome acidification. Cell Host
Microbe. 23:766–774.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Boedtkjer E:
Na+,HCO3− cotransporter NBCn1
accelerates breast carcinogenesis. Cancer Metastasis Rev.
38:165–178. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ergün S: Cross-Kingdom Gene regulation via
miRNAs of Hypericum perforatum (St. John's wort) flower
dietetically absorbed: An in silico approach to define potential
biomarkers for prostate cancer. Comput Biol Chem. 80:16–22. 2019.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Shao L, He Q, Wang J, He F, Lin S, Wu L,
Gao Y, Ma W, Dong J, Yang X and Li F: MicroRNA-326 attenuates
immune escape and prevents metastasis in lung adenocarcinoma by
targeting PD-L1 and B7-H3. Cell Death Discov. 7:1452021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Luo HT, Zheng YY, Tang J, Shao LJ, Mao YH,
Yang W, Yang XF, Li Y, Tian RJ and Li FR: Dissecting the
multi-omics atlas of the exosomes released by human lung
adenocarcinoma stem-like cells. NPJ Genom Med. 6:482021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Niu M, Zhang B, Li L, Su Z, Pu W, Zhao C,
Wei L, Lian P, Lu R, Wang R, et al: Targeting HSP90 inhibits
proliferation and induces apoptosis through AKT1/ERK pathway in
lung cancer. Front Pharmacol. 12:7241922022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hu C, Zhang M, Moses N, Hu CL, Polin L,
Chen W, Jang H, Heyza J, Malysa A, Caruso JA, et al: The
USP10-HDAC6 axis confers cisplatin resistance in non-small cell
lung cancer lacking wild-type p53. Cell Death Dis. 11:3282020.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Wu PH, Onodera Y, Recuenco FC, Giaccia AJ,
Le QT, Shimizu S, Shirato H and Nam JM: Lambda-carrageenan enhances
the effects of radiation therapy in cancer treatment by suppressing
cancer cell invasion and metastasis through Racgap1 inhibition.
Cancers (Basel). 11:11922019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Nallapalli RK, Ibrahim MX, Zhou AX,
Bandaru S, Sunkara SN, Redfors B, Pazooki D, Zhang Y, Borén J, Cao
Y, et al: Targeting filamin A reduces K-RAS-induced lung
adenocarcinomas and endothelial response to tumor growth in mice.
Mol Cancer. 11:502012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Reyes-Castro RA, Chen SY, Seemann J, Kundu
ST, Gibbons DL and Arur S: Phosphorylated nuclear DICER1 promotes
open chromatin state and lineage plasticity of AT2 tumor cells in
lung adenocarcinomas. Sci Adv. 9:eadf62102023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Han J, Won M, Kim JH, Jung E, Min K,
Jangili P and Kim JS: Cancer stem cell-targeted bio-imaging and
chemotherapeutic perspective. Chem Soc Rev. 49:7856–7878. 2020.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Toledo-Guzmán ME, Hernández MI,
Gómez-Gallegos ÁA and Ortiz-Sánchez E: ALDH as a stem cell marker
in solid tumors. Curr Stem Cell Res Ther. 14:375–388. 2019.
View Article : Google Scholar
|
53
|
Ginestier C, Hur MH, Charafe-Jauffret E,
Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG,
Liu S, et al: ALDH1 is a marker of normal and malignant human
mammary stem cells and a predictor of poor clinical outcome. Cell
Stem Cell. 1:555–567. 2007. View Article : Google Scholar
|
54
|
Liu C, Qiang J, Deng Q, Xia J, Deng L,
Zhou L, Wang D, He X, Liu Y, Zhao B, et al: ALDH1A1 activity in
tumor-initiating cells remodels myeloid-derived suppressor cells to
promote breast cancer progression. Cancer Res. 81:5919–5934. 2021.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Ge X, Li M, Song GX, Zhang Z, Yin J, Ge Z,
Shi Z, Liu LZ, Jiang BH, Qian X and Shen H: Chromium (VI)-induced
ALDH1A1/EGF axis promotes lung cancer progression. Clin Transl Med.
12:e11362022. View Article : Google Scholar : PubMed/NCBI
|