
Role of exosomal non‑coding RNAs in cancer‑associated fibroblast‑mediated therapy resistance (Review)
- Authors:
- Junxin Li
- Yu Huang
- Lin Fu
- Ming Shi
- Gongli Hu
- Fei Du
- Zhongshu Wang
- Yi Xiao
- Yan Zhang
- Yanyu Li
-
Affiliations: Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China, Department of Pharmacy, The Fourth Affiliated Hospital of Southwest Medical University, Meishan, Sichuan 620000, P.R. China - Published online on: July 11, 2025 https://doi.org/10.3892/ijo.2025.5774
- Article Number: 68
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang H and Chen X: Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2:141–160. 2019.PubMed/NCBI | |
Dong D, Yu X, Xu J, Yu N, Liu Z and Sun Y: Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat. 77:1011252024. View Article : Google Scholar : PubMed/NCBI | |
Hussain S, Singh A, Nazir SU, Tulsyan S, Khan A, Kumar R, Bashir N, Tanwar P and Mehrotra R: Cancer drug resistance: A fleet to conquer. J Cell Biochem. 120:14213–14225. 2019. View Article : Google Scholar : PubMed/NCBI | |
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rezayatmand H, Razmkhah M and Razeghian-Jahromi I: Drug resistance in cancer therapy: The Pandora's Box of cancer stem cells. Stem Cell Res Ther. 13:1812022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang Y, Li Z, Xue W, Hu S and Kong X: Lipid metabolism as a target for cancer drug resistance: Progress and prospects. Front Pharmacol. 14:12743352023. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Wu ZX, Assaraf YG, Chen ZS and Wang L: Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat. 57:1007702021. View Article : Google Scholar : PubMed/NCBI | |
Nussinov R, Tsai CJ and Jang H: Anticancer drug resistance: An update and perspective. Drug Resist Updat. 59:1007962021. View Article : Google Scholar : PubMed/NCBI | |
Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 27:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW and Kundu GC: Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer. 23:922024. View Article : Google Scholar : PubMed/NCBI | |
Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, Validire P, Ingels A, Cathelineau X, Fridman WH and Sautès-Fridman C: The clinical role of the TME in solid cancer. Br J Cancer. 120:45–53. 2019. View Article : Google Scholar : | |
Peng Z, Tong Z, Ren Z, Ye M and Hu K: Cancer-associated fibroblasts and its derived exosomes: A new perspective for reshaping the tumor microenvironment. Mol Med. 29:662023. View Article : Google Scholar : PubMed/NCBI | |
Loh JJ and Ma S: The role of cancer-associated fibroblast as a dynamic player in mediating cancer stemness in the tumor microenvironment. Front Cell Dev Biol. 9:7276402021. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI | |
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T and Singh S: Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev. 189:1145042022. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G and De Maria R: Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer. 18:702019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L and Yu D: Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 1871:455–468. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S and Liu YS: Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther. 6:3832021. View Article : Google Scholar : PubMed/NCBI | |
Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar | |
Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI | |
Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Zhou S, Dain L, Mei L and Zhu G: Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim FM, Saleh RO, Uinarni H, Bokov DO, Menon SV, Zarifovich KB, Misra N, Al-Hamdani MM, Husseen B and Jawad MA: Exosomal noncoding RNA (ncRNA) in breast cancer pathogenesis and therapy; two sides of the same coin. Exp Cell Res. 444:1143592025. View Article : Google Scholar | |
Saadh MJ, Allela OQB, Kareem RA, Ballal S, Chahar M, Saini S, Prasad GVS, Sameer HN, Hamad AK, Athab ZH and Adil M: The role of exosomal non-coding RNAs in the breast cancer tumor microenvironment. Funct Integr Genomics. 25:322025. View Article : Google Scholar : PubMed/NCBI | |
Alipoor SD and Chang H: Exosomal miRNAs in the tumor microenvironment of multiple myeloma. Cells. 12:10302023. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Zhong X, Li J, Hu R, Yi J, Sun J, Xu Y and Zhou X: Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomed Pharmacother. 173:1164092024. View Article : Google Scholar : PubMed/NCBI | |
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF and Mohamadtahr S: Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res. 8:615–632. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li W, Wang X, Li C, Chen T and Yang Q: Exosomal non-coding RNAs: Emerging roles in bilateral communication between cancer cells and macrophages. Mol Ther. 30:1036–1053. 2022. View Article : Google Scholar : | |
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, et al: Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol. 173:1036802022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yu D, Ji C, Wang M, Fu M, Qian Y and Zhang X, Ji R, Li C, Gu J and Zhang X: Exosomal miR-4745-5p/3911 from N2-polarized tumor-associated neutrophils promotes gastric cancer metastasis by regulating SLIT2. Mol Cancer. 23:1982024. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Jia Y, Wang J, Chen X, Han J, Zhen S, Yin S, Lv W, Yu F, Wang J, et al: circNOX4 activates an inflammatory fibroblast niche to promote tumor growth and metastasis in NSCLC via FAP/IL-6 axis. Mol Cancer. 23:472024. View Article : Google Scholar : PubMed/NCBI | |
Golestannejad P, Monkaresi M, Zhian Zargaran F, Khosravani M, Asgari P, Mobaraki H, Gorjizad M, Hasany S, Senobari Ghezeljehmeidan A, Hemmati S, et al: Role of cancer associated fibroblast (CAF) derived miRNAs on head and neck malignancies microenvironment: A systematic review. BMC Cancer. 25:5822025. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Liang Y, Wang Y, Le Yang R, Luo D, Li Y, Jin Y, Han D, Chen B, Zhao W, et al: Cancer-associated fibroblasts facilitate breast cancer progression through exosomal circTBPL1-mediated intercellular communication. Cell Death Dis. 14:4712023. View Article : Google Scholar : PubMed/NCBI | |
Shelton M, Anene CA, Nsengimana J, Roberts W, Newton-Bishop J and Boyne JR: The role of CAF derived exosomal microRNAs in the tumour microenvironment of melanoma. Biochim Biophys Acta Rev Cancer. 1875:1884562021. View Article : Google Scholar | |
Sun S, Zhang Y, Li Y and Wei L: Crosstalk between colorectal cancer cells and cancer-associated fibroblasts in the tumor microenvironment mediated by exosomal noncoding RNAs. Front Immunol. 14:11616282023. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Shen J, Mao L, Yang T, Liu J and Hongbin S: Cancer associated fibroblast secreted miR-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene. 43:2104–2114. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E, Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Shen L, Li M, Sun J, Hao J, Li J, Zhu Z, Ge S, Zhang D, Guo H, et al: Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Cancer Res. 83:1611–1627. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Farhood B, Najafi M and Mortezaee K: Cancer-associated fibroblasts: Secretions, interactions, and therapy. J Cell Biochem. 120:2791–2800. 2019. View Article : Google Scholar | |
Joshi RS, Kanugula SS, Sudhir S, Pereira MP, Jain S and Aghi MK: The role of cancer-associated fibroblasts in tumor progression. Cancers. 13:13992021. View Article : Google Scholar : PubMed/NCBI | |
Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, Weichselbaum RR and Schreiber H: Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 113:7551–7556. 2016. View Article : Google Scholar : PubMed/NCBI | |
Raz Y, Cohen N, Shani O, Bell RE, Novitskiy SV, Abramovitz L, Levy C, Milyavsky M, Leider-Trejo L, Moses HL, et al: Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med. 215:3075–3093. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peng Y and Li Z and Li Z: GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun. 440:558–563. 2013. View Article : Google Scholar : PubMed/NCBI | |
Potenta S, Zeisberg E and Kalluri R: The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 99:1375–1379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 34:55–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rinkevich Y, Mori T, Sahoo D, Xu PX, Bermingham JR Jr and Weissman IL: Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat Cell Biol. 14:1251–1260. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Liu P, Ma D, Zhang S, Ni M, Fang Q and Wang J: Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia. Biomed Pharmacother. 130:1106102020. View Article : Google Scholar | |
Sun X, Cai W, Li H, Gao C, Ma X, Guo Y, Fu D, Xiao D, Zhang Z, Wang Y, et al: Endothelial-like cancer-associated fibroblasts facilitate pancreatic cancer metastasis via vasculogenic mimicry and paracrine signalling. Gut. Mar 23–2025.Epub ahead of print. View Article : Google Scholar | |
Hamabe-Horiike T, Harada SI, Yoshida K, Kinoshita J, Yamaguchi T and Fushida S: Adipocytes contribute to tumor progression and invasion of peritoneal metastasis by interacting with gastric cancer cells as cancer associated fibroblasts. Cancer Rep (Hoboken). 6:e16472023. | |
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar : | |
Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T, Tan P and Ishimoto T: Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene. 38:4887–4901. 2019. View Article : Google Scholar : PubMed/NCBI | |
Biffi G and Tuveson DA: Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 101:147–176. 2021. View Article : Google Scholar : | |
Chhabra Y and Weeraratna AT: Fibroblasts in cancer: Unity in heterogeneity. Cell. 186:1580–1609. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sugimoto H, Mundel TM, Kieran MW and Kalluri R: Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 5:1640–1646. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cortez E, Roswall P and Pietras K: Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin Cancer Biol. 25:3–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Kim SA, Choi YA, Park DY and Lee J: Alpha-smooth muscle actin-positive perivascular cells in diabetic retina and choroid. Int J Mol Sci. 21:21582020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Wu C, Shi T, Cai Q, Wang T, Xiong Y, Zhang Y, Jiang W, Lu M, Chen Z, et al: FAP expression in adipose tissue macrophages promotes obesity and metabolic inflammation. Proc Natl Acad Sci USA. 120:e23030751202023. View Article : Google Scholar : PubMed/NCBI | |
Kang SH, Oh SY, Lee HJ, Kwon TG, Kim JW, Lee ST, Choi SY and Hong SH: Cancer-associated fibroblast subgroups showing differential promoting effect on HNSCC progression. Cancers (Basel). 13:6542021. View Article : Google Scholar : PubMed/NCBI | |
Kennel KB, Bozlar M, De Valk AF and Greten FR: Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin Cancer Res. 29:1009–1016. 2023. View Article : Google Scholar : | |
Caligiuri G and Tuveson DA: Activated fibroblasts in cancer: Perspectives and challenges. Cancer Cell. 41:434–449. 2023. View Article : Google Scholar : PubMed/NCBI | |
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, et al: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 33:463–479.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi T, Yao L, Han Y, Hao P and Lu P: Quantitative phosphoproteomics reveals system-wide phosphorylation network altered by spry in mouse mammary stromal fibroblasts. Int J Mol Sci. 20:54002019. View Article : Google Scholar : PubMed/NCBI | |
Cords L, Tietscher S, Anzeneder T, Langwieder C, Rees M, de Souza N and Bodenmiller B: Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat Commun. 14:42942023. View Article : Google Scholar : PubMed/NCBI | |
Schwörer S, Cimino FV, Ros M, Tsanov KM, Ng C, Lowe SW, Carmona-Fontaine C and Thompson CB: Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell-derived cytokines. Cancer Res. 83:1596–1610. 2023. View Article : Google Scholar : PubMed/NCBI | |
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson DA: IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar | |
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S and Qiao Y: Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 6:1532021. View Article : Google Scholar : PubMed/NCBI | |
Piersma B, Hayward MK and Weaver VM: Fibrosis and cancer: A strained relationship. Biochim Biophys Acta Rev Cancer. 1873:1883562020. View Article : Google Scholar : PubMed/NCBI | |
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA and Hynes RO: The extracellular matrix: Tools and insights for the 'omics' era. Matrix Biol. 49:10–24. 2016. View Article : Google Scholar | |
Zeltz C, Primac I, Erusappan P, Alam J, Noel A and Gullberg D: Cancer-associated fibroblasts in desmoplastic tumors: Emerging role of integrins. Semin Cancer Biol. 62:166–181. 2020. View Article : Google Scholar | |
Santi A, Kugeratski FG and Zanivan S: Cancer associated fibroblasts: The architects of stroma remodeling. Proteomics. 18:e17001672018. View Article : Google Scholar | |
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar | |
Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar | |
Patwardhan S, Mahadik P, Shetty O and Sen S: ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials. 279:1211852021. View Article : Google Scholar : PubMed/NCBI | |
Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, Chen AC, Sah RL, Taylor SS, Engler AJ and Yang J: Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 17:678–688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhang H, Wang J, Liu Y, Luo T and Hua H: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 15:342022. View Article : Google Scholar : PubMed/NCBI | |
Li ZL, Wang ZJ, Wei GH, Yang Y and Wang XW: Changes in extracellular matrix in different stages of colorectal cancer and their effects on proliferation of cancer cells. World J Gastrointest Oncol. 12:267–275. 2020. View Article : Google Scholar : PubMed/NCBI | |
Erdogan B and Webb DJ: Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jabłońska-Trypuć A, Matejczyk M and Rosochacki S: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 31:177–183. 2016. View Article : Google Scholar | |
Cazet AS, Hui MN, Elsworth BL, Wu SZ, Roden D, Chan CL, Skhinas JN, Collot R, Yang J, Harvey K, et al: Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun. 9:28972018. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann AM, Ridinger-Saison M, DelGiorno KE, Antal CE, Liang G, et al: Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 569:131–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kaur A, Ecker BL, Douglass SM, Kugel CH III, Webster MR, Almeida FV, Somasundaram R, Hayden J, Ban E, Ahmadzadeh H, et al: Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9:64–81. 2019. View Article : Google Scholar : | |
Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, Song Y, Chen S, Hu Q and Ni Y: ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics. 10:12044–12059. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: The promising role of noncoding RNAs in cancer-associated fibroblasts: An overview of current status and future perspectives. J Hematol Oncol. 13:1542020. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Li B, Liang Y, Reeves PM, Qu X, Ran C, Liu Q, Callahan MV, Sluder AE, Gelfand JA, et al: Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J. 33:6596–6608. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wei R, Li J, Lin W, Pang X, Yang H, Lai S, Wei X, Jiang X, Yuan Y and Yang R: Nanoparticle-mediated blockade of CXCL12/CXCR4 signaling enhances glioblastoma immunotherapy: Monitoring early responses with MRI radiomics. Acta Biomater. 177:414–430. 2024. View Article : Google Scholar : PubMed/NCBI | |
Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, et al: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 110:20212–20217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liang Y, Liu Z, Zhang R, Chao J, Wang M, Liu M, Qiao L, Xuan Z, Zhao H and Lu L: POSTN+ cancer-associated fibroblasts determine the efficacy of immunotherapy in hepatocellular carcinoma. J Immunother Cancer. 12:e0087212024. View Article : Google Scholar : | |
Chen C, Guo Q, Liu Y, Hou Q, Liao M, Guo Y, Zang Y, Wang F, Liu H, Luan X, et al: Single-cell and spatial transcriptomics reveal POSTN+ cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer. Clin Transl Med. 13:e15152023. View Article : Google Scholar | |
Li Z, Sun C and Qin Z: Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 11:8322–8336. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wang J, Chen Y, Liang W, Liu H, Du R, Sun Y, Hu C and Shang Z: CAFs-derived lactate enhances the cancer stemness through inhibiting the MST1 ubiquitination degradation in OSCC. Cell Biosci. 14:1442024. View Article : Google Scholar : PubMed/NCBI | |
Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S, Hofman P, Bellvert F, Meneguzzi G, Bulavin DV, et al: Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29:124–140.e10. 2019. View Article : Google Scholar : | |
Kim I, Choi S, Yoo S, Lee M and Kim IS: Cancer-associated fibroblasts in the hypoxic tumor microenvironment. Cancers (Basel). 14:33212022. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, et al: Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 20:72021. View Article : Google Scholar : PubMed/NCBI | |
Cadamuro M, Brivio S, Mertens J, Vismara M, Moncsek A, Milani C, Fingas C, Cristina Malerba M, Nardo G, Dall'Olmo L, et al: Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma. J Hepatol. 70:700–709. 2019. View Article : Google Scholar | |
Li P, Zhang H, Chen T, Zhou Y, Yang J and Zhou J: Cancer-associated fibroblasts promote proliferation, angiogenesis, metastasis and immunosuppression in gastric cancer. Matrix Biol. 132:59–71. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dai S, Liu Y, Liu Z, Li R, Luo F, Li Y, Dai L and Peng X: Cancer-associated fibroblasts mediate resistance to anti-EGFR therapies in cancer. Pharmacol Res. 206:1073042024. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M and Worthley DL: Cancer-associated fibroblasts in gastrointestinal cancer. NaNat Rev Gastroenterol Hepatol. 16:282–295. 2019. View Article : Google Scholar | |
Mucciolo G, Araos Henríquez J, Jihad M, Pinto Teles S, Manansala JS, Li W, Ashworth S, Lloyd EG, Cheng PSW, Luo W, et al: EGFR-activated myofibroblasts promote metastasis of pancreatic cancer. Cancer Cell. 42:101–118.e11. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bordignon P, Bottoni G, Xu X, Popescu AS, Truan Z, Guenova E, Kofler L, Jafari P, Ostano P, Röcken M, et al: Dualism of FGF and TGF-β signaling in heterogeneous cancer-associated fibroblast activation with ETV1 as a critical determinant. Cell Rep. 28:2358–2372.e6. 2019. View Article : Google Scholar | |
Likonen D, Pinchasi M, Beery E, Sarsor Z, Signorini LF, Gervits A, Sharan R, Lahav M, Raanani P and Uziel O: Exosomal telomerase transcripts reprogram the microRNA transcriptome profile of fibroblasts and partially contribute to CAF formation. Sci Rep. 12:164152022. View Article : Google Scholar : PubMed/NCBI | |
Tang XH, Guo T, Gao XY, Wu XL, Xing XF, Ji JF and Li ZY: Exosome-derived noncoding RNAs in gastric cancer: Functions and clinical applications. Mol Cancer. 20:992021. View Article : Google Scholar : PubMed/NCBI | |
Cosentino G, Romero-Cordoba S, Plantamura I, Cataldo A and Iorio MV: miR-9-mediated inhibition of EFEMP1 contributes to the acquisition of pro-tumoral properties in normal fibroblasts. Cells. 9:21432020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Guan J, Long X, Wang Y and Xiang X: mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance. Oncol Rep. 35:3523–3531. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yao J, Li W and Zhang C: Micro-RNA-21 regulates cancer-associated fibroblast-mediated drug resistance in pancreatic cancer. Oncol Res. 26:827–835. 2018. View Article : Google Scholar | |
Xia B, Gu X, Xu T, Yan M, Huang L, Jiang C, Li M, Zhai G, Zhang G, Wu J, et al: Exosomes-mediated transfer of LINC00691 regulates the formation of CAFs and promotes the progression of gastric cancer. BMC Cancer. 23:9282023. View Article : Google Scholar | |
Pang W, Su J, Wang Y, Feng H, Dai X, Yuan Y, Chen X and Yao W: Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci. 106:1362–1369. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zhang F, Wang T, Xie Z, Luo H, Dong W, Zhang J, Ren C and Peng W: A self-amplifying loop of TP53INP1 and P53 drives oxidative stress-induced apoptosis of bone marrow mesenchymal stem cells. Apoptosis. 29:882–897. 2024. View Article : Google Scholar : PubMed/NCBI | |
Vennin C, Mélénec P, Rouet R, Nobis M, Cazet AS, Murphy KJ, Herrmann D, Reed DA, Lucas MC, Warren SC, et al: CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat Commun. 10:36372019. View Article : Google Scholar : PubMed/NCBI | |
Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al: Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 9:1912018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J and Shi X: Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res. 37:3242018. View Article : Google Scholar : PubMed/NCBI | |
Ye B, Duan Y, Zhou M, Wang Y, Lai Q, Yue K, Cao J, Wu Y, Wang X and Jing C: Hypoxic tumor-derived exosomal miR-21 induces cancer-associated fibroblast activation to promote head and neck squamous cell carcinoma metastasis. Cell Signal. 108:1107252023. View Article : Google Scholar : PubMed/NCBI | |
Hu T and Hu J: Melanoma-derived exosomes induce reprogramming fibroblasts into cancer-associated fibroblasts via Gm26809 delivery. Cell Cycle. 18:3085–3094. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dror S, Sander L, Schwartz H, Sheinboim D, Barzilai A, Dishon Y, Apcher S, Golan T, Greenberger S, Barshack I, et al: Melanoma miRNA trafficking controls tumour primary niche formation. Nat Cell Biol. 18:1006–1017. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vu LT, Peng B, Zhang DX, Ma V, Mathey-Andrews CA, Lam CK, Kiomourtzis T, Jin J, McReynolds L, Huang L, et al: Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles. 8:15996802019. View Article : Google Scholar : PubMed/NCBI | |
Yang SS, Ma S, Dou H, Liu F, Zhang SY, Jiang C, Xiao M and Huang YX: Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res. 391:1119832020. View Article : Google Scholar : PubMed/NCBI | |
Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Yang L, Yu C, Zhu W, Zhou X, Xiong Y, Wang W, Ji F, He D and Cao X: Tumor-secreted exosomal lncRNA POU3F3 promotes cisplatin resistance in ESCC by inducing fibroblast differentiation into CAFs. Mol Ther Oncolytics. 18:1–13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang X, Song Y, Si M, Sun Y, Liu X, Cui S, Qu X and Yu X: Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts. Cell Death Dis. 13:3802022. View Article : Google Scholar : PubMed/NCBI | |
Becker LM, O'Connell JT, Vo AP, Cain MP, Tampe D, Bizarro L, Sugimoto H, McGow AK, Asara JM, Lovisa S, et al: Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31:1077012020. View Article : Google Scholar : PubMed/NCBI | |
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, et al: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 8:3984–4001. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kitamura F, Semba T, Yasuda-Yoshihara N, Yamada K, Nishimura A, Yamasaki J, Nagano O, Yasuda T, Yonemura A, Tong Y, et al: Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer. JCI Insight. 8:e1630222023. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou W, Xu H, Xu J, Li J, Liu X, Lu X, Dai J, Jiang Y, Wang W, et al: Cancer-associated fibroblasts promote EGFR-TKI resistance via the CTHRC1/glycolysis/H3K18la positive feedback loop. Oncogene. 44:1400–1414. 2025. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, Liu X, Chen CH, Fadare O, Pizzo DP, et al: Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 20:597–609. 2018. View Article : Google Scholar : PubMed/NCBI | |
He R, Hu C, Yuan Y, Li T, Tian Q, Huang T, Lin Q, Zheng S, Chen C, Fu Z and Chen R: Glycolysis reprogramming in CAFs promotes oxaliplatin resistance in pancreatic cancer through circABCC4 mediated PKM2 nuclear translocation. Cell Death Dis. 16:1262025. View Article : Google Scholar : PubMed/NCBI | |
Kazakova AN, Lukina MM, Anufrieva KS, Bekbaeva IV, Ivanova OM, Shnaider PV, Slonov A, Arapidi GP and Shender VO: Exploring the diversity of cancer-associated fibroblasts: Insights into mechanisms of drug resistance. Front Cell Dev Biol. 12:14031222024. View Article : Google Scholar : PubMed/NCBI | |
Long X, Xiong W, Zeng X, Qi L, Cai Y, Mo M, Jiang H, Zhu B, Chen Z and Li Y: Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death Dis. 10:3752019. View Article : Google Scholar | |
Zhang T, Zhang P and Li HX: CAFs-derived exosomal miRNA-130a confers cisplatin resistance of NSCLC cells through PUM2-dependent packaging. Int J Nanomedicine. 16:561–577. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yip HYK and Papa A: Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells. 10:6592021. View Article : Google Scholar : PubMed/NCBI | |
Zhang YE: Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 9:a0221292017. View Article : Google Scholar | |
Moon JY, Manh Hung LV, Unno T and Cho SK: Nobiletin enhances chemosensitivity to adriamycin through modulation of the Akt/GSK3β/β-catenin/MYCN/MRP1 signaling pathway in A549 human non-small-cell lung cancer cells. Nutrients. 10:18292018. View Article : Google Scholar | |
Tomar VS, Patil V and Somasundaram K: Temozolomide induces activation of Wnt/β-catenin signaling in glioma cells via PI3K/Akt pathway: Implications in glioma therapy. Cell Biol Toxicol. 36:273–278. 2020. View Article : Google Scholar | |
Sun Z, Jiang Q, Gao B, Zhang X, Bu L, Wang L, Lin Y, Xie W, Li J and Guo J: AKT blocks SIK1-mediated repression of STAT3 to promote breast tumorigenesis. Cancer Res. 83:1264–1279. 2023. View Article : Google Scholar : PubMed/NCBI | |
Belarif L, Mary C, Jacquemont L, Mai HL, Danger R, Hervouet J, Minault D, Thepenier V, Nerrière-Daguin V, Nguyen E, et al: IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates. Nat Commun. 9:44832018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Jiang W, Du Y, Zhu D, Zhang J, Fang C, Yan F and Chen ZS: Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Updat. 65:1008842022. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X and Shi S: Signaling pathways in cancer-associated fibroblasts: Recent advances and future perspectives. Cancer Commun (Lond). 43:3–41. 2023. View Article : Google Scholar | |
Butti R, Khaladkar A, Bhardwaj P and Prakasam G: Heterotypic signaling of cancer-associated fibroblasts in shaping the cancer cell drug resistance. Cancer Drug Resist. 6:182–204. 2023. View Article : Google Scholar : PubMed/NCBI | |
Keresztes D, Kerestély M, Szarka L, Kovács BM, Schulc K, Veres DV and Csermely P: Cancer drug resistance as learning of signaling networks. Biomed Pharmacother. 183:1178802025. View Article : Google Scholar : PubMed/NCBI | |
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar | |
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
Essex A, Pineda J, Acharya G, Xin H and Evans J; Reproducibility Project: Cancer Biology: Replication study: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. ELife. 8:e454262019. View Article : Google Scholar | |
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Ruan H, Zhang X, Xu X, Zhu Y, Peng H, Zhang X, Kong F and Guan M: Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int J Cancer. 146:1700–1716. 2020. View Article : Google Scholar | |
Shan G, Zhou X, Gu J, Zhou D, Cheng W, Wu H, Wang Y, Tang T and Wang X: Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol (Dordr). 44:45–59. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Weng K, Li L, Lin G, Zhao Y, Gao Y, Huang X, Chen Q, Wang J, Zheng C, et al: BATF2 inhibits the stem cell-like properties and chemoresistance of gastric cancer cells through PTEN/AKT/β-catenin pathway. Theranostics. 14:7007–7022. 2024. View Article : Google Scholar : | |
Fang F, Guo C, Zheng W, Wang Q and Zhou L: Exosome-mediated transfer of miR-1323 from cancer-associated fibroblasts confers radioresistance of C33A cells by targeting PABPN1 and activating Wnt/β-catenin signaling pathway in cervical cancer. Reprod Sci. 29:1809–1821. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zou S, Tong Q, Liu B, Huang W, Tian Y and Fu X: Targeting STAT3 in cancer immunotherapy. Mol Cancer. 19:1452020. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Dong Z and Liu K: Unraveling the complexity of STAT3 in cancer: Molecular understanding and drug discovery. J Exp Clin Cancer Res. 43:232024. View Article : Google Scholar : PubMed/NCBI | |
Pan MS, Wang H, Ansari KH, Li XP, Sun W and Fan YZ: Gallbladder cancer-associated fibroblasts promote vasculogenic mimicry formation and tumor growth in gallbladder cancer via upregulating the expression of NOX4, a poor prognosis factor, through IL-6-JAK-STAT3 signal pathway. J Exp Clin Cancer Res. 39:2342020. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Zhang Q, Wei S, Zhang Y, Zhou T, Zhang Q, Shi R, Zinovkin D, Pranjol ZI, Zhang J and Wang H: CD146+CAFs promote progression of endometrial cancer by inducing angiogenesis and vasculogenic mimicry via IL-10/JAK1/STAT3 pathway. Cell Commun Signal. 22:1702024. View Article : Google Scholar | |
Tao L, Huang G, Wang R, Pan Y, He Z, Chu X, Song H and Chen L: Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep. 6:384082016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang Y, Wang Z, Wei Y, Diao P, Wu Y, Wang D, Jiang H, Wang Y and Cheng J: Super-enhancer driven LIF/LIFR-STAT3-SOX2 regulatory feedback loop promotes cancer stemness in head and neck squamous cell carcinoma. Adv Sci (Weinh). 11:e24044762024. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Xia R, Zhang X, Li T, Ye Y, Li G, He R, Li Z, Lin Q, Zheng S and Chen R: circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer. 21:242022. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Ke M, Yin M, Zeng Y, Ji Y, Hu Y, Fu S and Zhang C: Extracellular vesicle-encapsulated microRNA-296-3p from cancer-associated fibroblasts promotes ovarian cancer development through regulation of the PTEN/AKT and SOCS6/STAT3 pathways. Cancer Sci. 115:155–169. 2024. View Article : Google Scholar | |
Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, Wang S, Liu S, Lian J, Wang D, et al: Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 518:35–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cao LQ, Yang XW, Chen YB, Zhang DW, Jiang XF and Xue P: Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol Cancer. 18:1482019. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Silveira DA, Lorenzoni PR, Mombach JCM and Hashimoto RF: LncRNA PTENP1/miR-21/PTEN axis modulates EMT and drug resistance in cancer: Dynamic boolean modeling for cell fates in DNA damage response. Int J Mol Sci. 25:82642024. View Article : Google Scholar : PubMed/NCBI | |
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW and Li B: Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 6:4252021. View Article : Google Scholar : PubMed/NCBI | |
Murugan AK: mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 59:92–111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT and McGowan EM: PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer. 17:372018. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Zhu W, Huang Y, Zhuo L, Wang S, Chen S, Zhang B and Ke B: Cancer-associated fibroblast-derived exosomal microRNA-20a suppresses the PTEN/PI3K-AKT pathway to promote the progression and chemoresistance of non-small cell lung cancer. Clin Transl Med. 12:e9892022. View Article : Google Scholar : PubMed/NCBI | |
Qu Z, Yang KD, Luo BH and Zhang F: CAFs-secreted exosomal cricN4BP2L2 promoted colorectal cancer stemness and chemoresistance by interacting with EIF4A3. Exp Cell Res. 418:1132662022. View Article : Google Scholar : PubMed/NCBI | |
Li L, Liu D, Chen T, Wei C, Qiao Y, Liu W, Liang Y, Liang Z, Chen C, Li D, et al: Hypoxia-enhanced YAP1-EIF4A3 interaction drives circ_0007386 circularization by competing with CRIM1 pre-mRNA linear splicing and promotes non-small cell lung cancer progression. J Exp Clin Cancer Res. 43:2002024. View Article : Google Scholar : PubMed/NCBI | |
Ju C, Zhou M, Du D, Wang C, Yao J, Li H, Luo Y, He F and He J: EIF4A3-mediated circ_0042881 activates the RAS pathway via miR-217/SOS1 axis to facilitate breast cancer progression. Cell Death Dis. 14:5592023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Pan Q and Shao Z: Extracellular vesicles derived from cancer-associated fibroblasts carry tumor-promotive microRNA-1228-3p to enhance the resistance of hepatocellular carcinoma cells to sorafenib. Hum Cell. 36:296–311. 2023. View Article : Google Scholar | |
Deng K, Zou F, Xu J, Xu D and Luo Z: Cancer-associated fibroblasts promote stemness maintenance and gemcitabine resistance via HIF-1α/miR-21 axis under hypoxic conditions in pancreatic cancer. Mol Carcinog. 63:524–537. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xin X, Cheng X, Zeng F, Xu Q and Hou L: The role of TGF-β/SMAD signaling in hepatocellular carcinoma: From mechanism to therapy and prognosis. Int J Biol Sci. 20:1436–1451. 2024. View Article : Google Scholar : | |
Huang X, Jie S, Li W, Li H, Ni J and Liu C: miR-122-5p targets GREM2 to protect against glucocorticoid-induced endothelial damage through the BMP signaling pathway. Mol Cell Endocrinol. 544:1115412022. View Article : Google Scholar : PubMed/NCBI | |
Shan G, Gu J, Zhou D, Li L, Cheng W, Wang Y, Tang T and Wang X: Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway. Exp Mol Med. 52:1809–1822. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leng Z, Li Y, Zhou G, Lv X, Ai W, Li J and Hou L: Krüppel-like factor 4 regulates stemness and mesenchymal properties of colorectal cancer stem cells through the TGF-β1/Smad/snail pathway. J Cell Mol Med. 24:1866–1877. 2020. View Article : Google Scholar | |
Liu T, Jiang L, Bai Q, Wu S, Yu X, Wu T, Wang J, Zhang X, Li H, Zhao K and Wang L: CLDN6 suppresses migration and invasion of MCF-7 and SKBR-3 breast cancer cells by blocking the SMAD/Snail/MMP-2/9 axis. Bull Exp Biol Med. 175:376–381. 2023. View Article : Google Scholar : PubMed/NCBI | |
Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE and Hill R: Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 36:1770–1778. 2017. View Article : Google Scholar : | |
Sun J, Du R, Li X, Liu C, Wang D, He X, Li G, Zhang K, Wang S, Hao Q, et al: CD63+ cancer-associated fibroblasts confer CDK4/6 inhibitor resistance to breast cancer cells by exosomal miR-20. Cancer Lett. 588:2167472024. View Article : Google Scholar | |
Fang Y, Zhou W, Rong Y, Kuang T, Xu X, Wu W, Wang D and Lou W: Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res. 383:1115432019. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Deng Y, Fu J, Zhang Y, Zhang Z and Qin X: N6-methyladenosine upregulates miR-181d-5p in exosomes derived from cancer-associated fibroblasts to inhibit 5-FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 60:142022. View Article : Google Scholar : | |
Yang C, Zhang Y, Yan M, Wang J, Wang J, Wang M, Xuan Y, Cheng H, Ma J, Chai C, et al: Exosomes derived from cancer-associated fibroblasts promote tumorigenesis, metastasis and chemoresistance of colorectal cancer by upregulating circ_0067557 to target Lin28. BMC Cancer. 24:642024. View Article : Google Scholar : PubMed/NCBI | |
Luo D, Liang Y, Wang Y, Ye F, Jin Y, Li Y, Han D, Wang Z, Chen B, Zhao W, et al: Long non-coding RNA MIDEAS-AS1 inhibits growth and metastasis of triple-negative breast cancer via transcriptionally activating NCALD. Breast Cancer Res. 25:1092023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, Ross CA, Cacchiarelli D, Xia Q, Seligson M, et al: LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell. 19:66–80. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gong W, Guo Y, Yuan H, Chai R, Wan Z, Zheng B, Hu X, Chen B, Gao S, Dai Q, et al: Loss of exosomal miR-200b-3p from hypoxia cancer-associated fibroblasts promotes tumorigenesis and reduces sensitivity to 5-flourouracil in colorectal cancer via upregulation of ZEB1 and E2F3. Cancer Gene Ther. 30:905–916. 2023. View Article : Google Scholar : PubMed/NCBI | |
Obeng E: Apoptosis (programmed cell death) and its signals-a review. Braz J Biol. 81:1133–1143. 2021. View Article : Google Scholar | |
Xu X, Lai Y and Hua ZC: Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci Rep. 39:BSR201809922019. View Article : Google Scholar : | |
Moyer A, Tanaka K and Cheng EH: Apoptosis in cancer biology and therapy. Annu Rev Pathol. 20:303–328. 2025. View Article : Google Scholar : PubMed/NCBI | |
Sahoo G, Samal D, Khandayataray P and Murthy MK: A review on caspases: Key regulators of biological activities and apoptosis. Mol Neurobiol. 60:5805–5837. 2023. View Article : Google Scholar : PubMed/NCBI | |
Singh P and Lim B: Targeting apoptosis in cancer. Curr Oncol Rep. 24:273–284. 2022. View Article : Google Scholar : PubMed/NCBI | |
Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 7:111502016. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M and Song X: Diverse functions of cytochrome c in cell death and disease. Cell Death Differ. 31:387–404. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun LH, Tian D, Yang ZC and Li JL: Exosomal miR-21 promotes proliferation, invasion and therapy resistance of colon adenocarcinoma cells through its target PDCD4. Sci Rep. 10:82712020. View Article : Google Scholar : PubMed/NCBI | |
Zhao MY, Wang LM, Liu J, Huang X, Liu J and Zhang YF: MiR-21 suppresses anoikis through targeting PDCD4 and PTEN in human esophageal adenocarcinoma. Curr Med Sci. 38:245–251. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Wang W, Wang L, Zhang Y, Zhang X, Chen M, Wang F, Yu J, Ma Y and Sun G: MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med. 5:693–702. 2016. View Article : Google Scholar : PubMed/NCBI | |
King LE, Hohorst L and García-Sáez AJ: Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci. 136:jcs2607902023. View Article : Google Scholar : PubMed/NCBI | |
O'Neill KL, Huang K, Zhang J, Chen Y and Luo X: Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 30:973–988. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kang SH, Oh SY, Lee KY, Lee HJ, Kim MS, Kwon TG, Kim JW, Lee ST, Choi SY and Hong SH: Differential effect of cancer-associated fibroblast-derived extracellular vesicles on cisplatin resistance in oral squamous cell carcinoma via miR-876-3p. Theranostics. 14:460–479. 2024. View Article : Google Scholar : PubMed/NCBI | |
Price D, Muterspaugh R, Clegg B, Williams A, Stephens A, Guthrie J, Heyl D and Evans HG: IGFBP-3 blocks hyaluronan-CD44 signaling, leading to increased acetylcholinesterase levels in A549 cell media and apoptosis in a p53-dependent manner. Sci Rep. 10:50832020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang H, Li K, Li S and Sun B: IGFBP-3 Is the key target of sanguinarine in promoting apoptosis in hepatocellular carcinoma. Cancer Manag Res. 12:1007–1015. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Huang H, Wang L, Liu Y, Wang M, Zhao S, Lu G and Kang X: Cancer-associated fibroblasts secreted miR-103a-3p suppresses apoptosis and promotes cisplatin resistance in non-small cell lung cancer. Aging (Albany NY). 13:14456–14468. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang HW, Shi Y, Liu JB, Wang HM, Wang PY, Wu ZJ, Li L, Gu LP, Cao PS, Wang GR, et al: Cancer-associated fibroblast-derived exosomal microRNA-24-3p enhances colon cancer cell resistance to MTX by down-regulating CDX2/HEPH axis. J Cell Mol Med. 25:3699–3713. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qin X, Guo H, Wang X, Zhu X, Yan M, Wang X, Xu Q, Shi J, Lu E, Chen W and Zhang J: Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol. 20:122019. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M and Liang X: The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 37:2662018. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Tong Y, Yu C, Pu J, Zhu W, Zhou Y, Wang Y, Xiong Y and Sun X: FAP positive cancer-associated fibroblasts promote tumor progression and radioresistance in esophageal squamous cell carcinoma by transferring exosomal lncRNA AFAP1-AS1. Mol Carcinog. 63:1922–1937. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zheng S, Hu C, Li G, Lin H, Xia R, Ye Y, He R, Li Z, Lin Q, et al: Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair. Oncogene. 41:2372–2389. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Liu X, Jin S, Chen Y and Guo R: Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Zhang Y, Qian Z and Shen X: The mechanism of Fe(2+)-initiated lipid peroxidation in liposomes: The dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical. Biochem J. 352:27–36. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014. View Article : Google Scholar | |
Maiorino M, Conrad M and Ursini F: GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 29:61–74. 2018. View Article : Google Scholar | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li Y, Wang D, Liao R and Wu Z: PLAG1 interacts with GPX4 to conquer vulnerability to sorafenib induced ferroptosis through a PVT1/miR-195-5p axis-dependent manner in hepatocellular carcinoma. J Exp Clin Cancer Res. 43:1432024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : | |
Zhao J, Yang S, Lv C and Liu Y: Cancer-associated fibroblasts suppressed ferroptosis in glioblastoma via upregulating lncRNA DLEU1. Am J Physiol Cell Physiol. 324:C1039–C1052. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar | |
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, et al: SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biol. 69:1030302024. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Yao C, Zhou X, Liu S, Qi L, Zhu S, Zhao C, Hu D and Shen W: Glutathione-degrading enzymes in the complex landscape of tumors (review). Int J Oncol. 65:722024. View Article : Google Scholar : | |
Ma XH, Liu JH, Liu CY, Sun WY, Duan WJ, Wang G, Kurihara H, He RR, Li YF, Chen Y and Shang H: ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther. 7:2882022. View Article : Google Scholar : PubMed/NCBI | |
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S and Sun L: Acyl-CoA synthase ACSL4: An essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl). 136:2521–2537. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI | |
Pan G, Liu Y, Shang L, Zhou F and Yang S: EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 41:199–217. 2021. View Article : Google Scholar : PubMed/NCBI | |
Du B and Shim JS: Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 21:9652016. View Article : Google Scholar : PubMed/NCBI | |
Erin N, Grahovac J, Brozovic A and Efferth T: Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat. 53:1007152020. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
Li N, Babaei-Jadidi R, Lorenzi F, Spencer-Dene B, Clarke P, Domingo E, Tulchinsky E, Vries RGJ, Kerr D, Pan Y, et al: An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis. 8:132019. View Article : Google Scholar : PubMed/NCBI | |
Han G, Wu D, Yang Y, Li Z, Zhang J and Li C: CrkL meditates CCL20/CCR6-induced EMT in gastric cancer. Cytokine. 76:163–169. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu JH, Tang HN and Wang YH: Cancer-associated fibroblast exosome LINC00355 promotes epithelial-mesenchymal transition and chemoresistance in colorectal cancer through the miR-34b-5p/CRKL axis. Cancer Gene Ther. 31:259–272. 2024. View Article : Google Scholar | |
Zhang Y, Yin C, Wei C, Xia S, Qiao Z, Zhang XW, Yu B, Zhou J and Wang R: Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol Res. 186:1065342022. View Article : Google Scholar : PubMed/NCBI | |
Khawaled S, Nigita G, Distefano R, Oster S, Suh SS, Smith Y, Khalaileh A, Peng Y, Croce CM, Geiger T, et al: Pleiotropic tumor suppressor functions of WWOX antagonize metastasis. Signal Transduct Target Ther. 5:432020. View Article : Google Scholar : PubMed/NCBI | |
Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ and Efferth T: Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother. 131:1107182020. View Article : Google Scholar : PubMed/NCBI | |
To KKW, Huang Z, Zhang H, Ashby CR Jr and Fu L: Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat. 73:1010582024. View Article : Google Scholar : PubMed/NCBI | |
Luo G, Zhang Y, Wu Z, Zhang L, Liang C and Chen X: Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder cancer cell resistance to cisplatin by regulating miR-34b-5p/ABCB1 axis. Acta Biochim Biophys Sin (Shanghai). 53:558–566. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Ding L, Li Y, Ren J, Shi G, Wang Y, Zhao S, Ni Y and Hou Y: Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance via up-regulation of the expression of lncRNA ANRIL in tumour cells. Sci Rep. 7:162312017. View Article : Google Scholar : PubMed/NCBI | |
Kunou S, Shimada K, Takai M, Sakamoto A, Aoki T, Hikita T, Kagaya Y, Iwamoto E, Sanada M, Shimada S, et al: Exosomes secreted from cancer-associated fibroblasts elicit anti-pyrimidine drug resistance through modulation of its transporter in malignant lymphoma. Oncogene. 40:3989–4003. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheng SH, Chiou HC, Wang JW and Lin MH: Reciprocal regulation of cancer-associated fibroblasts and tumor microenvironment in gastrointestinal cancer: Implications for cancer dormancy. Cancers (Basel). 15:25132023. View Article : Google Scholar : PubMed/NCBI | |
Hulpke S and Tampé R: The MHC I loading complex: A multitasking machinery in adaptive immunity. Trends Biochem Sci. 38:412–420. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Huang C, Zou J, Liang W, Zhao Y, Yang K, Zhong Z, Zhou S, Li J, Li Y, et al: Extracellular vesicle-packaged lncRNA from cancer-associated fibroblasts promotes immune evasion by downregulating HLA-A in pancreatic cancer. J Extracell Vesicles. 13:e124842024. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Wang K, Lu X, Wang Y and Chen J: Cancer-associated fibroblasts-derived exosomes promote lung cancer progression by OIP5-AS1/miR-142-5p/ PD-L1 axis. Mol Immunol. 140:47–58. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boussiotis VA: Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 375:1767–1778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M and Okumura M: IL-6 Secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol. 11:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheteh EH, Sarne V, Ceder S, Bianchi J, Augsten M, Rundqvist H, Egevad L, Östman A and Wiman KG: Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells. Cell Death Discov. 6:422020. View Article : Google Scholar : PubMed/NCBI | |
Lau EY, Lo J, Cheng BY, Ma MK, Lee JM, Ng JK, Chai S, Lin CH, Tsang SY, Ma S, et al: Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep. 15:1175–1189. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deying W, Feng G, Shumei L, Hui Z, Ming L and Hongqing W: CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 37:BSR201604702017. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Liu W, Liu C, Du K, Guo Z, Zhang G, Huang Z, Lin S, Cen B, Tian Y, et al: Cancer-associated fibroblasts promote radioresistance of breast cancer cells via the HGF/c-met signaling pathway. Int J Radiat Oncol Biol Phys. 116:640–654. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Ye H, Li G, Lu Y, Zhou Q, Zheng S, Lin Q, Liu Y, Li Z and Chen R: Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis. 9:10652018. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Cui JY, Gao HF, Yu H, Gao FF, Chen JL and Chen L: Cancer-associated fibroblasts induce epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer via CXCL12/CXCR4 axis. Future Oncol. 16:2619–2633. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Bian S, Wang H, Mo J, Fei H, Li L, Chen T and Jiang H: CRMP2 derived from cancer associated fibroblasts facilitates progression of ovarian cancer via HIF-1α-glycolysis signaling pathway. Cell Death Dis. 13:6752022. View Article : Google Scholar | |
Luo M, Luo Y, Mao N, Huang G, Teng C, Wang H, Wu J, Liao X and Yang J: Cancer-associated fibroblasts accelerate malignant progression of non-small cell lung cancer via connexin 43-formed unidirectional gap junctional intercellular communication. Cell Physiol Biochem. 51:315–336. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chelakkot C, Chelakkot VS, Shin Y and Song K: Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 24:26062023. View Article : Google Scholar : PubMed/NCBI | |
Ippolito L, Comito G, Parri M, Iozzo M, Duatti A, Virgilio F, Lorito N, Bacci M, Pardella E, Sandrini G, et al: Lactate rewires lipid metabolism and sustains a metabolic-epigenetic axis in prostate cancer. Cancer Res. 82:1267–1282. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cao Y: Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest. 129:3006–3017. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, et al: Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24:685–700. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J and Xiao Y: Targeting ncRNAs to overcome metabolic reprogramming-mediated drug resistance in cancer (review). Int J Oncol. 66:352025. View Article : Google Scholar : | |
Yang J, Shi X, Yang M, Luo J, Gao Q, Wang X, Wu Y, Tian Y, Wu F and Zhou H: Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway. Int J Oral Sci. 13:122021. View Article : Google Scholar : PubMed/NCBI | |
Tao S, Gao Y, Wang X, Wu C, Zhang Y, Zhu H and Li J: CAF-derived exosomal LINC01711 promotes breast cancer progression by activating the miR-4510/NELFE axis and enhancing glycolysis. FASEB J. 39:e704712025. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, et al: Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 13:572022. View Article : Google Scholar : PubMed/NCBI | |
Smith AG and Macleod KF: Autophagy, cancer stem cells and drug resistance. J Pathol. 247:708–718. 2019. View Article : Google Scholar : | |
Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Mao J, Zhang X, Wang P, Zhou Y, Tong J, Peng H, Yang B and Fu Q: CAF-derived exosomal lncRNA FAL1 promotes chemoresistance to oxaliplatin by regulating autophagy in colorectal cancer. Dig Liver Dis. 56:330–342. 2024. View Article : Google Scholar | |
Towers CG, Wodetzki D and Thorburn A: Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. J Cell Biol. 219:e2019090332020. | |
Liao JK, Zhou B, Zhuang XM, Zhuang PL, Zhang DM and Chen WL: Cancer-associated fibroblasts confer cisplatin resistance of tongue cancer via autophagy activation. Biomed Pharmacother. 97:1341–1348. 2018. View Article : Google Scholar | |
Gao Q, Fang X, Chen Y, Li Z and Wang M: Exosomal lncRNA UCA1 from cancer-associated fibroblasts enhances chemoresistance in vulvar squamous cell carcinoma cells. J Obstet Gynaecol Res. 47:73–87. 2021. View Article : Google Scholar | |
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar | |
Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI | |
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y and Zhang F: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154:1380–1389. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV and Filatov MV: Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 11:882013. View Article : Google Scholar : PubMed/NCBI | |
Kamali MJ, Salehi M, Fatemi S, Moradi F, Khoshghiafeh A and Ahmadifard M: Locked nucleic acid LNA): A modern approach to cancer diagnosis and treatment. Exp Cell Res. 423:1134422023. View Article : Google Scholar | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kwok A, Raulf N and Habib N: Developing small activating RNA as a therapeutic: Current challenges and promises. Ther Deliv. 10:151–164. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng B, Mai Q, Jiang J and Zhou Q: The therapeutic potential of small activating RNAs for colorectal carcinoma. Curr Gene Ther. 19:140–146. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Dong H, Wu J and Jin Y: Emerging progress of RNA-based antitumor therapeutics. Int J Biol Sci. 19:3159–3183. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Wu Z, Chen J, Guo S, You W, Wang S, Ma J, Wang H, Wang X, Wang H, et al: Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. J Immunother Cancer. 10:e0043812022. View Article : Google Scholar : PubMed/NCBI | |
Xin X, Kumar V, Lin F, Kumar V, Bhattarai R, Bhatt VR, Tan C and Mahato RI: Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Sci Adv. 6:eabd67642020. View Article : Google Scholar : PubMed/NCBI | |
Li B, Shao H, Gao L, Li H, Sheng H and Zhu L: Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: A review. Drug Deliv. 29:2130–2161. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, Ciliberto D, Cordua A, Scionti F, Bertucci B, Salvino A, et al: Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: A first-in-human, phase 1, open-label, dose-escalation study. J Hematol Oncol. 16:682023. View Article : Google Scholar : PubMed/NCBI | |
Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 35:180–188. 2017. View Article : Google Scholar | |
Rasmussen LJH, Schultz M, Gaardsting A, Ladelund S, Garred P, Iversen K, Eugen-Olsen J, Helms M, David KP, Kjaer A, et al: Inflammatory biomarkers and cancer: CRP and suPAR as markers of incident cancer in patients with serious nonspecific symptoms and signs of cancer. Int J Cancer. 141:191–199. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Gao Y, Zhu K, Yuan Y, Bai H and Meng L: Exosomal miRNA as biomarker in cancer diagnosis and prognosis: A review. Medicine (Baltimore). 103:e400822024. View Article : Google Scholar : PubMed/NCBI | |
Montani F and Bianchi F: Circulating cancer biomarkers: The macro-revolution of the Micro-RNA. EBioMedicine. 5:4–6. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li C, Teixeira AF, Zhu HJ and Ten Dijke P: Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer. 20:1542021. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Liu S, Ma L, Cheng L, Li Q, Qing L, Yang Y and Dong Z: Identification of miRNA signature in cancer-associated fibroblast to predict recurrent prostate cancer. Comput Biol Med. 180:1089892024. View Article : Google Scholar : PubMed/NCBI | |
Alzhrani R, Alsaab HO, Petrovici A, Bhise K, Vanamala K, Sau S, Krinock MJ and Iyer AK: Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today. 25:718–730. 2020. View Article : Google Scholar : | |
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI | |
Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, Zhang WJ, Jiang SF, Qadir A and Qian AR: The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 20:54912019. View Article : Google Scholar : PubMed/NCBI | |
Yahya EB and Alqadhi AM: Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 269:1190872021. View Article : Google Scholar : PubMed/NCBI |