
MicroRNA‑21: A potential therapeutic target in lung cancer (Review)
- Authors:
- Zhouqiang Li
- Hualing Zhang
- Zeshan Chen
- Guanzhu Wu
- Weixing Guo
- Yun Li
-
Affiliations: Second Ward, Department of Respiratory and Critical Care Medicine, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, Guangxi 545000, P.R. China, Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China - Published online on: July 9, 2025 https://doi.org/10.3892/ijo.2025.5773
- Article Number: 67
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Remon J and Hellmann MD: First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 40:586–597. 2022. View Article : Google Scholar : PubMed/NCBI | |
He S, Li H, Cao M, Sun D, Yang F, Yan X, Zhang S, He Y, Du L, Sun X, et al: Survival of 7,311 lung cancer patients by pathological stage and histological classification: A multicenter hospital-based study in China. Transl Lung Cancer Res. 11:1591–1605. 2022. View Article : Google Scholar : PubMed/NCBI | |
Goulart BHL and Ramsey SD: Moving beyond the national lung screening trial: Discussing strategies for implementation of lung cancer screening programs. Oncologist. 18:941–946. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barlesi F, Dixmier A, Debieuvre D, Raspaud C, Auliac JB, Benoit N, Bombaron P, Moro-Sibilot D, Asselain B, Audigier-Valette C, et al: Final 3-year results from the EVIDENS study, an observational study of nivolumab in non-small cell lung cancer. Oncoimmunology. 14:24929322025. View Article : Google Scholar : PubMed/NCBI | |
Sheikh MSA and Salma U: Impact of microRNAs on cardiovascular diseases and aging. J Int Med Res. 52:30006052412791902024. View Article : Google Scholar : PubMed/NCBI | |
Martino MTD, Tagliaferri P and Tassone P: MicroRNA in cancer therapy: Breakthroughs and challenges in early clinical applications. J Exp Clin Cancer Res. 44:1262025. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Huang D, Li M and Yang M: MicroRNA-99 family in cancer: molecular mechanisms for clinical applications. PeerJ. 13:e191882025. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Qin Y: Role of miRNA-145-5p in cancer (review). Oncol Rep. 53:392025. View Article : Google Scholar | |
Liu L, Liu X, Gao C, Liu M, Peng M and Wang L: Hsa-miR-21 promoted the progression of lung adenocarcinoma by regulating LRIG1 expression. BMC Pulm Med. 25:1892025. View Article : Google Scholar : PubMed/NCBI | |
Wan J, Niu C, Wang B, Han Q, Chen Y, Feng S and Yang L: Human esophageal fibroblast-derived exosomal miR-21 reduced the cisplatin sensitivity to esophageal carcinoma EC9706 cells. Braz J Med Biol Res. 54:e111562021. View Article : Google Scholar : PubMed/NCBI | |
Mharrach I, Tadlaoui KA, Aqerrout M, Laraqui A, Ameur A, El Ghazzaly A, Ennibi K and Ennaji MM: Diagnostic value of miR-21 and miR-221 as potential biomarkers for early diagnosis of prostate cancer. Mol Clin Oncol. 22:402025. View Article : Google Scholar | |
Prasad M, Hamsa D, Fareed M and Karobari MI: An update on the molecular mechanisms underlying the progression of miR-21 in oral cancer. World J Surg Oncol. 23:732025. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Jung KO, Oh S, Kim YH, Lee SY, Hong S, Cho SH, Kim H, Rhee S, Cheon GJ, et al: Radiation-induced exosomal miR-21 enhances tumor proliferation and invasiveness in breast cancer: Implications for poor prognosis in radiotherapy patients. Exp Hematol Oncol. 13:1202024. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Han S, Zhang C, Zhao H, Xu J and Sun X: Value of serum miR-21, HE4 and CA125 in surveillance for postoperative recurrent or metastatic ovarian cancer. Pak J Med Sci. 38:939–945. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Su C, Cai Y, Ke L and Huang Y: miR-21 promotes cervical cancer by regulating NTF3. Sci Rep. 15:24422025. View Article : Google Scholar : PubMed/NCBI | |
Tohidast M, Amini M, Doustvandi MA, Hosseini SS, Bilan F, Mozammel N, Sameti P, Mokhtarzadeh AA and Baradaran B: Simultaneous effect of miR-21 suppression and miR-143 restoration on inhibition of proliferation and migration in SW-480 colorectal cancer cells. Bioimpacts. 15:302552024. | |
Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clément S, Maeder C, Dolicka D, Fournier M, Vinet L, Montet X, et al: Mir-21 suppression promotes mouse hepatocarcinogenesis. Cancers (Basel). 13:49832021. View Article : Google Scholar : PubMed/NCBI | |
Dos Santos PRM, da Silva Gomes PR, Romão P, Maluf FC, Guimarães VR, Candido P, Gonçalves GL, de Camargo JA, Dos Santos GA, Silva I, et al: Enhancing RECK expression through miR-21 inhibition: A promising strategy for bladder carcinoma control. Biochem Genet. 63:817–831. 2025. View Article : Google Scholar | |
Pesta M, Travnicek I, Kulda V, Ostasov P, Windrichova J, Houfkova K, Knizkova T, Bendova B, Hes O, Hora M, et al: Prognostic value of tumor tissue up-regulated microRNAs in clear cell renal cell carcinoma (ccRCC). In Vivo. 38:1799–1805. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ren X, Yuan Y and Yuan BS: Downregulated lncRNA GAS5 and upregulated miR-21 lead to epithelial-mesenchymal transition and lung metastasis of osteosarcomas. Front Cell Dev Biol. 9:7076932021. View Article : Google Scholar : PubMed/NCBI | |
Shaikh MAJ, Altamimi ASA, Afzal M, Gupta G, Singla N, Gilhotra R, Almalki WH, Kazmi I, Alzarea SI, Prasher P, et al: Unraveling the impact of miR-21 on apoptosis regulation in glioblastoma. Pathol Res Pract. 254:1551212024. View Article : Google Scholar : PubMed/NCBI | |
Ritter A, Han J, Bianconi S, Henrich D, Marzi I, Leppik L and Weber B: The ambivalent role of miRNA-21 in trauma and acute organ injury. Int J Mol Sci. 25:112822024. View Article : Google Scholar : PubMed/NCBI | |
Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI | |
Ortiz IMDP, Barros-Filho MC, Dos Reis MB, Beltrami CM, Marchi FA, Kuasne H, do Canto LM, de Mello JBH, Abildgaard C, Pinto CAL, et al: Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma. Clin Epigenetics. 10:1442018. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Tan T, Zhu L, Dong H and Xian R: Hypomethylation causes MIR21 overexpression in tumors. Mol Ther Oncolytics. 18:47–57. 2020. View Article : Google Scholar : PubMed/NCBI | |
Weng PW, Yadav VK, Pikatan NW, Fong IH, Lin IH, Yeh CT and Lee WH: Novel NFκB inhibitor SC75741 mitigates chondrocyte degradation and prevents activated fibroblast transformation by modulating miR-21/GDF-5/SOX5 signaling. Int J Mol Sci. 22:110822021. View Article : Google Scholar | |
Liu L, Pan Y, Zhai C, Zhu Y, Ke R, Shi W, Wang J, Yan X, Su X, Song Y, et al: Activation of peroxisome proliferation-activated receptor-γ inhibits transforming growth factor-β1-induced airway smooth muscle cell proliferation by suppressing Smad-miR-21 signaling. J Cell Physiol. 234:669–681. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu ZH, Zhou J, Hu GH, Liu J, Li WC, Lai XH and Liu M: LncRNA CASC2 inhibits lung adenocarcinoma progression through forming feedback loop with miR-21/p53 axis. Kaohsiung J Med Sci. 37:675–685. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zheng F, Wang Z, Lu J and Zhang H: Circular RNA circ-SLC7A6 acts as a tumor suppressor in non-small cell lung cancer through abundantly sponging miR-21. Cell Cycle. 19:2235–2246. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rama AR, Quiñonero F, Mesas C, Melguizo C and Prados J: Synthetic circular miR-21 sponge as tool for lung cancer treatment. Int J Mol Sci. 23:29632022. View Article : Google Scholar : PubMed/NCBI | |
Angel CZ, Stafford MYC, McNally CJ, Nesbitt H and McKenna DJ: MiR-21 is induced by hypoxia and down-regulates RHOB in prostate cancer. Cancers (Basel). 15:12912023. View Article : Google Scholar : PubMed/NCBI | |
Garg P, Ramisetty S, Nair M, Kulkarni P, Horne D, Salgia R and Singhal SS: Strategic advancements in targeting the PI3K/AKT/mTOR pathway for Breast cancer therapy. Biochem Pharmacol. 236:1168502025. View Article : Google Scholar : PubMed/NCBI | |
Ma SY, Liu YM and Wang J: Potential bidirectional regulatory effects of botanical drug metabolites on tumors and cardiovascular diseases based on the PI3K/Akt/mTOR pathway. Front Pharmacol. 16:14678942025. View Article : Google Scholar : PubMed/NCBI | |
Chawra HS, Agarwal M, Mishra A, Chandel SS, Singh RP, Dubey G, Kukreti N and Singh M: MicroRNA-21's role in PTEN suppression and PI3K/AKT activation: Implications for cancer biology. Pathol Res Pract. 254:1550912024. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Wang D, Sun G, Mei F, Cui Y and Xu H: Effect of miR-21 on apoptosis in lung cancer cell through inhibiting the PI3K/ Akt/NF-κB signaling pathway in vitro and in vivo. Cell Physiol Biochem. 46:999–1008. 2018. View Article : Google Scholar | |
Jiang LP, He CY and Zhu ZT: Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene. Oncotarget. 8:23675–23689. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang H, Wang X, Wang J and Wei H: Long non-coding RNA CASC2 enhanced cisplatin-induced viability inhibition of non-small cell lung cancer cells by regulating the PTEN/PI3K/Akt pathway through down-regulation of miR-18a and miR-21. RSC Adv. 8:15923–15932. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yakubov R, Kaloti R, Persaud P, McCracken A, Zadeh G and Bunda S: It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J Neurooncol. 172:327–345. 2025. View Article : Google Scholar : PubMed/NCBI | |
Suryavanshi A, Vandana, Shukla YK, Kumar V, Gupta P, Asati V, Mahapatra DK, Keservani RK, Jain SK and Bharti SK: MEK inhibitors in oncology: A patent review and update (2016-present). Expert Opin Ther Pat. 34:963–1007. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, Sanderson MP, Kessler D, Trapani F, Arnhof H, et al: BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 11:142–157. 2021. View Article : Google Scholar | |
Odogwu L, Mathieu L, Blumenthal G, Larkins E, Goldberg KB, Griffin N, Bijwaard K, Lee EY, Philip R, Jiang X, et al: FDA approval summary: Dabrafenib and treatment of metastatic non-small cell lung cancers harboring BRAF V600E mutations. Oncologist. 23:740–745. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang WC, Yadav VK, Cheng WH, Wang CH, Hsieh MS, Huang TY, Lin SF, Yeh CT and Kuo KT: The MEK/ERK/miR-21 signaling is critical in osimertinib resistance in EGFR-mutant non-small cell lung cancer cells. Cancers (Basel). 13:60052021. View Article : Google Scholar : PubMed/NCBI | |
Runa F, Ortiz-Soto G, de Barros NR and Kelber JA: Targeting SMAD-dependent signaling: Considerations in epithelial and mesenchymal solid tumors. Pharmaceuticals (Basel). 17:3262024. View Article : Google Scholar : PubMed/NCBI | |
Antognelli C, Gambelunghe A, Muzi G and Talesa VN: Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype. Free Radic Biol Med. 92:110–125. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xin X, Cheng X, Zeng F, Xu Q and Hou L: The role of TGF-β/SMAD signaling in hepatocellular carcinoma: From mechanism to therapy and prognosis. Int J Biol Sci. 20:1436–1451. 2024. View Article : Google Scholar : | |
Xu K, Wei G, Qi W, Ye C, Liu Y, Wang S, Yang F and Tang J: CircPOLA2 sensitizes non-small cell lung cancer cells to ferroptosis and suppresses tumorigenesis via the Merlin-YAP signaling pathway. iScience. 27:1108322024. View Article : Google Scholar : PubMed/NCBI | |
An Y, Zhang Q, Li X, Wang Z, Li Y and Tang X: Upregulated microRNA miR-21 promotes the progression of lung adenocarcinoma through inhibition of KIBRA and the Hippo signaling pathway. Biomed Pharmacother. 108:1845–1855. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li J, Feng M, Xu X, Tang W, Jiang Y, Xia Z, Liu H, Shen F, Li X and Jiang L: Tigecycline modulates LPS-induced inflammatory response in sepsis via NF-κB signalling pathways: Experimental insights into immune regulation. Int J Antimicrob Agents. 66:1074962025. View Article : Google Scholar | |
Shi S, Ou X, Liu C, Li R, Zheng Q and Hu L: NF-κB signaling and the tumor microenvironment in osteosarcoma: Implications for immune evasion and therapeutic resistance. Front Immunol. 16:15186642025. View Article : Google Scholar | |
Bahrami A, Khalaji A, Bahri Najafi M, Sadati S, Raisi A, Abolhassani A, Eshraghi R, Khaksary Mahabady M, Rahimian N and Mirzaei H: NF-κB pathway and angiogenesis: Insights into colorectal cancer development and therapeutic targets. Eur J Med Res. 29:6102024. View Article : Google Scholar | |
Sai X, Qin C, Zhang Z, Yu H and Bian T: A miRNA-21-Mediated PTEN/Akt/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Int J Chron Obstruct Pulmon Dis. 19:1141–1151. 2024. View Article : Google Scholar : | |
Yang Z, Fang S, Di Y, Ying W, Tan Y and Gu W: Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One. 10:e01215472015. View Article : Google Scholar | |
Samad MA, Ahmad I, Hasan A, Alhashmi MH, Ayub A, Al-Abbasi FA, Kumer A and Tabrez S: STAT3 signaling pathway in health and disease. MedComm (2020). 6:e701522025. View Article : Google Scholar : PubMed/NCBI | |
Perner F, Pahl HL, Zeiser R and Heidel FH: Malignant JAK-signaling: At the interface of inflammation and malignant transformation. Leukemia. 39:1011–1030. 2025. View Article : Google Scholar : PubMed/NCBI | |
Jang JY, Jeon YK, Lee CE and Kim CW: ANT2 suppression by shRNA may be able to exert anticancer effects in HCC further by restoring SOCS1 expression. Int J Oncol. 42:574–582. 2013. View Article : Google Scholar | |
Almutairy B, Fu Y, Bi Z, Zhang W, Wadgaonkar P, Qiu Y, Thakur C and Chen F: Arsenic activates STAT3 signaling during the transformation of the human bronchial epithelial cells. Toxicol Appl Pharmacol. 436:1158842022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Gao L, Ding F, Gao K, Liu Q and Yin X: Prognostic value and molecular mechanisms of OAS1 in lung adenocarcinoma. BMC Pulm Med. 24:4732024. View Article : Google Scholar : PubMed/NCBI | |
Lara P, Aguilar-González A, Martín F, Mesas C, Moreno J and Rama AR: Exploring miR-21 knock-out using CRISPR/Cas as a treatment for lung cancer. Genes (Basel). 16:1332025. View Article : Google Scholar : PubMed/NCBI | |
Jin J and Yu G: Hypoxic lung cancer cell-derived exosomal miR-21 mediates macrophage M2 polarization and promotes cancer cell proliferation through targeting IRF1. World J Surg Oncol. 20:2412022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhao J, Jia X, Zhang Y, Du Y, Li H, Ma L and Huang J: miR-21 promotes growth, invasion and migration of lung cancer cells by AKT/P-AKT/cleaved-caspase 3/MMP-2/MMP-9 signaling pathway. Int J Clin Exp Pathol. 13:692–700. 2020.PubMed/NCBI | |
Meng G, Wei J, Wang Y, Qu D and Zhang J: miR-21 regulates immunosuppression mediated by myeloid-derived suppressor cells by impairing RUNX1-YAP interaction in lung cancer. Cancer Cell Int. 20:4952020. View Article : Google Scholar : PubMed/NCBI | |
Liang ZY, Zhang ZM, Sun GR, Zhao BS, Xin GH and Zhang L: lncRNA ASBEL and lncRNA Erbb4-IR reduce chemoresistance against gemcitabine and cisplatin in stage IV lung squamous cell carcinoma via the microRNA-21/LZTFL1 axis. Am J Cancer Res. 13:2732–2750. 2023.PubMed/NCBI | |
Zhang CC, Li Y, Feng XZ and Li DB: Circular RNA circ_0001287 inhibits the proliferation, metastasis, and radiosensitivity of non-small cell lung cancer cells by sponging microRNA miR-21 and up-regulating phosphatase and tensin homolog expression. Bioengineered. 12:414–425. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liang M, Wang L, Cao C, Song S and Wu F: LncRNA SNHG10 is downregulated in non-small cell lung cancer and predicts poor survival. BMC Pulm Med. 20:2732020. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Xiu M, Gao J and Jing H: LncRNA PLAC 2 downregulated miR-21 in non-small cell lung cancer and predicted survival. BMC Pulm Med. 19:1722019. View Article : Google Scholar : PubMed/NCBI | |
Su C, Cheng X, Li Y, Han Y, Song X, Yu D, Cao X and Liu Z: MiR-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med. 7:2485–2503. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dai Q, Li N and Zhou X: Increased miR-21a provides metabolic advantages through suppression of FBP1 expression in non-small cell lung cancer cells. Am J Cancer Res. 7:2121–2130. 2017.PubMed/NCBI | |
Zhang Z, Huang Y, Li J, Su F, Kuo JC, Hu Y, Zhao X and Lee RJ: Antitumor activity of anti-miR-21 delivered through lipid nanoparticles. Adv Healthc Mater. 12:e22024122023. View Article : Google Scholar | |
Folahan JT and Barabutis N: NEK kinases in cell cycle regulation, DNA damage response, and cancer progression. Tissue Cell. 94:1028112025. View Article : Google Scholar : PubMed/NCBI | |
Zabihi M, Lotfi R, Yousefi AM and Bashash D: Cyclins and cyclin-dependent kinases: From biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol. 149:1585–1606. 2023. View Article : Google Scholar | |
Dai L, Chen F, Zheng Y, Zhang D, Qian B, Ji H, Long F and Cretoiu D: miR-21 regulates growth and EMT in lung cancer cells via PTEN/Akt/GSK3β signaling. Front Biosci (Landmark Ed). 24:1426–1439. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Zhang W, Zhang B, Zhao Y, Zhao Y, Li S and Liu Y: miR-21 modulates the effect of EZH2 on the biological behavior of human lung cancer stem cells in vitro. Oncotarget. 8:85442–85451. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Dong Z, Yang L and Gong Z: miR-21 induces cell cycle at S phase and modulates cell proliferation by down-regulating hMSH2 in lung cancer. J Cancer Res Clin Oncol. 138:1781–1788. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Zhang W, Liu H, Liu P, Li C, Liu Y, Han J and Zhu G: Recent advances in the treatment of non-small cell lung cancer with MET inhibitors. Front Chem. 12:15018442024. View Article : Google Scholar : PubMed/NCBI | |
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N and Ghavami S: Therapeutic targeting of TGF-β in lung cancer. FEBS J. 292:1520–1557. 2025. View Article : Google Scholar | |
Reddy RA, Varshini MS and Kumar RS: Matrix metalloproteinase-2 (MMP-2): As an essential factor in cancer progression. Recent Pat Anticancer Drug Discov. 20:26–44. 2025. View Article : Google Scholar | |
Shen KH, Hung JH, Liao YC, Tsai ST, Wu MJ and Chen PS: Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPs. Int J Mol Sci. 21:30802020. View Article : Google Scholar : PubMed/NCBI | |
Masuda T, Fukuda A, Yamakawa G, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Nagao M, Araki O, Yoshikawa T, et al: Pancreatic RECK inactivation promotes cancer formation, epithelial-mesenchymal transition, and metastasis. J Clin Invest. 133:e1618472023. View Article : Google Scholar : PubMed/NCBI | |
Tiong TY, Chan ML, Wang CH, Yadav VK, Pikatan NW, Fong IH, Yeh CT, Kuo KT and Huang WC: Exosomal miR-21 determines lung-to-brain metastasis specificity through the DGKB/ERK axis within the tumor microenvironment. Life Sci. 329:1219452023. View Article : Google Scholar : PubMed/NCBI | |
Bai J, Shi Z, Wang S, Pan H and Zhang T: MiR-21 and let-7 cooperation in the regulation of lung cancer. Front Oncol. 12:9500432022. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary B, Arya P, Sharma V, Kumar P, Singla D and Grewal AS: Targeting anti-apoptotic mechanisms in tumour cells: Strategies for enhancing cancer therapy. Bioorg Chem. 159:1083882025. View Article : Google Scholar : PubMed/NCBI | |
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S and Islam S: Apoptosis: A comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells. 13:18382024. View Article : Google Scholar : PubMed/NCBI | |
Ge JH, Zhu JW, Fu HY, Shi WB and Zhang CL: An antisense oligonucleotide drug targeting miR-21 induces H1650 apoptosis and caspase activation. Technol Cancer Res Treat. 18:15330338198922632019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang J, Yi T, Li H, Tang X, Liu D, Wu D and Li Y: Decoding tumor angiogenesis: Pathways, mechanisms, and future directions in anti-cancer strategies. Biomark Res. 13:622025. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Luo F, Wang B, Li H, Xu Y, Liu X, Shi L, Lu X, Xu W, Lu L, et al: STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 370:125–135. 2016. View Article : Google Scholar | |
Zhao Y, Xu Y, Luo F, Xu W, Wang B, Pang Y, Zhou J, Wang X and Liu Q: Angiogenesis, mediated by miR-21, is involved arsenite-induced carcinogenesis. Toxicol Lett. 223:35–41. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Zhang Z, Gu T, Xu SF, Dong LX, Li X, Fu BH and Fu ZZ: The role of microRNA-21 in predicting brain metastases from non-small cell lung cancer. Onco Targets Ther. 10:185–194. 2016. View Article : Google Scholar | |
Yang JC, Lee DH, Lee JS, Fan Y, de Marinis F, Iwama E, Inoue T, Rodríguez-Cid J, Zhang L, Yang CT, et al: Phase III KEYNOTE-789 study of pemetrexed and platinum with or without pembrolizumab for tyrosine kinase inhibitor-resistant, EGFR-mutant, metastatic nonsquamous non-small cell lung cancer. J Clin Oncol. 42:4029–4039. 2024. View Article : Google Scholar : PubMed/NCBI | |
Im JH, Lee KY, Seo Y, Rhim J, Dho YS, Yoo BC, Park JB, Shin SH, Yoo H, Kim JH and Gwak HS: Extracellular vesicles from cerebrospinal fluid of leptomeningeal metastasis patients deliver MiR-21 and induce methotrexate resistance in lung cancer cells. Int J Mol Sci. 25:31242024. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Ren P, Zhang Y, Gong B, Yu D and Sun X: Long non-coding RNA GAS5 increases the radiosensitivity of A549 cells through interaction with the miR-21/PTEN/Akt axis. Oncol Rep. 43:897–907. 2020.PubMed/NCBI | |
Zhang Y, Zhu J, Qiu L, Lv Z, Zhao Z, Ren X, Guo Y, Chen Y, Li M, Fan Y, et al: Stimulus-activated ribonuclease targeting chimeras for tumor microenvironment activated cancer therapy. Nat Commun. 16:12882025. View Article : Google Scholar : PubMed/NCBI | |
Zhang WC, Skiados N, Aftab F, Moreno C, Silva L, Corbilla PJA, Asara JM, Hata AN and Slack FJ: MicroRNA-21 guide and passenger strand regulation of adenylosuccinate lyase-mediated purine metabolism promotes transition to an EGFR-TKI-tolerant persister state. Cancer Gene Ther. 29:1878–1894. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gamal-Eldeen AM, Alrehaili AA, Alharthi A and Raafat BM: Perftoran ® inhibits hypoxia-associated resistance in lung cancer cells to carboplatin. Front Pharmacol. 13:8608982022. View Article : Google Scholar | |
Jiang S, Wang R, Yan H, Jin L, Dou X and Chen D: MicroRNA-21 modulates radiation resistance through upregulation of hypoxia-inducible factor-1α-promoted glycolysis in non-small cell lung cancer cells. Mol Med Rep. 13:4101–4107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Gong J, Chen J, Yang L, Hu S, Chen L and Lu H: Clinical outcomes of EGFR-TKI in advanced lung squamous cell carcinoma and EGFR-TKI remodel tumor immune microenvironment. Ann Med. 57:24881092025. View Article : Google Scholar : PubMed/NCBI | |
Jing C, Cao H, Qin X, Yu S, Wu J, Wang Z, Ma R and Feng J: Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett. 15:9811–9817. 2018.PubMed/NCBI | |
Song S, Guo Y, Mao D, Gao H, Gao YP and Kang W: An ultrasensitive electrochemical/colorimetric dual-mode self-powered biosensing platform for lung cancer marker detection by multiple-signal amplification strategy. Anal Chim Acta. 1316:3428272024. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang J, Xie Q, Chu Z, Lu Y, Zhang F and Wang Q: Isothermal strand displacement polymerase reaction (ISDPR)-assisted microchip electrophoresis for highly sensitive detection of cancer associated microRNAs. Anal Chim Acta. 1300:3424692024. View Article : Google Scholar : PubMed/NCBI | |
Pang H, Gong Y, Wang Y and Zhang L: The expression of miR-21, HSP90a and gGASP-1 in serum of patients with lung cancer and their correlation with pathological subtypes. J Med Biochem. 43:460–468. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu J, Liu Q, Ren Y, Wang Q, Tian Q, Li Z and Liu H: Clinical value of peripheral blood miR-21 and miR-486 combined with CT forearly cancer diagnosis in pulmonary nodulessmoking. J Cardiothorac Surg. 19:5392024. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Liu J, He N, Zhang M, Wu L, Chen X, Zhu J, Ran F, Chen Q and Zhang H: CRISPR/Cas12a coupling with magnetic nanoparticles and cascaded strand displacement reaction for ultrasensitive fluorescence determination of exosomal miR-21. Molecules. 27:53382022. View Article : Google Scholar : PubMed/NCBI | |
Hetta HF, Zahran AM, Shafik EA, El-Mahdy RI, Mohamed NA, Nabil EE, Esmaeel HM, Alkady OA, Elkady A, Mohareb DA, et al: Circulating miRNA-21 and miRNA-23a expression signature as potential biomarkers for early detection of non-small-cell lung cancer. Microrna. 8:206–215. 2019. View Article : Google Scholar : PubMed/NCBI | |
Watabe S, Kikuchi Y, Morita S, Komura D, Numakura S, Kumagai-Togashi A, Watanabe M, Matsutani N, Kawamura M, Yasuda M and Uozaki H: Clinicopathological significance of microRNA-21 in extracellular vesicles of pleural lavage fluid of lung adenocarcinoma and its functions inducing the mesothelial to mesenchymal transition. Cancer Med. 9:2879–2890. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu S and Shi L: High expression of miR-155 and miR-21 in the recurrence or metastasis of non-small cell lung cancer. Oncol Lett. 18:758–763. 2019.PubMed/NCBI | |
Zhu Z, Li Q, Xu M and Qi Z: Effect of whole-brain and intensity-modulated radiotherapy on serum levels of miR-21 and prognosis for lung cancer metastatic to the brain. Med Sci Monit. 26:e9246402020. View Article : Google Scholar : PubMed/NCBI | |
D'Antonio L, Fieni C, Ciummo SL, Vespa S, Lotti L, Sorrentino C and Di Carlo E: Inactivation of interleukin-30 in colon cancer stem cells via CRISPR/Cas9 genome editing inhibits their oncogenicity and improves host survival. J Immunother Cancer. 11:e0060562023. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Li D, Wang X, Guo Q, Zhao Y, Hou W, Li J and Zheng Q: Drug monomers from Salvia miltiorrhiza Bge. Promoting tight junction protein expression for therapeutic effects on lung cancer. Sci Rep. 13:229282023. View Article : Google Scholar : PubMed/NCBI | |
Shortridge MD, Chaubey B, Zhang HJ, Pavelitz T, Vidadala V, Tang C, Olsen GL, Calin GA and Varani G: Drug-like small molecules that inhibit expression of the oncogenic MicroRNA-21. ACS Chem Biol. 18:237–250. 2023. View Article : Google Scholar : PubMed/NCBI | |
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRAM, Ahmad SMS, Pintus G and Zayed H: microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res. 9:831–852. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sriram V and Lee JY: Calcium phosphate-polymeric nanoparticle system for co-delivery of microRNA-21 inhibitor and doxorubicin. Colloids Surf B Biointerfaces. 208:1120612021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang C, Hu L, He Y, Shi Z, Tang S and Chen Y: Abnormal expression of miR-21 and miR-95 in cancer stem-like cells is associated with radioresistance of lung cancer. Cancer Invest. 33:165–171. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 35:180–188. 2017. View Article : Google Scholar | |
Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI | |
van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, Boyer M and van Zandwijk N: Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 8:1079–1085. 2016. View Article : Google Scholar : PubMed/NCBI | |
van der Ree MH, de Vree JM, Stelma F, Willemse S, van der Valk M, Rietdijk S, Molenkamp R, Schinkel J, van Nuenen AC, Beuers U, et al: Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial. Lancet. 389:709–717. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stelma F, van der Ree MH, Sinnige MJ, Brown A, Swadling L, de Vree JML, Willemse SB, van der Valk M, Grint P, Neben S, et al: Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-MicroRNA-122, RG-101. Hepatology. 66:57–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Campbell F, Han K, Theodore D, Deeg M, Huang M, Hamatake R, Lahiri S, Chen S, Horvath G, et al: Randomized clinical trials towards a single-visit cure for chronic hepatitis C: Oral GSK2878175 and injectable RG-101 in chronic hepatitis C patients and long-acting injectable GSK2878175 in healthy participants. J Viral Hepat. 27:699–708. 2020. View Article : Google Scholar : PubMed/NCBI | |
Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ottosen S, Parsley TB, Yang L, Zeh K, van Doorn LJ, van der Veer E, Raney AK, Hodges MR and Patick AK: In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother. 59:599–608. 2015. View Article : Google Scholar : | |
Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U, et al: LNA-mediated microRNA silencing in non-human primates. Nature. 452:896–899. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gebert LFR, Rebhan MAE, Crivelli SEM, Denzler R, Stoffel M and Hall J: Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 42:609–621. 2014. View Article : Google Scholar | |
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, et al: Treatment of HCV infection by targeting microRNA. N Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI | |
Keskin S, Brouwers CC, Sogorb-Gonzalez M, Martier R, Depla JA, Vallès A, van Deventer SJ, Konstantinova P and Evers MM: AAV5-miHTT lowers huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes. Mol Ther Methods Clin Dev. 15:275–284. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miniarikova J, Zanella I, Huseinovic A, van der Zon T, Hanemaaijer E, Martier R, Koornneef A, Southwell AL, Hayden MR, van Deventer SJ, et al: Design, characterization, and lead selection of therapeutic miRNAs targeting huntingtin for development of gene therapy for Huntington's disease. Mol Ther Nucleic Acids. 5:e2972016. View Article : Google Scholar : PubMed/NCBI | |
Ho PTB, Clark IM and Le LTT: MicroRNA-based diagnosis and therapy. Int J Mol Sci. 23:71672022. View Article : Google Scholar : PubMed/NCBI | |
Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M and Jackson AL: Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 183:428–444. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Zain J, Rosen ST and Querfeld C: Emerging drugs for the treatment of cutaneous T-cell lymphoma. Expert Opin Emerg Drugs. 27:45–54. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gallant-Behm CL, Piper J, Dickinson BA, Dalby CM, Pestano LA and Jackson AL: A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen. 26:311–323. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abplanalp WT, Fischer A, John D, Zeiher AM, Gosgnach W, Darville H, Montgomery R, Pestano L, Allée G, Paty I, et al: Efficiency and target derepression of anti-miR-92a: Results of a first in human study. Nucleic Acid Ther. 30:335–345. 2020. View Article : Google Scholar : PubMed/NCBI | |
Täubel J, Hauke W, Rump S, Viereck J, Batkai S, Poetzsch J, Rode L, Weigt H, Genschel C, Lorch U, et al: Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 42:178–188. 2021. View Article : Google Scholar : | |
Lee EC, Valencia T, Allerson C, Schairer A, Flaten A, Yheskel M, Kersjes K, Li J, Gatto S, Takhar M, et al: Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun. 10:41482019. View Article : Google Scholar : PubMed/NCBI | |
Gale DP, Gross O, Wang F, Esteban de la Rosa RJ, Hall M, Sayer JA, Appel G, Hariri A, Liu S, Maski M, et al: A randomized controlled clinical trial testing effects of lademirsen on kidney function decline in adults with alport syndrome. Clin J Am Soc Nephrol. 19:995–1004. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen YY, Chen XG and Zhang S: Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol Sin. 43:505–519. 2022. View Article : Google Scholar : |