
Cancer‑associated fibroblasts in human malignancies, with a particular emphasis on sarcomas (Review)
- Authors:
- Iva Benesova
- Katerina Kalkusova
- Yea Seo Kwon
- Pavla Taborska
- Dmitry Stakheev
- Katerina Krausova
- Jitka Smetanova
- Andrej Ozaniak
- Jirina Bartunkova
- Daniel Smrž
- Zuzana Ozaniak Strizova
-
Affiliations: Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 5, Czech Republic, Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague 5, Czech Republic - Published online on: August 6, 2025 https://doi.org/10.3892/ijo.2025.5785
- Article Number: 79
-
Copyright: © Benesova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Riley RS, June CH, Langer R and Mitchell MJ: Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 18:175–196. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mondal M, Guo J, He P and Zhou D: Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother. 16:2389–2402. 2020. View Article : Google Scholar : PubMed/NCBI | |
Soerjomataram I and Bray F: Planning for tomorrow: Global cancer incidence and the role of prevention 2020-2070. Nat Rev Clin Oncol. 18:663–672. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar | |
D'Agostino S, Tombolan L, Saggioro M, Frasson C, Rampazzo E, Pellegrini S, Favaretto F, Biz C, Ruggieri P, Gamba P, et al: Rhabdomyosarcoma cells produce their own extracellular matrix with minimal involvement of Cancer-associated fibroblasts: A preliminary study. Front Oncol. 10:6009802020. View Article : Google Scholar | |
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B and Sarkar TR: Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol. 11:10890682023. View Article : Google Scholar : PubMed/NCBI | |
Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D and Scoccianti G: Soft tissue sarcoma: An insight on biomarkers at molecular, metabolic and cellular level. Cancers. 13:30442021. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maia A, Schollhorn A, Schuhmacher J and Gouttefangeas C: CAF-immune cell crosstalk and its impact in immunotherapy. Semin Immunopathol. 45:203–214. 2023. View Article : Google Scholar : | |
Kennel KB, Bozlar M, De Valk AF and Greten FR: Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin Cancer Res. 29:1009–1016. 2023. View Article : Google Scholar : | |
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar : | |
Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K and Gottschalk S: Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 21:1611–1620. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Chan WN, Xie F, Mui CW, Liu X, Cheung AHK, Lung RWM, Chow C, Zhang Z, Fang C, et al: The molecular classification of cancer-associated fibroblasts on a pan-cancer single-cell transcriptional atlas. Clin Transl Med. 13:e15162023. View Article : Google Scholar : PubMed/NCBI | |
Ohlund D, Elyada E and Tuveson D: Fibroblast heterogeneity in the cancer wound. J Exp Med. 211:1503–1523. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsoumakidou M: The advent of immune stimulating CAFs in cancer. Nat Rev Cancer. 23:258–269. 2023. View Article : Google Scholar : PubMed/NCBI | |
Choi KJ, Nam JK, Kim JH, Choi SH and Lee YJ: Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Exp Mol Med. 52:781–792. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taguchi A, Kawana K, Tomio K, Yamashita A, Isobe Y, Nagasaka K, Koga K, Inoue T, Nishida H, Kojima S, et al: Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo. PLoS One. 9:e896052014. View Article : Google Scholar : PubMed/NCBI | |
Cavazzoni A and Digiacomo G: Role of cytokines and other soluble factors in tumor development: Rationale for new therapeutic strategies. Cells. 12:25322023. View Article : Google Scholar : PubMed/NCBI | |
O'Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS, Dewar R, Rocha RM, Brentani RR, Resnick MB, et al: VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA. 108:16002–16007. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Han C, Wang S, Fang P, Ma Z, Xu L and Yin R: Cancer-associated fibroblasts: An emerging target of Anti-cancer immunotherapy. J Hematol Oncol. 12:862019. View Article : Google Scholar : PubMed/NCBI | |
Robertson-Tessi M, Gillies RJ, Gatenby RA and Anderson AR: Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res. 75:1567–1579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Zhuo L and Wang X: Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Semin Cell Dev Biol. 64:125–131. 2017. View Article : Google Scholar | |
Martinez-Outschoorn UE, Lisanti MP and Sotgia F: Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 25:47–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tavares-Valente D, Baltazar F, Moreira R and Queiros O: Cancer cell bioenergetics and pH regulation influence breast cancer cell resistance to paclitaxel and doxorubicin. J Bioenerg Biomembr. 45:467–475. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Zhang H, Fu Y, Kuang J, Zhao B, Zhang L, Lin J, Lin S, Wu D and Xie G: Cancer-associated fibroblasts induce growth and radioresistance of breast cancer cells through paracrine IL-6. Cell Death Discov. 9:62023. View Article : Google Scholar : PubMed/NCBI | |
Yoshida GJ: Regulation of heterogeneous cancer-associated fibroblasts: The molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 39:1122020. View Article : Google Scholar : PubMed/NCBI | |
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson D: IL1-Induced JAK/STAT signaling is antagonized by TGFβ to Shape CAF heterogeneity in pancreatic ductal adenocarcinomacinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar | |
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T and Singh S: Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev. 189:1145042022. View Article : Google Scholar : PubMed/NCBI | |
Strizova Z, Bartunkova J and Smrz D: The challenges of adoptive cell transfer in the treatment of human renal cell carcinoma. Cancer Immunol Immunother. 68:1831–1838. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang S, Tavormina J, Tampe D, Zeisberg M, Wang H, Mahadevan KK, Wu CJ, Sugimoto H, Chang CC, et al: Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell. 40:818–834.e9. 2022. View Article : Google Scholar | |
Taborska P, Lukac P, Stakheev D, Rajsiglova L, Kalkusova K, Strnadova K, Lacina L, Dvorankova B, Novotny J, Kolar M, et al: Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy. Sci Rep. 13:190792023. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Wu B, Chiang HC, Deng H, Zhang X, Xiong W, Liu J, Rozeboom AM, Harris BT, Blommaert E, et al: Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature. 599:673–678. 2021. View Article : Google Scholar : PubMed/NCBI | |
Meyaard L: The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol. 83:799–803. 2008. View Article : Google Scholar | |
Horn LA, Chariou PL, Gameiro SR, Qin H, Iida M, Fousek K, Meyer TJ, Cam M, Flies D, Langermann S, et al: Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1-mediated tumor eradication. J Clin Invest. 132:e1551482022. View Article : Google Scholar | |
Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, Liu W, Zhang Q and Yang Y: Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 9:4222018. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Cheng HS, Wang JK, Tan NS and Tay CY: A 3D physio-mimetic interpenetrating network-based platform to decode the pro and anti-tumorigenic properties of cancer-associated fibroblasts. Acta Biomater. 132:448–460. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 25:719–734. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, et al: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alkasalias T, Flaberg E, Kashuba V, Alexeyenko A, Pavlova T, Savchenko A, Szekely L, Klein G and Guven H: Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent. Proc Natl Acad Sci USA. 111:17188–17193. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gorchs L, Ahmed S, Mayer C, Knauf A, Fernández Moro C, Svensson M, Heuchel R, Rangelova E, Bergman P and Kaipe H: The vitamin D analogue calcipotriol promotes an anti-tumorigenic phenotype of human pancreatic CAFs but reduces T cell mediated immunity. Sci Rep. 10:174442020. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : PubMed/NCBI | |
Newman L: Oncologic anthropology: Global variations in breast cancer risk, biology, and outcome. J Surg Oncol. 128:959–966. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Chan JJ, Toh CH and Yap YS: Emerging systemic therapy options beyond CDK4/6 inhibitors for hormone receptor-positive HER2-negative advanced breast cancer. NPJ Breast Cancer. 9:742023. View Article : Google Scholar : PubMed/NCBI | |
Pandey K, Katuwal NB, Park N, Hur J, Cho YB, Kim SK, Lee SA, Kim I, Lee SR and Moon YW: Combination of abemaciclib following eribulin overcomes Palbociclib-resistant breast cancer by inhibiting the G2/M cell cycle phase. Cancers (Basel). 14:2102022. View Article : Google Scholar : PubMed/NCBI | |
Piwocka O, Musielak M, Piotrowski I, Kulcenty K, Adamczyk B, Fundowicz M, Suchorska WM and Malicki J: Primary cancer-associated fibroblasts exhibit high heterogeneity among breast cancer subtypes. Rep Pract Oncol Radiother. 28:159–171. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard A, et al: Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10:1330–1351. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamashita M, Ogawa T, Zhang X, Hanamura N, Kashikura Y, Takamura M, Yoneda M and Shiraishi T: Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 19:170–176. 2012. View Article : Google Scholar | |
Pelon F, Bourachot B, Kieffer Y, Magagna I, Mermet-Meillon F, Bonnet I, Costa A, Givel AM, Attieh Y, Barbazan J, et al: Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat Commun. 11:4042020. View Article : Google Scholar : PubMed/NCBI | |
Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et al: NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 10:43752019. View Article : Google Scholar : PubMed/NCBI | |
Yang SS, Ma S, Dou H, Liu F, Zhang SY, Jiang C, Xiao M and Huang YX: Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res. 391:1119832020. View Article : Google Scholar : PubMed/NCBI | |
Ren J, Smid M, Iaria J, Salvatori DCF, van Dam H, Zhu HJ, Martens JWM and Ten Dijke P: Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 21:1092019. View Article : Google Scholar : PubMed/NCBI | |
Wu HJ, Hao M, Yeo SK and Guan JL: FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene. 39:2539–2549. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee A, Jana S, Chatterjee S, Wastall LM, Mandal G, Nargis N, Roy H, Hughes TA and Bhattacharyya A: MicroRNA-222 reprogrammed cancer-associated fibroblasts enhance growth and metastasis of breast cancer. Br J Cancer. 121:679–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sohal DPS, Kennedy EB, Cinar P, Conroy T, Copur MS, Crane CH, Garrido-Laguna I, Lau MW, Johnson T, Krishnamurthi S, et al: Metastatic pancreatic cancer: ASCO guideline update. J Clin Oncol. 38:3217–3230. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bekkali NLH and Oppong KW: Pancreatic ductal adenocarcinoma epidemiology and risk assessment: Could we prevent? Possibility for an early diagnosis. Endosc Ultrasound. 6(Suppl 3): S58–S61. 2017. View Article : Google Scholar | |
Hosein AN, Brekken RA and Maitra A: Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 17:487–505. 2020. View Article : Google Scholar : PubMed/NCBI | |
Manoukian P, Bijlsma M and van Laarhoven H: The cellular origins of Cancer-associated fibroblasts and their opposing contributions to pancreatic cancer growth. Front Cell Dev Biol. 9:7439072021. View Article : Google Scholar : PubMed/NCBI | |
Geng X, Chen H, Zhao L, Hu J, Yang W, Li G, Cheng C, Zhao Z, Zhang T, Li L and Sun B: Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer. Front Cell Dev Biol. 9:6551522021. View Article : Google Scholar : PubMed/NCBI | |
Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim HW, Lee JC, Paik KH, Kang J, Kim J and Hwang JH: Serum interleukin-6 is associated with pancreatic ductal adenocarcinoma progression pattern. Medicine (Baltimore). 96:e59262017. View Article : Google Scholar : PubMed/NCBI | |
Goulet CR, Champagne A, Bernard G, Vandal D, Chabaud S, Pouliot F and Bolduc S: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 19:1372019. View Article : Google Scholar : PubMed/NCBI | |
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G and Tergaonkar V: NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol. 237:2770–2795. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rebelo R, Xavier CPR, Giovannetti E and Vasconcelos MH: Fibroblasts in pancreatic cancer: Molecular and clinical perspectives. Trends Mol Med. 29:439–453. 2023. View Article : Google Scholar : PubMed/NCBI | |
Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE and Hill R: Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 36:1770–1778. 2017. View Article : Google Scholar : | |
Aronsson L, Bengtsson A, Toren W, Andersson R and Ansari D: Intraductal papillary mucinous carcinoma versus pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Int J Surg. 71:91–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aronsson L, Andersson R and Ansari D: Intraductal papillary mucinous neoplasm of the pancreas-epidemiology, risk factors, diagnosis, and management. Scand J Gastroenterol. 52:803–815. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, Guerrero PA, Huang Y, Zhao J, Kamyabi N, et al: Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 25:2194–2205. 2019. View Article : Google Scholar | |
Storandt MH, Zemla TM, Patell K, Naleid N, Gile JJ, Tran NH, Chakrabarti S, Jin Z, Borad M and Mahipal A: Atezolizumab plus bevacizumab as first-line systemic therapy for hepatocellular carcinoma: A multi-institutional cohort study. Oncologist. 29:986–996. 2024. View Article : Google Scholar : PubMed/NCBI | |
Selene II, Ozen M and Patel RA: Hepatocellular carcinoma: Advances in systemic therapy. Semin Intervent Radiol. 41:56–62. 2024. View Article : Google Scholar : PubMed/NCBI | |
Singal AG, Llovet JM, Yarchoan M, Mehta N, Heimbach JK, Dawson LA, Jou JH, Kulik LM, Agopian VG, Marrero JA, et al: AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology. 78:1922–1965. 2023. View Article : Google Scholar : PubMed/NCBI | |
Loh JJ, Li TW, Zhou L, Wong TL, Liu X, Ma VWS, Lo CM, Man K, Lee TK, Ning W, et al: FSTL1 secreted by activated fibroblasts promotes hepatocellular carcinoma metastasis and stemness. Cancer Res. 81:5692–5705. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Chen S, Wang W, Ning BF, Chen F, Shen W, Ding J, Chen W, Xie WF, Zhang X, et al: Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett. 379:49–59. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jia CC, Wang TT, Liu W, Fu BS, Hua X, Wang GY, Li TJ, Li X, Wu XY, Tai Y, et al: Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 8:e632432013. View Article : Google Scholar : PubMed/NCBI | |
Xiong S, Wang R, Chen Q, Luo J, Wang J, Zhao Z, Li Y, Wang Y, Wang X and Cheng B: Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res. 8:302–316. 2018.PubMed/NCBI | |
Li Y, Wang R, Xiong S, Wang X, Zhao Z, Bai S, Wang Y, Zhao Y and Cheng B: Cancer-associated fibroblasts promote the stemness of CD24+ liver cells via paracrine signaling. J Mol Med (Berl). 97:243–255. 2019. View Article : Google Scholar | |
Zhu GQ, Tang Z, Huang R, Qu WF, Fang Y, Yang R, Tao CY, Gao J, Wu XL, Sun HX, et al: CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 9:252023. View Article : Google Scholar : | |
Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB, Park W, Kang TW, Baek GO, Yoon MG, et al: Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun (Lond). 43:455–479. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xia S, Pan Y, Liang Y, Xu J and Cai X: The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 51:1026102020. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Liu Q, Huo J, Wei F and Guo W: Cancer-associated fibroblasts induce immunotherapy resistance in hepatocellular carcinoma animal model. Cell Mol Biol (Noisy-le-Grand). 66:36–40. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lotfollahzadeh S, Recio-Boiles A and Cagir B: Colon cancer. StatPearls. Treasure Island (FL) with ineligible companies. Disclosure: Alejandro Recio-Boiles declares no relevant financial relationships with ineligible companies. Disclosure: Burt Cagir declares no relevant financial relationships with ineligible companies.2024. | |
Constantinou V and Constantinou C: Focusing on colorectal cancer in young adults (Review). Mol Clin Oncol. 20:82024. View Article : Google Scholar | |
Siegel RL, Wagle NS, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2023. CA Cancer J Clin. 73:233–254. 2023.PubMed/NCBI | |
Zeineddine FA, Zeineddine MA, Yousef A, Gu Y, Chowdhury S, Dasari A, Huey RW, Johnson B, Kee B, Lee MS, et al: Survival improvement for patients with metastatic colorectal cancer over twenty years. NPJ Precis Oncol. 7:162023. View Article : Google Scholar : PubMed/NCBI | |
Morris VK, Kennedy EB, Baxter NN, Benson AB III, Cercek A, Cho M, Ciombor KK, Cremolini C, Davis A, Deming DA, et al: Treatment of metastatic colorectal cancer: ASCO Guideline. J Clin Oncol. 41:678–700. 2023. View Article : Google Scholar | |
Deng L, Jiang N, Zeng J, Wang Y and Cui H: The versatile roles of Cancer-associated fibroblasts in colorectal cancer and therapeutic implications. Front Cell Dev Biol. 9:7332702021. View Article : Google Scholar : PubMed/NCBI | |
Wikberg ML, Edin S, Lundberg IV, Van Guelpen B, Dahlin AM, Rutegård J, Stenling R, Oberg A and Palmqvist R: High intratumoral expression of fibroblast activation protein (FAP) in colon cancer is associated with poorer patient prognosis. Tumour Biol. 34:1013–1020. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
Aizawa T, Karasawa H, Funayama R, Shirota M, Suzuki T, Maeda S, Suzuki H, Yamamura A, Naitoh T, Nakayama K and Unno M: Cancer-associated fibroblasts secrete Wnt2 to promote cancer progression in colorectal cancer. Cancer Med. 8:6370–6382. 2019. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.PubMed/NCBI | |
Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, Petrella F, Spaggiari L and Rosell R: Non-small-cell lung cancer. Nat Rev Dis Primers. 1:150092015. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Morgensztern D and Boshoff C: The biology and management of Non-small cell lung cancer. Nature. 553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Choe C, Shin YS, Jeon MJ, Choi SJ, Lee J, Bae GY, Cha HJ and Kim J: Human lung cancer-associated fibroblasts enhance motility of Non-small cell lung cancer cells in co-culture. Anticancer Res. 33:2001–2009. 2013.PubMed/NCBI | |
An J, Enomoto A, Weng L, Kato T, Iwakoshi A, Ushida K, Maeda K, Ishida-Takagishi M, Ishii G, Ming S, et al: Significance of cancer-associated fibroblasts in the regulation of gene expression in the leading cells of invasive lung cancer. J Cancer Res Clin Oncol. 139:379–388. 2013. View Article : Google Scholar | |
Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, et al: Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 5:34722014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Cao L, Wang H, Liu B, Zhang Q, Meng Z, Wu X, Zhou Q and Xu K: Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget. 8:76116–76128. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vicent S, Sayles LC, Vaka D, Khatri P, Gevaert O, Chen R, Zheng Y, Gillespie AK, Clarke N, Xu Y, et al: Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res. 72:5744–5756. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Yan Y, Yang Y, Hong X, Wang M, Yang Z, Liu B and Ye L: MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell Signal. 73:1096752020. View Article : Google Scholar : PubMed/NCBI | |
Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kanwal B, Biswas S, Seminara RS and Jeet C: Immunotherapy in advanced Non-small cell lung cancer patients: Ushering chemotherapy through the checkpoint inhibitors? Cureus. 10:e32542018.PubMed/NCBI | |
Herzog BH, Baer JM, Borcherding N, Kingston NL, Belle JI, Knolhoff BL, Hogg GD, Ahmad F, Kang LI, Petrone J, et al: Tumor-associated fibrosis impairs immune surveillance and response to immune checkpoint blockade in non-small cell lung cancer. Sci Transl Med. 15:eadh80052023. View Article : Google Scholar : PubMed/NCBI | |
Jenkins L, Jungwirth U, Avgustinova A, Iravani M, Mills A, Haider S, Harper J and Isacke CM: Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and confer resistance to Immune-checkpoint blockade. Cancer Res. 82:2904–2917. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tauriello DVF: Targeting CAFs to improve Anti-PD-1 checkpoint immunotherapy. Cancer Res. 83:655–656. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shintani Y, Kimura T, Funaki S, Ose N, Kanou T and Fukui E: Therapeutic targeting of Cancer-associated fibroblasts in the Non-small cell lung cancer tumor microenvironment. Cancers (Basel). 15:3352023. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wu B, Li L, Lv C and Tian Y: Reprogramming of cancer-associated fibroblasts combined with immune checkpoint inhibitors: A potential therapeutic strategy for cancers. Biochimica et biophysica acta. Rev Cancer. 1878:1889452023. View Article : Google Scholar | |
Rawla P: Epidemiology of prostate cancer. World J Oncol. 10:63–89. 2019. View Article : Google Scholar : PubMed/NCBI | |
Culp MB, Soerjomataram I, Efstathiou JA, Bray F and Jemal A: Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 77:38–52. 2020. View Article : Google Scholar | |
Hammerer P and Manka L: Androgen deprivation therapy for advanced prostate cancer. Urologic Oncology. Merseburger AS and Burger M: Springer International Publishing; Cham: pp. 255–276. 2019, View Article : Google Scholar | |
Figueiredo A, Costa L, Mauricio MJ, Figueira L, Ramos R and Martins-da-Silva C: Nonmetastatic castration-resistant prostate cancer: Current challenges and trends. Clin Drug Investig. 42:631–642. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC and Mihatsch MJ: Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Hum Pathol. 31:578–583. 2000. View Article : Google Scholar : PubMed/NCBI | |
Begley LA, Kasina S, MacDonald J and Macoska JA: The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine. 43:194–199. 2008. View Article : Google Scholar : PubMed/NCBI | |
Levesque C and Nelson PS: Cellular constituents of the prostate stroma: Key contributors to prostate cancer progression and therapy resistance. Cold Spring Harb Perspect Med. 8:a0305102018. View Article : Google Scholar | |
ChallaSivaKanaka S, Vickman RE, Kakarla M, Hayward SW and Franco OE: Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett. 525:76–83. 2022. View Article : Google Scholar : | |
Franco OE and Hayward SW: Targeting the tumor stroma as a novel therapeutic approach for prostate cancer. Adv Pharmacol. 65:267–313. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al: Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 4:17952013. View Article : Google Scholar : PubMed/NCBI | |
Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S and Nelson PS: The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66:794–802. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bedeschi M, Marino N, Cavassi E, Piccinini F and Tesei A: Cancer-associated fibroblast: Role in prostate cancer progression to metastatic disease and therapeutic resistance. Cells. 12:8022023. View Article : Google Scholar : PubMed/NCBI | |
Bonollo F, Thalmann GN, Kruithof-de Julio M and Karkampouna S: The role of Cancer-Associated fibroblasts in prostate cancer tumorigenesis. Cancers (Basel). 12:18872020. View Article : Google Scholar : PubMed/NCBI | |
Lavie D, Ben-Shmuel A, Erez N and Scherz-Shouval R: Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 3:793–807. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nguyen EV, Pereira BA, Lawrence MG, Ma X, Rebello RJ, Chan H, Niranjan B, Wu Y, Ellem S, Guan X, et al: Proteomic profiling of human prostate Cancer-associated fibroblasts (CAF) reveals LOXL2-dependent regulation of the tumor microenvironment. Mol Cell Proteomics. 18:1410–1427. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wadosky KM and Koochekpour S: Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget. 7:64447–64470. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boudadi K and Antonarakis ES: Resistance to novel antiandrogen therapies in metastatic Castration-resistant prostate cancer. Clin Med Insights Oncol. 10(Suppl 1): S1–S9. 2016. | |
Chandrasekar T, Yang JC, Gao AC and Evans CP: Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 4:365–380. 2015. | |
Leach DA and Buchanan G: Stromal androgen receptor in prostate cancer development and progression. Cancers (Basel). 9:102017. View Article : Google Scholar : PubMed/NCBI | |
Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, et al: Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol. 12:1308–1323. 2018. View Article : Google Scholar : PubMed/NCBI | |
Eder T, Weber A, Neuwirt H, Grünbacher G, Ploner C, Klocker H, Sampson N and Eder IE: Cancer-associated fibroblasts modify the response of prostate cancer cells to androgen and Anti-androgens in Three-dimensional spheroid culture. Int J Mol Sci. 17:14582016. View Article : Google Scholar : PubMed/NCBI | |
Cheteh EH, Augsten M, Rundqvist H, Bianchi J, Sarne V, Egevad L, Bykov VJ, Östman A and Wiman KG: Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death Dis. 8:e28482017. View Article : Google Scholar : PubMed/NCBI | |
Baumhoer D, Hench J and Amary F: Recent advances in molecular profiling of bone and soft tissue tumors. Skeletal Radiol. 53:1925–1936. 2024. View Article : Google Scholar : PubMed/NCBI | |
Anderson WJ and Doyle LA: Updates from the 2020 World health organization classification of soft tissue and bone tumours. Histopathology. 78:644–657. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ehnman M, Chaabane W, Haglund F and Tsagkozis P: The tumor microenvironment of pediatric sarcoma: Mesenchymal mechanisms regulating cell migration and metastasis. Curr Oncol Rep. 21:902019. View Article : Google Scholar : PubMed/NCBI | |
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J and Fibroblasts Horsley V: Origins, definitions, and functions in health and disease. Cell. 184:3852–3872. 2021. View Article : Google Scholar : PubMed/NCBI | |
Resag A, Toffanin G, Benesova I, Müller L, Potkrajcic V, Ozaniak A, Lischke R, Bartunkova J, Rosato A, Jöhrens K, et al: The immune contexture of liposarcoma and its clinical implications. Cancers. 14:45782022. View Article : Google Scholar : PubMed/NCBI | |
Jones JEC, Rabhi N, Orofino J, Gamini R, Perissi V, Vernochet C and Farmer SR: The adipocyte acquires a fibroblast-like transcriptional signature in response to a high fat diet. Sci Rep. 10:23802020. View Article : Google Scholar : PubMed/NCBI | |
Lendahl U, Muhl L and Betsholtz C: Identification, discrimination and heterogeneity of fibroblasts. Nat Commun. 13:34092022. View Article : Google Scholar : PubMed/NCBI | |
Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, et al: Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73:5657–5668. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bouche C and Quail DF: Fueling the tumor microenvironment with cancer-associated adipocytes. Cancer Res. 83:1170–1172. 2023. View Article : Google Scholar : PubMed/NCBI | |
Harati K, Daigeler A, Hirsch T, Jacobsen F, Behr B, Wallner C, Lehnhardt M and Becerikli M: Tumor-associated fibroblasts promote the proliferation and decrease the doxorubicin sensitivity of liposarcoma cells. Int J Mol Med. 37:1535–1541. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Yan L, Guan X, Wang Z, Wu J, Lv A, Liu D, Liu F, Dong B, Zhao M, et al: Tsp2 facilitates tumor-associated fibroblasts formation and promotes tumor progression in retroperitoneal liposarcoma. Int J Biol Sci. 18:5038–5055. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, Barr FG and Hawkins DS: Rhabdomyosarcoma. Nat Rev Dis Primers. 5:12019. View Article : Google Scholar : PubMed/NCBI | |
Hettmer S and Wagers AJ: Muscling in: Uncovering the origins of rhabdomyosarcoma. Nat Med. 16:171–173. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chapman MA, Meza R and Lieber RL: Skeletal muscle fibroblasts in health and disease. Differentiation. 92:108–115. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tarnowski M, Grymula K, Liu R, Tarnowska J, Drukala J, Ratajczak J, Mitchell RA, Ratajczak MZ and Kucia M: Macrophage migration inhibitory factor is secreted by rhabdomyosarcoma cells, modulates tumor metastasis by binding to CXCR4 and CXCR7 receptors and inhibits recruitment of cancer-associated fibroblasts. Mol Cancer Res. 8:1328–1343. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wysoczynski M, Shin DM, Kucia M and Ratajczak MZ: Selective upregulation of interleukin-8 by human rhabdomyosarcomas in response to hypoxia: Therapeutic implications. Int J Cancer. 126:371–381. 2010. View Article : Google Scholar | |
Awaji M, Saxena S, Wu L, Prajapati DR, Purohit A, Varney ML, Kumar S, Rachagani S, Ly QP, Jain M, et al: CXCR2 signaling promotes secretory cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. FASEB J. 34:9405–9418. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dhayni K, Zibara K, Issa H, Kamel S and Bennis Y: Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther. 237:1082572022. View Article : Google Scholar : PubMed/NCBI | |
Ghayad SE, Rammal G, Ghamloush F, Basma H, Nasr R, Diab-Assaf M, Chelala C and Saab R: Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci Rep. 6:370882016. View Article : Google Scholar : PubMed/NCBI | |
Fahs A, Hussein N, Zalzali H, Ramadan F, Ghamloush F, Tamim H, El Homsi M, Badran B, Boulos F, Tawil A, et al: CD147 promotes tumorigenesis via Exosome-mediated signaling in rhabdomyosarcoma. Cells. 11:22672022. View Article : Google Scholar : PubMed/NCBI | |
Burns J, Wilding CP, Krasny L, Zhu X, Chadha M, Tam YB, Ps H, Mahalingam AH, Lee ATJ, Arthur A, et al: The proteomic landscape of soft tissue sarcomas. Nature Commun. 14:38342023. View Article : Google Scholar | |
Stork T, Hegedus B, Guder W, Hamacher R, Hardes J, Kaths M, Plönes T, Pöttgen C, Schildhaus HU, Streitbürger A, et al: Prognostic factors for leiomyosarcoma with isolated metastases to the lungs: Impact of metastasectomy. Ann Surg Oncol. 29:4429–4436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tseng WW, Swallow CJ, Strauss DC, Bonvalot S, Rutkowski P, Ford SJ, Gonzalez RJ, Gladdy RA, Gyorki DE, Fairweather M, et al: Management of locally recurrent retroperitoneal sarcoma in the Adult: An updated consensus approach from the transatlantic australasian retroperitoneal sarcoma working group. Ann Surg Oncol. 29:7335–7348. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tran V and Slavin J: Immunohistochemistry in bone and soft tissue tumours. Sarcoma: A Practical Guide to Multidisciplinary Management. Choong PFM: Springer Singapore; Singapore: pp. 119–134. 2021, View Article : Google Scholar | |
Porrello G, Cannella R, Randazzo A, Badalamenti G, Brancatelli G and Vernuccio F: CT and MR imaging of retroperitoneal sarcomas: A practical guide for the radiologist. Cancers (Basel). 15:29852023. View Article : Google Scholar : PubMed/NCBI | |
Kerrison WGJ, Thway K, Jones RL and Huang PH: The biology and treatment of leiomyosarcomas. Crit Rev Oncol Hematol. 184:1039552023. View Article : Google Scholar : PubMed/NCBI | |
Tai Y, Woods EL, Dally J, Kong D, Steadman R, Moseley R and Midgley AC: Myofibroblasts: Function, formation, and scope of molecular therapies for skin fibrosis. Biomolecules. 11:10952021. View Article : Google Scholar : PubMed/NCBI | |
Nagao Y, Yokoi A, Yoshida K, Kitagawa M, Asano-Inami E, Kato T, Ishikawa M, Yamamoto Y and Kajiyama H: Uterine leiomyosarcoma cell-derived extracellular vesicles induce the formation of cancer-associated fibroblasts. Biochim Biophys Acta Mol Basis Dis. 1870:1671032024. View Article : Google Scholar : PubMed/NCBI | |
Canter RJ, Beal S, Borys D, Martinez SR, Bold RJ and Robbins AS: Interaction of histologic subtype and histologic grade in predicting survival for soft-tissue sarcomas. J Am Coll Surg. 210:191–198.e2. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Liu J, Hu F, Xu M, Leng A, Jiang F and Chen K: Current research and management of undifferentiated pleomorphic sarcoma/myofibrosarcoma. Front Genet. 14:11094912023. View Article : Google Scholar : PubMed/NCBI | |
Ozzello L, Stout AP and Murray MR: Cultural characteristics of malignant histiocytomas and fibrous xanthomas. Cancer. 16:331–344. 1963. View Article : Google Scholar : PubMed/NCBI | |
O'Brien JE and Stout AP: Malignant fibrous xanthomas. Cancer. 17:1445–1455. 1964. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki H, Isayama T, Johzaki H and Kikuchi M: Malignant fibrous histiocytoma. Evidence of perivascular mesenchymal cell origin immunocytochemical studies with monoclonal anti-MFH antibodies. Am J Pathol. 128:528–537. 1987.PubMed/NCBI | |
Erlandson RA and Antonescu CR: The rise and fall of malignant fibrous histiocytoma. Ultrastruct Pathol. 28:283–289. 2004. View Article : Google Scholar | |
Widemann BC and Italiano A: Biology and management of undifferentiated pleomorphic sarcoma, myxofibrosarcoma, and malignant peripheral nerve sheath tumors: State of the art and perspectives. J Clin Oncol. 36:160–167. 2018. View Article : Google Scholar : | |
Osanai T, Yamakawa M, Suda A and Watanabe Y: Metamorphosed fibroblasts and their relation to the histogenesis of malignant fibrous histiocytoma in experimental murine model. Histol Histopathol. 15:697–705. 2000.PubMed/NCBI | |
Taxy JB and Battifora H: Malignant fibrous histiocytoma. An electron microscopic study. Cancer. 40:254–267. 1977. View Article : Google Scholar : PubMed/NCBI | |
Wood GS, Beckstead JH, Turner RR, Hendrickson MR, Kempson RL and Warnke RA: Malignant fibrous histiocytoma tumor cells resemble fibroblasts. Am J Surg Pathol. 10:323–335. 1986. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Cho B, Kim S and Kim J: Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med. 51:1–8. 2019.PubMed/NCBI | |
Neumann E, Lefevre S, Zimmermann B, Gay S and Muller-Ladner U: Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 16:458–468. 2010. View Article : Google Scholar : PubMed/NCBI | |
Setty BA, Gikandi A and DuBois SG: Ewing sarcoma drug therapy: Current standard of care and emerging agents. Paediatr Drugs. 25:389–397. 2023. View Article : Google Scholar : PubMed/NCBI | |
Riggi N, Suva ML and Stamenkovic I: Ewing's Sarcoma. N Engl J Med. 384:154–164. 2021. View Article : Google Scholar : PubMed/NCBI | |
Volchenboum SL, Andrade J, Huang L, Barkauskas DA, Krailo M, Womer RB, Ranft A, Potratz J, Dirksen U, Triche TJ and Lawlor ER: Gene expression profiling of ewing sarcoma tumors reveals the prognostic importance of Tumor-stromal interactions: A report from the Children's oncology group. J Pathol Clin Res. 1:83–94. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wrenn ED, Apfelbaum AA, Rudzinski ER, Deng X, Jiang W, Sud S, Van Noord RA, Newman EA, Garcia NM, Miyaki A, et al: Cancer-associated Fibroblast-like tumor cells remodel the ewing sarcoma tumor microenvironment. Clin Cancer Res. 29:5140–5154. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhang H, Liu J and Shang G: Targeted therapy for osteosarcoma: A review. J Cancer Res Clin Oncol. 149:6785–6797. 2023. View Article : Google Scholar : PubMed/NCBI | |
Panez-Toro I, Munoz-Garcia J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F and Heymann D: Advances in osteosarcoma. Curr Osteoporos Rep. 21:330–343. 2023. View Article : Google Scholar : PubMed/NCBI | |
Misaghi A, Goldin A, Awad M and Kulidjian AA: Osteosarcoma: A comprehensive review. SICOT J. 4:122018. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Lazar AJ, Ingram D, Wang WL, Zhang W, Jia Z, Ragoonanan D, Wang J, Xia X, Mahadeo K, et al: Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models. J Immunother Cancer. 12:e0069912024. View Article : Google Scholar : PubMed/NCBI | |
Wang JW, Wu XF, Gu XJ and Jiang XH: Exosomal miR-1228 from Cancer-associated fibroblasts promotes cell migration and invasion of osteosarcoma by directly targeting SCAI. Oncol Res. 27:979–986. 2019. View Article : Google Scholar | |
Mazumdar A, Urdinez J, Boro A, Migliavacca J, Arlt MJE, Muff R, Fuchs B, Snedeker JG and Gvozdenovic A: Osteosarcoma-derived extracellular vesicles induce lung fibroblast reprogramming. Int J Mol Sci. 21:54512020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin Y, Wang J, Lin S and Yun JP: H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 11:1473–1492. 2021. View Article : Google Scholar : PubMed/NCBI | |
David MS, Kelly E and Zoellner H: Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures. Cytokine. 62:48–51. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Chen P, Liu D, Xu Q, Meng H and Wang X: Exploration of s new biomarker in osteosarcoma and association with clinical outcomes: TOP2A+ cancer associated fibroblasts. J Gene Med. 25:e35282023. View Article : Google Scholar | |
Liu Y, Han X, Han Y, Bi J, Wu Y, Xiang D, Zhang Y, Bi W, Xu M and Li J: Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene. 907:1482862024. View Article : Google Scholar : PubMed/NCBI | |
LeBleu VS and Neilson EG: Origin and functional heterogeneity of fibroblasts. FASEB. 34:3519–3536. 2020. View Article : Google Scholar | |
Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM and Caplan AI: Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med. 4:222019. View Article : Google Scholar : PubMed/NCBI | |
Sannino G, Marchetto A, Kirchner T and Grunewald TGP: Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: A paradox in sarcomas? Cancer Res. 77:4556–4561. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mehta A and Stanger BZ: Lineage Plasticity: The new cancer hallmark on the block. Cancer Res. 84:184–191. 2024. View Article : Google Scholar : | |
Strating E, Verhagen MP, Wensink E, Dünnebach E, Wijler L, Aranguren I, De la Cruz AS, Peters NA, Hageman JH, van der Net MMC, et al: Co-cultures of colon cancer cells and cancer-associated fibroblasts recapitulate the aggressive features of mesenchymal-like colon cancer. Front Immunol. 14:10539202023. View Article : Google Scholar : PubMed/NCBI | |
Jeong SY, Lee JH, Shin Y, Chung S and Kuh HJ: Co-culture of tumor spheroids and fibroblasts in a collagen Matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One. 11:e01590132016. View Article : Google Scholar : PubMed/NCBI | |
Abercrombie M, Heaysman JE and Karthauser HM: Social behaviour of cells in tissue culture. III. Mutual influence of sarcoma cells and fibroblasts. Exp Cell Res. 13:276–291. 1957. View Article : Google Scholar : PubMed/NCBI | |
Abercrombie M and Heaysman JE: Invasive behavior between sarcoma and fibroblast populations in cell culture. J Natl Cancer Inst. 56:561–570. 1976. View Article : Google Scholar : PubMed/NCBI | |
Johnson GS, Friedman RM and Pastan I: Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3': 5'-cyclic monophosphate and its derivatives. Proc Natl Acad Sci USA. 68:425–429. 1971. View Article : Google Scholar | |
Dahlberg WK, Little JB, Fletcher JA, Suit HD and Okunieff P: Radiosensitivity in vitro of human soft tissue sarcoma cell lines and skin fibroblasts derived from the same patients. Int J Radiat Biol. 63:191–198. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fisher C: Low-grade sarcomas with CD34-positive fibroblasts and Low-grade myofibroblastic sarcomas. Ultrastruct Pathol. 28:291–305. 2004. View Article : Google Scholar | |
Broz MT, Ko EY, Ishaya K, Xiao J, De Simone M, Hoi XP, Piras R, Gala B, Tessaro FHG, Karlstaedt A, et al: Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in Soft-tissue sarcomas. Nat Commun. 15:24982024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Sinjab A, Min J, Han G, Paradiso F, Zhang Y, Wang R, Pei G, Dai Y, Liu Y, et al: Conserved spatial subtypes and cellular neighborhoods of cancer-associated fibroblasts revealed by single-cell spatial multi-omics. Cancer Cell. 43:905–924.e6. 2025. View Article : Google Scholar : PubMed/NCBI | |
Kazakova AN, Lukina MM, Anufrieva KS, Bekbaeva IV, Ivanova OM, Shnaider PV, Slonov A, Arapidi GP and Shender VO: Exploring the diversity of cancer-associated fibroblasts: Insights into mechanisms of drug resistance. Front Cell Dev Biol. 12:14031222024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, Antzis M, Cotner CE, Johnson LA, Durham AC, et al: Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2:154–166. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Sun Y, Wang P, Li S, Dong Y, Zhou M, Shi B, Jiang H, Sun R and Li Z: FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J Transl Med. 21:2552023. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Li X, Zeng C, Liu C, Hao Q, Li W, Zhang K, Zhang W, Wang S, Zhao H, et al: CD63+ Cancer-associated fibroblasts confer tamoxifen resistance to breast cancer cells through exosomal miR-22. Adv Sci (Weinh). 7:20025182020. View Article : Google Scholar | |
Zhou P, Du X, Jia W, Feng K and Zhang Y: Engineered extracellular vesicles for targeted reprogramming of cancer-associated fibroblasts to potentiate therapy of pancreatic cancer. Signal Transduct Target Ther. 9:1512024. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar | |
Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, et al: Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun. 3:7352012. View Article : Google Scholar | |
Xu L, Cui WH, Zhou WC, Li DL, Li LC, Zhao P, Mo XT, Zhang Z and Gao J: Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med. 21:1545–1554. 2017. View Article : Google Scholar : PubMed/NCBI | |
Giguelay A, Turtoi E, Khelaf L, Tosato G, Dadi I, Chastel T, Poul MA, Pratlong M, Nicolescu S, Severac D, et al: The landscape of cancer-associated fibroblasts in colorectal cancer liver metastases. Theranostics. 12:7624–7639. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu W, Zhang X and Wang Y: Cancer-associated fibroblast-secreted collagen triple helix repeat containing-1 promotes breast cancer cell migration, invasiveness and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway. Oncol Lett. 22:8142021. | |
Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, Hanby AM, Speirs V, Sahai E, Calvo F and Isacke CM: Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 7:103052016. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L and Nelson PS: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 18:1359–1368. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kramer N, Schmollerl J, Unger C, Nivarthi H, Rudisch A, Unterleuthner D, Scherzer M, Riedl A, Artaker M, Crncec I, et al: Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene. 36:5460–5472. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Fei Y, Wang H, Hu S, Liu C, Hu R and Du Q: CAFs orchestrates tumor immune microenvironment-A new target in cancer therapy? Front Pharmacol. 14:11133782023. View Article : Google Scholar : PubMed/NCBI | |
Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS, Chen X, Chen Z, Guan XY, Zou C and Fu L: Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut. 71:333–344. 2022. View Article : Google Scholar | |
Moynihan KD, Kumar MP, Sultan H, Pappas DC, Park T, Chin SM, Bessette P, Lan RY, Nguyen HC, Mathewson ND, et al: IL-2 targeted to CD8+ T cells promotes robust effector T cell responses and potent antitumor immunity. Cancer Discov. 14:1206–1225. 2024. View Article : Google Scholar : PubMed/NCBI | |
Siebert N, Leopold J, Zumpe M, Troschke-Meurer S, Biskupski S, Zikoridse A and Lode HN: The immunocytokine FAP-IL-2v enhances anti-neuroblastoma efficacy of the anti-GD2 antibody dinutuximab beta. Cancers. 14:48422022. View Article : Google Scholar : | |
Rivas EI, Linares J, Zwick M, Gómez-Llonin A, Guiu M, Labernadie A, Badia-Ramentol J, Lladó A, Bardia L, Pérez-Núñez I, et al: Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors. Nat Commun. 13:53102022. View Article : Google Scholar : PubMed/NCBI | |
Karthik R, Deshpande NU, Iago de Castro S, Anna B, Ifeanyichukwu O, Haleh A, Andrews A, Vanessa G, Siddharth M, Samara S, et al: Abstract C021: Granulocytic MDSC-derived NLRP3 inflammasome activation is a novel regulator of inflammatory CAF skewness in pancreatic cancer. In: Proceedings of the AACR Special Conference in Cancer Research: Pancreatic Cancer; 2023 Sep 27-30; Boston, Massachusetts. Philadelphia (PA), AACR. Cancer Res. 84(Suppl 2)2024.Abstract nr C021. | |
Shao X, Zhao X, Wang B, Fan J, Wang J and An H: Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy. Theranostics. 15:1689–1714. 2025. View Article : Google Scholar : PubMed/NCBI | |
Crane JN, Graham DS, Mona CE, Nelson SD, Samiei A, Dawson DW, Dry SM, Masri MG, Crompton JG, Benz MR, et al: Fibroblast activation protein expression in sarcomas. Sarcoma. 2023:24804932023. View Article : Google Scholar : PubMed/NCBI | |
Miettinen M: Immunohistochemistry of soft tissue tumours-review with emphasis on 10 markers. Histopathology. 64:101–118. 2014. View Article : Google Scholar | |
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, et al: Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 22:1592023. View Article : Google Scholar : PubMed/NCBI | |
Brahmi M, Lesluyes T, Dufresne A, Toulmonde M, Italiano A, Mir O, Le Cesne A, Valentin T, Chevreau C, Bonvalot S, et al: Expression and prognostic significance of PDGF ligands and receptors across soft tissue sarcomas. ESMO Open. 6:1000372021. View Article : Google Scholar : PubMed/NCBI | |
Robin YM, Penel N, Perot G, Neuville A, Vélasco V, Ranchère-Vince D, Terrier P and Coindre JM: Transgelin is a novel marker of smooth muscle differentiation that improves diagnostic accuracy of leiomyosarcomas: A comparative immunohistochemical reappraisal of myogenic markers in 900 soft tissue tumors. Mod Pathol. 26:502–510. 2013. View Article : Google Scholar | |
Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J, Robbie G, Rahman A, Chen G, Staten A, Griebel D and Pazdur R: Approval summary: Imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res. 8:3034–3038. 2002.PubMed/NCBI | |
Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, et al: Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: An open-label phase 1b and randomised phase 2 trial. Lancet. 388:488–497. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tap WD, Wagner AJ, Schoffski P, Martin-Broto J, Krarup-Hansen A, Ganjoo KN, Yen CC, Abdul Razak AR, Spira A, Kawai A, et al: Effect of doxorubicin plus olaratumab vs doxorubicin plus placebo on survival in patients with advanced soft tissue sarcomas: The ANNOUNCE randomized clinical trial. JAMA. 323:1266–1276. 2020. View Article : Google Scholar : PubMed/NCBI | |
Martin-Broto J, Hindi N, Grignani G, Martinez-Trufero J, Redondo A, Valverde C, Stacchiotti S, Lopez-Pousa A, D'Ambrosio L, Gutierrez A, et al: Nivolumab and sunitinib combination in advanced soft tissue sarcomas: A multicenter, Single-arm, phase Ib/II trial. J Immunother Cancer. 8:e0015612020. View Article : Google Scholar : PubMed/NCBI | |
Shahvali S, Rahiman N, Jaafari MR and Arabi L: Targeting fibroblast activation protein (FAP): Advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res. 13:2041–2056. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Wang J, Wen X, Xu B, Que Y, Yu K, Xu L, Zhao J, Pan Q, Zhou P and Zhang X: Chimeric antigen receptor-modified T-cell therapy for platelet-derived growth factor receptor α-positive rhabdomyosarcoma. Cancer. 126(Suppl 9): S2093–S2100. 2020. View Article : Google Scholar | |
Vogt KC, Silberman PC, Lin Q, Han JE, Laflin A, Gellineau HA, Heller DA and Scheinberg DA: Microenvironment actuated CAR T cells improve solid tumor efficacy without toxicity. Sci Adv. 11:eads34032025. View Article : Google Scholar : PubMed/NCBI | |
Dharani S, Cho H, Fernandez JP, Juillerat A, Valton J, Duchateau P, Poirot L and Das S: TALEN-edited allogeneic inducible dual CAR T cells enable effective targeting of solid tumors while mitigating off-tumor toxicity. Mol Ther. 32:3915–3931. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Yang W and Jiang J: Targeting tumor metabolism to augment CD8+ T cell anti-tumor immunity. J Pharm Anal. 15:1011502025. View Article : Google Scholar : | |
Ben-Ami E, Perret R, Huang Y, Courgeon F, Gokhale PC, Laroche-Clary A, Eschle BK, Velasco V, Le Loarer F, Algeo MP, et al: LRRC15 targeting in Soft-tissue sarcomas: Biological and clinical implications. Cancers (Basel). 12:572020. View Article : Google Scholar | |
Slemmons KK, Mukherjee S, Meltzer P, Purcell JW and Helman LJ: LRRC15 antibody-drug conjugates show promise as osteosarcoma therapeutics in preclinical studies. Pediatr Blood Cancer. 68:e287712021. View Article : Google Scholar | |
Brennen WN, Isaacs JT and Denmeade SR: Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther. 11:257–266. 2012. View Article : Google Scholar : PubMed/NCBI | |
Giammarile F, Knoll P, Paez D, Estrada Lobato E, Calapaqui Teran AK and Delgado Bolton RC: Fibroblast activation protein inhibitor (FAPI) PET imaging in sarcomas: A new frontier in nuclear medicine. Semin Nucl Med. 54:340–344. 2024. View Article : Google Scholar : PubMed/NCBI | |
Greifenstein L, Gunkel A, Hoehne A, Osterkamp F, Smerling C, Landvogt C, Mueller C and Baum RP: 3BP-3940, a highly potent FAP-targeting peptide for theranostics-production, validation and first in human experience with Ga-68 and Lu-177. iScience. 26:1085412023. View Article : Google Scholar | |
Xie N, Shen G, Gao W, Huang Z, Huang C and Fu L: Neoantigens: Promising targets for cancer therapy. Signal Transduct Target Ther. 8:92023. View Article : Google Scholar : PubMed/NCBI | |
Kirane A, Lee D and Ariyan C: Surgical considerations in Tumor-infiltrating lymphocyte therapy: Challenges and opportunities. Transplant Cell Ther. 31(Suppl 1): S591–S598. 2025. View Article : Google Scholar : PubMed/NCBI | |
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L and Xia Q: Nanomedicines targeting metabolic pathways in the tumor microenvironment: Future perspectives and the role of AI. Metabolites. 15:2012025. View Article : Google Scholar : PubMed/NCBI | |
Di Dedda C, Vignali D, Piemonti L and Monti P: Pharmacological targeting of GLUT1 to control Autoreactive T cell responses. Int J Mol Sci. 20:49622019. View Article : Google Scholar : PubMed/NCBI | |
Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, Anderson SM, Abel ED, Chen BJ, Hale LP and Rathmell JC: The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20:61–72. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sung KE, Su X, Berthier E, Pehlke C, Friedl A and Beebe DJ: Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One. 8:e763732013. View Article : Google Scholar : PubMed/NCBI | |
Tolle RC, Gaggioli C and Dengjel J: Three-dimensional cell culture conditions affect the proteome of cancer-associated fibroblasts. J Proteome Res. 17:2780–2789. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shao H, Moller M, Wang D, Ting A, Boulina M and Liu ZJ: A Novel stromal Fibroblast-modulated 3D tumor spheroid model for studying Tumor-stroma interaction and drug discovery. J Vis Exp. Feb 28–2020. View Article : Google Scholar | |
Chen H, Cheng Y, Wang X, Wang J, Shi X, Li X, Tan W and Tan Z: 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics. 10:12127–12143. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mondal A, Gebeyehu A, Miranda M, Bahadur D, Patel N, Ramakrishnan S, Rishi AK and Singh M: Characterization and printability of Sodium alginate-Gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep. 9:199142019. View Article : Google Scholar | |
Kuen J, Darowski D, Kluge T and Majety M: Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One. 12:e01820392017. View Article : Google Scholar : PubMed/NCBI | |
Jobe NP, Rosel D, Dvořánková B, Kodet O, Lacina L, Mateu R, Smetana K and Brábek J: Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol. 146:205–217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Balachander GM, Talukdar PM, Debnath M, Rangarajan A and Chatterjee K: Inflammatory role of Cancer-associated fibroblasts in invasive breast tumors revealed using a fibrous polymer scaffold. ACS Appl Mater Interfaces. 10:33814–33826. 2018. View Article : Google Scholar : PubMed/NCBI | |
Linxweiler J, Hajili T, Körbel C, Berchem C, Zeuschner P, Müller A, Stöckle M, Menger MD, Junker K and Saar M: Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Reps. 10:125752020. View Article : Google Scholar | |
Miyazaki Y, Oda T, Inagaki Y, Kushige H, Saito Y, Mori N, Takayama Y, Kumagai Y, Mitsuyama T and Kida YS: Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci Rep. 11:46902021. View Article : Google Scholar : PubMed/NCBI | |
Wahbi W, Awad S, Salo T and Al-Samadi A: Stroma modulation of radiation response in head and neck squamous cell carcinoma: Insights from zebrafish larvae xenografts. Exp Cell Res. 435:1139112024. View Article : Google Scholar : PubMed/NCBI | |
Foster DS, Januszyk M, Delitto D, Yost KE, Griffin M, Guo J, Guardino N, Delitto AE, Chinta M, Burcham AR, et al: Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell. 40:1392–1406.e7. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cho C, Mukherjee R, Peck AR, Sun Y, McBrearty N, Katlinski KV, Gui J, Govindaraju PK, Puré E, Rui H and Fuchs SY: Cancer-associated fibroblasts downregulate type I interferon receptor to stimulate intratumoral stromagenesis. Oncogene. 39:6129–6137. 2020. View Article : Google Scholar : PubMed/NCBI | |
Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D, Onate MK, Oon C, Bhattacharyya S, Sanford-Crane H, Horton W, et al: Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic Cancer-associated fibroblasts. Cancer Discov. 12:484–501. 2022. View Article : Google Scholar | |
De Vita A, Recine F, Miserocchi G, Pieri F, Spadazzi C, Cocchi C, Vanni S, Liverani C, Farnedi A, Fabbri F, et al: The potential role of the extracellular matrix in the activity of trabectedin in UPS and L-sarcoma: Evidences from a patient-derived primary culture case series in tridimensional and zebrafish models. J Exp Clin Cancer Res. 40:1652021. View Article : Google Scholar : PubMed/NCBI | |
Molina ER, Chim LK, Salazar MC, Koons GL, Menegaz BA, Ruiz-Velasco A, Lamhamedi-Cherradi SE, Vetter AM, Satish T, Cuglievan B, et al: 3D Tissue-engineered tumor model for Ewing's sarcoma that incorporates Bone-like ECM and mineralization. ACS Biomater Sci Eng. 6:539–552. 2020. View Article : Google Scholar | |
Moghimi N, Hosseini SA, Dalan AB, Mohammadrezaei D, Goldman A and Kohandel M: Controlled tumor heterogeneity in a co-culture system by 3D bio-printed tumor-on-chip model. Sci Rep. 13:136482023. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Jones MG, Naranjo S, Rideout WM III, Min KHJ, Ho R, Wu W, Replogle JM, Page JL, Quinn JJ, et al: Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 185:1905–1923.e25. 2022. View Article : Google Scholar : PubMed/NCBI | |
Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B, Stanger BZ, Shendure J, McKenna A and Lengner CJ: Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell. 39:1150–1162.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu C, Ma Y, Pan X, Chu R, Yao S, Chen J, Liu C, Chen Z, Sheng C, et al: STING inhibitors sensitize platinum chemotherapy in ovarian cancer by inhibiting the CGAS-STING pathway in cancer-associated fibroblasts (CAFs). Cancer Lett. 588:2167002024. View Article : Google Scholar : PubMed/NCBI | |
de Kruijf EM, van Nes JG, van de Velde CJ, Putter H, Smit VT, Liefers GJ, Kuppen PJ, Tollenaar RA and Mesker WE: Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat. 125:687–696. 2011. View Article : Google Scholar | |
Huijbers A, Tollenaar RA, v Pelt GW, Zeestraten EC, Dutton S, McConkey CC, Domingo E, Smit VT, Midgley R, Warren BF, et al: The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: Validation in the VICTOR trial. Ann Oncol. 24:179–185. 2013. View Article : Google Scholar | |
De Vlieghere E, Verset L, Demetter P, Bracke M and De Wever O: Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Arch. 467:367–382. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kanzaki R and Pietras K: Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 111:2708–2717. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Zhang X, Du K, Wu X, Zhou Y, Chen D and Zeng L: Machine learning identifies characteristics molecules of cancer associated fibroblasts significantly correlated with the prognosis, immunotherapy response and immune microenvironment in lung adenocarcinoma. Front Oncol. 12:10592532022. View Article : Google Scholar : PubMed/NCBI | |
Shen C, Rawal S, Brown R, Zhou H, Agarwal A, Watson MA, Cote RJ and Yang C: Automatic detection of circulating tumor cells and cancer associated fibroblasts using deep learning. Sci Rep. 13:57082023. View Article : Google Scholar : PubMed/NCBI | |
Agnoletto C, Caruso C and Garofalo C: Heterogeneous circulating tumor cells in sarcoma: Implication for clinical practice. Cancers (Basel). 13:21892021. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Zhou D and Huang J: Identifying explainable machine learning models and a novel SFRP2+ fibroblast signature as predictors for precision medicine in ovarian cancer. Int J Mol Sci. 24:169422023. View Article : Google Scholar : | |
Min KW, Kim DH, Noh YK, Son BK, Kwon MJ and Moon JY: Cancer-associated fibroblasts are associated with poor prognosis in solid type of lung adenocarcinoma in a machine learning analysis. Sci Rep. 11:167792021. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Chen Q, Ye Z, Zeng L, Huang C, Xie Y, Zhang R and Shen H: Construction of a matrix Cancer-associated fibroblast signature Gene-based risk prognostic signature for directing immunotherapy in patients with breast cancer using Single-cell analysis and machine learning. Int J Mol Sci. 24:131752023. View Article : Google Scholar : PubMed/NCBI | |
Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, Williams AJ, Cote RJ, Lippman ME, Datar RH and El-Ashry D: Identification of Cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res. 75:4681–4687. 2015. View Article : Google Scholar : PubMed/NCBI | |
Booijink R, Terstappen LWMM, Dathathri E, Isebia K, Kraan J, Martens J and Bansal R: Identification of functional and diverse circulating cancer-associated fibroblasts in metastatic Castration-naive prostate cancer patients. Mol Oncol. 19:2074–2091. 2024. View Article : Google Scholar | |
Lu T, Oomens L, Terstappen L and Prakash J: In vivo detection of circulating cancer-associated fibroblasts in breast tumor mouse xenograft: Impact of tumor stroma and chemotherapy. Cancers (Basel). 15:11272023. View Article : Google Scholar : PubMed/NCBI |