
Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review)
- Authors:
- Yanlin Wang
- Shuhong Luo
- Hua Dong
- Ruo-Pan Huang
-
Affiliations: Raybiotech Co., Ltd., Guangzhou, Guangdong 510600, P.R. China, Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China - Published online on: August 18, 2025 https://doi.org/10.3892/ijo.2025.5787
- Article Number: 81
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S and Ni T: The tumor microenvironment: Signal transduction. Biomolecules. 14:4382024. View Article : Google Scholar : PubMed/NCBI | |
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS and Eskandari N: Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond). 44:521–553. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar : | |
Wilson JJ, Burgess R, Mao Y, Luo S, Tang H, Jones VS, Weisheng B, Huang RY, Chen X and Huang RP: Antibody arrays in biomarker discovery. Adv Clin Chem. 69:255–324. 2015. View Article : Google Scholar : PubMed/NCBI | |
Goetz JG, Minguet S, Navarro-Lerida I, Lacoste J, Ang LH and Fiering S; Reproducibility Project: Cancer Biology: Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell. 146:148–163. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Ho C, Chang Y, Chen HY, Lin CA, Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, et al: Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 5:34722014. View Article : Google Scholar : PubMed/NCBI | |
Bellei B, Caputo S, Migliano E, Lopez G, Marcaccini V, Cota C and Picardo M: Simultaneous targeting tumor cells and cancer-associated fibroblasts with a paclitaxel-hyaluronan bioconjugate: In vitro evaluation in non-melanoma skin cancer. Biomedicines. 9:5972021. View Article : Google Scholar : PubMed/NCBI | |
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, et al: Fibroblast Heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 33:463–479. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, Noeen S, Kattermann K, Greenberg M, Williams A, et al: Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell. 39:1531–1547. 2021. View Article : Google Scholar : PubMed/NCBI | |
Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee S, Matsuda M, Chin L, Filliol A, Wen W, Song X, et al: Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell. 39:866–882. 2021. View Article : Google Scholar : PubMed/NCBI | |
LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H and Kalluri R: Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 19:1047–1053. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 34:55–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Elenbaas B and Weinberg RA: Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res. 264:169–184. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al: Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 9:1912018. View Article : Google Scholar : PubMed/NCBI | |
Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S and Chiarugi P: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 33:2423–2431. 2014. View Article : Google Scholar | |
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, et al: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 25:719–734. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vinogradov S, Warren G and Wei X: Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine(Lond). 9:695–707. 2014. View Article : Google Scholar : PubMed/NCBI | |
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M and Kzhyshkowska J: Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 8:15960042019. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Garcia A, Lynn RC, Poussin M, Eiva MA, Shaw LC, O'Connor RS, Minutolo NG, Casado-Medrano V, Lopez G, Matsuyama T and Powell DJ Jr: CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat Commun. 12:8772021. View Article : Google Scholar : PubMed/NCBI | |
Takeya M and Komohara Y: Role of tumor-associated macrophages in human malignancies: Friend or foe? Pathol Int. 66:491–505. 2016. View Article : Google Scholar : PubMed/NCBI | |
Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI | |
van Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M and Ilina O: Molecular repolarisation of tumour-associated macrophages. Molecules. 24:92018. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Wang Z, Fu L and Xu T: Macrophage polarization in the development and progression of ovarian cancers: An overview. Front Oncol. 9:4212019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yu J, Huber A, Kryczek I, Wang Z, Jiang L, Li X, Du W, Li G, Wei S, et al: Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Rep. 39:1106092022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tiruthani K, Li S, Hu M, Zhong G, Tang Y, Roy S, Zhang L, Tan J, Liao C and Liu R: mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv Mater. 33:e20076032021. View Article : Google Scholar : PubMed/NCBI | |
Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, et al: A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 25:605–620. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vickman RE, Broman MM, Lanman NA, Franco OE, Sudyanti PAG, Ni Y, Ji Y, Helfand BT, Petkewicz J, Paterakos MC, et al: Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate. 80:173–185. 2020. View Article : Google Scholar | |
Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A, Micke P, Egevad L and Ostman A: CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA. 106:3414–3419. 2009. View Article : Google Scholar : PubMed/NCBI | |
Seckinger A, Delgado JA, Moser S, Moreno L, Neuber B, Grab A, Lipp S, Merino J, Prosper F, Emde M, et al: Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell. 31:396–410. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Xu J, Zhu H, Wang Y, Wang L, Fan L, Wu YJ, Li JY and Xu W: Negative prognostic impact of low absolute CD4(+) T cell counts in peripheral blood in mantle cell lymphoma. Cancer Sci. 107:1471–1476. 2016. View Article : Google Scholar : PubMed/NCBI | |
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504:451–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Du Y, Hu Q and Huang Z: Tumor-derived CD4+CD25+regulatory T cells inhibit dendritic cells function by CTLA-4. Pathol Res Pract. 213:245–249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Burkholder B, Huang R, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM and Huang RP: Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta. 1845:182–201. 2014.PubMed/NCBI | |
Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hegde S, Leader AM and Merad M: MDSC: Markers, development, states, and unaddressed complexity. Immunity. 54:875–884. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Si W, Yu X, Piffko A, Dou X, Ding X, Bugno J, Yang K, Wen C, Zhang L, et al: Epitranscriptional regulation of TGF-beta pseudoreceptor BAMBI by m6A/YTHDF2 drives extrinsic radioresistance. J Clin Invest. 133:e1729192023. View Article : Google Scholar | |
Zhou J, Xu H, Li X, Liu H, Sun Z, Li J, Tang Y, Gao H, Zhao K, Ding C and Gao X: Targeting tumorous Circ-E-Cadherinencoded C-E-Cad inhibits the recruitment and function of breast cancer-associated myeloid-derived suppressor cells. Pharmacol Res. 204:1072042024. View Article : Google Scholar : PubMed/NCBI | |
Gregory AD and Houghton AM: Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 71:2411–2416. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coffelt SB, Wellenstein MD and de Visser KE: Neutrophils in cancer: Neutral no more. Nat Rev Cancer. 16:431–446. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shaul ME and Fridlender ZG: Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 16:601–620. 2019. View Article : Google Scholar : PubMed/NCBI | |
Melstrom LG, Salazar MD and Diamond DJ: The pancreatic cancer microenvironment: A true double agent. J Surg Oncol. 116:7–15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A, Grinenko T, Hagag E, Sinha A, Has C, Dietz S, et al: Innate immune training of granulopoiesis promotes anti-tumor activity. Cell. 183:771–785. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Chakraborty K, Tang XA, Zhou G, Schoenfelt KQ, Becker KM, Hoffman A, Chang YF, Blank A, Reardon CA, et al: Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 184:3163–3177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Cong M, Li J, He D, Wu Q, Tian P, Wang Y, Yang S, Liang C, Liang Y, et al: Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell. 39:423–437. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R and Mantovani A: Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 20:485–503. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Ye L, Zhang Q, Shen H, Li S, Zhang X, Ye M and Liang T: Group-2 innate lymphoid cells promote HCC progression through CXCL2-neutrophil-induced immunosuppression. Hepatology. 74:2526–2543. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kuang Z, Wilson JJ, Luo S, Zhu S and Huang R: Deciphering asthma biomarkers with protein profiling technology. Int J Inflamm. 2015:6306372015. | |
Dicarlo M, Bianchi N, Ferretti C, Orciani M, Di Primio R and Mattioli-Belmonte M: Evidence supporting a paracrine effect of IGF-1/VEGF on human mesenchymal stromal cell commitment. Cells Tissues Organs. 201:333–341. 2016. View Article : Google Scholar : PubMed/NCBI | |
Goel HL and Mercurio AM: VEGF targets the tumour cell. Nat Rev Cancer. 13:871–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
Iams WT and Lovly CM: Molecular pathways: Clinical applications and future direction of insulin-like growth factor-1 receptor pathway blockade. Clin Cancer Res. 21:4270–4277. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki A and Karin M: Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene. 35:2634–2644. 2016. View Article : Google Scholar : | |
Ikushima H and Miyazono K: TGFbeta signalling: A complex web in cancer progression. Nat Rev Cancer. 10:415–424. 2010. View Article : Google Scholar : PubMed/NCBI | |
Etscheid M, Beer N, Kress JA, Seitz R and Dodt J: Inhibition of bFGF/EGF-dependent endothelial cell proliferation by the hyaluronan-binding protease from human plasma. Eur J Cell Biol. 82:597–604. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mueller MM and Fusenig NE: Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Yang W, Chen L, Yang DH, Zhou Q, Zhu J, Chen JJ, Huang RC, Chen ZS and Huang RP: Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res Treat. 135:737–747. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR and Fang Y: The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 367:103–107. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kasprzak A: The role of tumor microenvironment cells in colorectal cancer (CRC) cachexia. Int J Mol Sci. 22:15652021. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Chen L and Wei X: Inflammatory cytokines in cancer: Comprehensive understanding and clinical progress in gene therapy. Cells. 10:1002021. View Article : Google Scholar : PubMed/NCBI | |
Villanueva J, Philip J, Entenberg D, Chaparro CA, Tanwar MK, Holland EC and Tempst P: Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem. 76:1560–1570. 2004. View Article : Google Scholar : PubMed/NCBI | |
Govorukhina NI, Keizer-Gunnink A, van der Zee AGJ, de Jong S, de Bruijn HWA and Bischoff R: Sample preparation of human serum for the analysis of tumor markers. Comparison of different approaches for albumin and gamma-globulin depletion. J Chromatogr A. 1009:171–178. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP and Veenstra TD: Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics. 2:1096–1103. 2003. View Article : Google Scholar : PubMed/NCBI | |
Beutgen VM, Shinkevich V, Porschke J, Meena C, Steitz AM, von Strandmann P, Graumann J and Gómez-Serrano M: Secretome analysis using affinity proteomics and immunoassays: A focus on tumor biology. Mol Cell Proteomics. 23:1008302024. View Article : Google Scholar : PubMed/NCBI | |
Ding Z, Wang N, Ji N and Chen Z: Proteomics technologies for cancer liquid biopsies. Mol Cancer. 21:532022. View Article : Google Scholar : PubMed/NCBI | |
Sutandy FXR, Qian J, Chen C and Zhu H: Overview of protein microarrays. Curr Protoc Protein Sci Chapter. 27:21–27. 2013. | |
Sanchez-Carbayo M: Antibody arrays: Technical considerations and clinical applications in cancer. Clin Chem. 52:1651–1659. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Jiang W, Yang J, Mao YQ, Zhang Y, Yang W, Yang D, Burkholder B, Huang RF and Huang RP: A biotin label-based antibody array for high-content profiling of protein expression. Cancer Genom Proteom. 7:129–141. 2010. | |
Wei W, Zhou H, Chen P, Huang XL, Huang L, Liang LJ, Guo CH, Zhou CF, Yu L, Fan LS and Wang W: Cancer-associated fibroblast-derived PAI-1 promotes lymphatic metastasis via the induction of EndoMT in lymphatic endothelial cells. J Exp Clin Canc Res. 42:1602023. View Article : Google Scholar | |
Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG, Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L and Wang W: Periostin+ cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol. 15:210–227. 2021. View Article : Google Scholar | |
Sun C, Li X, Guo E, Li N, Zhou B, Lu H, Huang J, Xia M, Shan W, Wang B, et al: MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene. 39:1681–1695. 2020. View Article : Google Scholar | |
Ryan D, Koziol J and ElShamy WM: Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep. 9:191502019. View Article : Google Scholar : PubMed/NCBI | |
Han K, Kim A and Kim D: Enhanced anti-cancer effects of conditioned medium from hypoxic human adult dermal fibroblasts on cervical cancer cells. Int J Mol Sci. 23:51342022. View Article : Google Scholar : PubMed/NCBI | |
Huang S, He L, Zhao Y, Wei Y, Wang Q, Gao Y and Jiang X: TREM1+ tumor-associated macrophages secrete CCL7 to promote hepatocellular carcinoma metastasis. J Cancer Res Clin. 150:3202024. View Article : Google Scholar | |
Zheng Y, Wang N, Wang S, Zhang J, Yang B and Wang Z: Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling. J Exp Clin Canc Res. 42:1292023. View Article : Google Scholar | |
Tatsuno R, Ichikawa J, Komohara Y, Pan C, Kawasaki T, Enomoto A, Aoki K, Hayakawa K, Iwata S, Jubashi T and Haro H: Pivotal role of IL-8 derived from the interaction between osteosarcoma and tumor-associated macrophages in osteosarcoma growth and metastasis via the FAK pathway. Cell Death Dis. 15:1082024. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Park S, Kim S and Ko J: CD133-containing microvesicles promote cancer progression by inducing M2-like tumor-associated macrophage polarization in the tumor microenvironment of colorectal cancer. Carcinogenesis. 45:300–310. 2024. View Article : Google Scholar | |
Licarete E, Rauca VF, Luput L, Patras L, Sesarman A and Banciu M: The prednisolone phosphate-induced suppression of the angiogenic function of tumor-associated macrophages enhances the antitumor effects of doxorubicin on B16.F10 murine melanoma cells in vitro. Oncol Rep. 42:2694–2705. 2019.PubMed/NCBI | |
Wang Y, Chen J, Yang L, Li J, Wu W, Huang M, Lin L and Su S: Tumor-contacted neutrophils promote metastasis by a CD90-TIMP-1 juxtacrine-paracrine loop. Clin Cancer Res. 25:1957–1969. 2019. View Article : Google Scholar | |
Lee T, Chen T, Kuo Y, Lan H, Yang M and Chu P: Tumor-associated tissue eosinophilia promotes angiogenesis and metastasis in head and neck squamous cell carcinoma. Neoplasia. 35:1008552023. View Article : Google Scholar | |
Benzing C, Lam H, Tsang CM, Rimmer A, Arroyo-Berdugo Y, Calle Y and Wells CM: TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells. BMC Cancer. 19:12142019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Jiang M, Aye L, Luo L, Zhang Y, Xu F, Wei Y, Peng D, He X, Gu J, et al: UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment. Nat Commun. 15:12002024. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Liu Y, Liu D, Ma YD, Hu ZY, Wang XY, Gu CS, Zhong Y, Long T, Kan HP and Li ZG: Role of TGFβ3-Smads-Sp1 axis in DcR3-mediated immune escape of hepatocellular carcinoma. Oncogenesis. 8:432019. View Article : Google Scholar | |
Xie G, Cheng T, Lin J, Zhang L, Zheng J, Liu Y, Xie G, Wang B and Yuan Y: Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer. 6:882018. View Article : Google Scholar : PubMed/NCBI | |
Jiang K, Zhang Q, Fan Y, Li J, Zhang J, Wang W, Fan J, Guo Y, Liu S, Hao D, et al: MYC inhibition reprograms tumor immune microenvironment by recruiting T lymphocytes and activating the CD40/CD40L system in osteosarcoma. Cell Death Discov. 8:1172022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang F, Zhang Z, Yang X, Zhang R and Song J: STK3 suppresses ovarian cancer progression by activating NF-κB signaling to recruit CD8+ T-Cells. J Immunol Res. 2020:1–17. 2020. View Article : Google Scholar | |
Zhang L, Cascio S, Mellors JW, Buckanovich RJ and Osmanbeyoglu HU: Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. Commun Biol. 7:2023.06.07.544095. 2024. | |
Sheng N, Shindo K, Ohuchida K, Shinkawa T, Zhang B, Feng H, Yamamoto T, Moriyama T, Ikenaga N, Nakata K, et al: TAK1 promotes an immunosuppressive tumor microenvironment through cancer-associated fibroblast phenotypic conversion in pancreatic ductal adenocarcinoma. Clin Cancer Res. 30:5138–5153. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Kiniwa Y and Okuyama R: CCL5 production by fibroblasts through a local renin-angiotensin system in malignant melanoma affects tumor immune responses. J Cancer Res Clin. 147:1993–2001. 2021. View Article : Google Scholar | |
SenGupta S, Hein LE, Xu Y, Zhang J, Konwerski JR, Li Y, Johnson C, Cai D, Smith JL and Parent CA: Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol. 12:6599962021. View Article : Google Scholar | |
Ogawa R, Yamamoto T, Hirai H, Hanada K, Kiyasu Y, Nishikawa G, Mizuno R, Inamoto S, Itatani Y, Sakai Y and Kawada K: Loss of SMAD4 promotes colorectal cancer progression by recruiting tumor-associated neutrophils via the CXCL1/8-CXCR2 axis. Clin Cancer Res. 25:2887–2899. 2019. View Article : Google Scholar : PubMed/NCBI | |
Germann M, Zangger N, Sauvain M, Sempoux C, Bowler AD, Wirapati P, Kandalaft LE, Delorenzi M, Tejpar S, Coukos G and Radtke F: Neutrophils suppress tumor-infiltrating T cells in colon cancer via matrix metalloproteinase-mediated activation of TGFβ. Embo Mol Med. 12:e106812020. View Article : Google Scholar | |
Chan Y, Tan H, Lu Y, Zhang C, Cheng CS, Wu J, Wang N and Feng Y: Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis. Acta Pharm Sin B. 13:1554–1567. 2023. View Article : Google Scholar : PubMed/NCBI | |
Su S, Chen J, Yao H, Liu J, Yu S, Lao L, Wang M, Luo M, Xing Y, Chen F, et al: CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 172:841–856. 2018. View Article : Google Scholar | |
Zeng W, Xiong L, Wu W, Li S, Liu J, Yang L, Lao L, Huang P, Zhang M, Chen H, et al: CCL18 signaling from tumor-associated macrophages activates fibroblasts to adopt a chemoresistance-inducing phenotype. Oncogene. 42:224–237. 2023. View Article : Google Scholar : | |
Papaccio F, Kovacs D, Bellei B, Caputo S, Migliano E, Cota C and Picardo M: Profiling cancer-associated fibroblasts in melanoma. Int J Mol Sci. 22:72552021. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Sun C, Li N, Shan W, Lu H, Guo L, Guo E, Xia M, Weng D, Meng L, et al: Cisplatin-induced CCL5 secretion from CAFs promotes cisplatin-resistance in ovarian cancer via regulation of the STAT3 and PI3K/Akt signaling pathways. Int J Oncol. 48:2087–2097. 2016. View Article : Google Scholar : PubMed/NCBI | |
Che Y, Wang J, Li Y, Lu Z, Huang J, Sun S, Mao S, Lei Y, Zang R, Sun N and He J: Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis. 9:7592018. View Article : Google Scholar : PubMed/NCBI | |
Chrisochoidou Y, Roy R, Farahmand P, Gonzalez G, Doig J, Krasny L, Rimmer EF, Willis AE, MacFarlane M and Huang PH: Crosstalk with lung fibroblasts shapes the growth and therapeutic response of mesothelioma cells. Cell Death Dis. 14:7252023. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang Y, Hong T, Ye J, Chu C, Zuo L, Zhang J and Cui X: Targeting a positive regulatory loop in the tumor-macrophage interaction impairs the progression of clear cell renal cell carcinoma. Cell Death Differ. 28:932–951. 2021. View Article : Google Scholar : | |
Liu H, Liang Z, Zhou C, Zeng Z, Wang F, Hu T, He X, Wu X, Wu X and Lan P: Mutant KRAS triggers functional reprogramming of tumor-associated macrophages in colorectal cancer. Signal Transduct Target Ther. 6:1442021. View Article : Google Scholar : PubMed/NCBI | |
Re OL, Mazza T, Giallongo S, Sanna P, Rappa F, Luong TV, Volti GL, Drovakova A, Roskams T, Van Haele M, et al: Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+ CD25+ FoxP3+ regulatory T cells activation. Theranostics. 10:910–924. 2020. View Article : Google Scholar : | |
Guo Z, Zhang H, Fu Y, Kuang J, Zhao B, Zhang L, Lin J, Lin S, Wu D and Xie G: Cancer-associated fibroblasts induce growth and radioresistance of breast cancer cells through paracrine IL-6. Cell Death Discov. 9:62023. View Article : Google Scholar : PubMed/NCBI | |
Chu T, Yang J, Huang T and Liu H: Crosstalk with cancer-associated fibroblasts increases the growth and radiation survival of cervical cancer cells. Radiat Res. 181:540–547. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Yin Y, Wang X, Wu Z, Liu Y, Zhang F, Lin J, Huang Z and Zhou L: Sublethal irradiation promotes the metastatic potential of hepatocellular carcinoma cells. Cancer Sci. 112:265–274. 2021. View Article : Google Scholar : | |
Arshad A, Deutsch E and Vozenin M: Simultaneous irradiation of fibroblasts and carcinoma cells repress the secretion of soluble factors able to stimulate carcinoma cell migration. PLoS One. 10:e1154472015. View Article : Google Scholar |