
Lp‑PLA2 in the cancer landscape: From molecular mechanisms to therapeutic potential (Review)
- Authors:
- Xiaorong Yang
- Yongbo Tu
- Na Liang
- Lingli Li
- Jian Zhang
- Jingyu Xu
- Chunming Li
-
Affiliations: Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China, Department of Pathology, The First Clinical Medical College of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China - Published online on: August 20, 2025 https://doi.org/10.3892/ijo.2025.5793
- Article Number: 87
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Dennis EA, Cao J, Hsu YH, Magrioti V and Kokotos G: Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev. 111:6130–6185. 2011. View Article : Google Scholar : PubMed/NCBI | |
Farr RS, Cox CP, Wardlow ML and Jorgensen R: Preliminary studies of an acid-labile factor (ALF) in human sera that inactivates platelet-activating factor (PAF). Clin Immunol Immunopathol. 15:318–330. 1980. View Article : Google Scholar : PubMed/NCBI | |
Batsika CS, Gerogiannopoulou ADD, Mantzourani C, Vasilakaki S and Kokotos G: The design and discovery of phospholipase A2 inhibitors for the treatment of inflammatory diseases. Expert Opin Drug Discov. 16:1287–1305. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Jiang M, Qian J, Ge Z, Xu F and Liao W: The role of lipoprotein-associated phospholipase A2 in inflammatory response and macrophage infiltration in sepsis and the regulatory mechanisms. Funct Integr Genomics. 24:1782024. View Article : Google Scholar | |
Khan SA and Ilies MA: The phospholipase A2 superfamily: Structure, isozymes, catalysis, physiologic and pathologic roles. Int J Mol Sci. 24:13532023. View Article : Google Scholar : PubMed/NCBI | |
Lordan R, Tsoupras A, Zabetakis I and Demopoulos CA: Forty years since the structural elucidation of platelet-activating factor (PAF): Historical, current, and future research perspectives. Molecules. 24:44142019. View Article : Google Scholar : PubMed/NCBI | |
Tselepis AD: Oxidized phospholipids and lipoprotein-associated phospholipase A2 as important determinants of Lp(a) functionality and pathophysiological role. J Biomed Res. 31:13–22. 2018. | |
Bonnefont-Rousselot D: Lp-PLA2, a biomarker of vascular inflammation and vulnerability of atherosclerosis plaques. Ann Pharm Fr. 74:190–197. 2016.In French. View Article : Google Scholar | |
von Eckardstein A, Nordestgaard BG, Remaley AT and Catapano AL: High-density lipoprotein revisited: Biological functions and clinical relevance. Eur Heart J. 44:1394–1407. 2023. View Article : Google Scholar : | |
Zhang S, Huang S, Hu D, Jiang F, Lv Y and Liu G: Biological properties and clinical significance of lipoprotein-associated phospholipase A2 in ischemic stroke. Cardiovasc Ther. 2022:33285742022. View Article : Google Scholar : | |
Maiolino G, Bisogni V, Rossitto G and Rossi GP: Lipoprotein-associated phospholipase A2 prognostic role in atherosclerotic complications. World J Cardiol. 7:609–620. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fras Z, Tršan J and Banach M: On the present and future role of Lp-PLA2 in atherosclerosis-related cardiovascular risk prediction and management. Arch Med Sci. 17:954–964. 2020. View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K and Yang JL: Lipid metabolic reprogramming in tumor microenvironment: From mechanisms to therapeutics. J Hematol Oncol. 16:1032023. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Cui D, Quan X, Yang W, Li Y, Zhang L and Liu E: Lp-PLA2 silencing protects against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages. Biochem Biophys Res Commun. 477:1017–1023. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lehtinen L, Vainio P, Wikman H, Huhtala H, Mueller V, Kallioniemi A, Pantel K, Kronqvist P, Kallioniemi O, Carpèn O and Iljin K: PLA2G7 associates with hormone receptor negativity in clinical breast cancer samples and regulates epithelialmesenchymal transition in cultured breast cancer cells. J Pathol Clin Res. 3:123–138. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Chang Y, Fan J, Ji W and Su C: Phospholipase A2 superfamily in cancer. Cancer Lett. 497:165–177. 2021. View Article : Google Scholar | |
Huang F, Wang K and Shen J: Lipoprotein-associated phospholipase A2: The story continues. Med Res Rev. 40:79–134. 2020. View Article : Google Scholar | |
Wang J, Jin M, Chen Y, Yuan Y, Ruan Y and Lu G: Lp-PLA2, a potential protector of lung cancer patients complicated with pleural effusion from lung diseases, proves effective for the diagnosis and pathological classification of lung cancer. Transl Oncol. 14:1010302021. View Article : Google Scholar : PubMed/NCBI | |
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, Leonardis GD and D'Alessandro R: Autotaxin-lysophosphatidate axis: Promoter of cancer development and possible therapeutic implications. Int J Mol Sci. 25:77372024. View Article : Google Scholar : PubMed/NCBI | |
Tannock LR, De Beer MC, Ji A, Shridas P, Noffsinger VP, den Hartigh L, Chait A, De Beer FC and Webb NR: Serum amyloid A3 is a high density lipoprotein-associated acute-phase protein. J Lipid Res. 59:339–347. 2018. View Article : Google Scholar : | |
Xu C, Reichert EC, Nakano T, Lohse M, Gardner AA, Revelo MP, Topham MK and Stafforini DM: Deficiency of phospholipase A2 group 7 decreases intestinal polyposis and colon tumorigenesis in Apc(Min/+) mice. Cancer Res. 73:2806–2816. 2013. View Article : Google Scholar : | |
Liu K, Li Y, Shen M, Xu W, Wu S, Yang X, Zhang B and Lin N: Epigenetic regulation of stromal and immune cells and therapeutic targets in the tumor microenvironment. Biomolecules. 15:712025. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhao J and Tang Y: Advances in the role of SWI/SNF complexes in tumours. J Cell Mol Med. 27:1023–1031. 2023. View Article : Google Scholar : PubMed/NCBI | |
Flavahan WA, Gaskell E and Bernstein BE: Epigenetic plasticity and the hallmarks of cancer. Science. 357:eaal23802017. View Article : Google Scholar | |
Ito A and Suganami T: Lipid metabolism in myeloid cell function and chronic inflammatory diseases. Front Immunol. 15:14958532025. View Article : Google Scholar : | |
Shu YJ, Lao B and Qiu YY: Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer. World J Gastrointest Oncol. 16:2335–2349. 2024. View Article : Google Scholar : PubMed/NCBI | |
Babar MU, Nassar AF, Nie X, Zhang T, He J, Yeung J, Norris P, Ogura H, Muldoon A, Chen L and Libreros S: Is lipid metabolism of value in cancer research and treatment? Part II: Role of specialized pro-resolving mediators in inflammation, infections, and cancer. Metabolites. 14:3142024. View Article : Google Scholar : PubMed/NCBI | |
Oh M, Jang SY, Lee JY, Kim JW, Jung Y, Kim J, Seo J, Han TS, Jang E, Son HY, et al: The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat Commun. 14:57282023. View Article : Google Scholar : PubMed/NCBI | |
Bi Y, Ying X, Chen W, Wu J, Kong C, Hu W, Fang S, Yu J, Zhai M, Jiang C, et al: Glycerophospholipid-driven lipid metabolic reprogramming as a common key mechanism in the progression of human primary hepatocellular carcinoma and cholangiocarcinoma. Lipids Health Dis. 23:3262024. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Zhu L, Yang X, Yu F, Fan B, Wu Y, Zhou Z, Lin W and Yang Y: Combination of theoretical analysis and experiments: Exploring the role of PLA2G7 in human cancers, including renal cancer. Heliyon. 10:e279062024. View Article : Google Scholar | |
Srivastava R and Lodhi N: DNA methylation malleability and dysregulation in cancer progression: understanding the role of PARP1. Biomolecules. 12:4172022. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Zhao H, Wang R, Chen Y, Ouyang X, Li W, Sun Y and Peng A: Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discov. 10:282024. View Article : Google Scholar : | |
Jiang D, Wang Y, Shen Y, Xu Y, Zhu H, Wang J, Wang H and Duan S: Estrogen and promoter methylation in the regulation of PLA2G7 transcription. Gene. 591:262–267. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Wang H, Li X, Liu J, Zhang Y and Hu J: Small molecule inhibitors for cancer metabolism: Promising prospects to be explored. J Cancer Res Clin Oncol. 149:8051–8076. 2023. View Article : Google Scholar : PubMed/NCBI | |
Maan M, Peters JM, Dutta M and Patterson AD: Lipid metabolism and lipophagy in cancer. Biochem Biophys Res Commun. 504:582–589. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vainio P, Lehtinen L, Mirtti T, Hilvo M, Seppänen-Laakso T, Virtanen J, Sankila A, Nordling S, Lundin J, Rannikko A, et al: Phospholipase PLA2G7, associated with aggressive prostate cancer, promotes prostate cancer cell migration and invasion and is inhibited by statins. Oncotarget. 2:1176–1190. 2011. View Article : Google Scholar : PubMed/NCBI | |
Candels LS, Becker S and Trautwein C: PLA2G7: A new player in shaping energy metabolism and lifespan. Signal Transduct Target Ther. 7:1952022. View Article : Google Scholar : | |
Blomme A, Ford CA, Mui E, Patel R, Ntala C, Jamieson LE, Planque M, McGregor GH, Peixoto P, Hervouet E, et al: 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nat Commun. 11:25082020. View Article : Google Scholar : | |
Han C, Yu G, Mao Y, Song S, Li L, Zhou L, Wang Z, Liu Y, Li M and Xu B: LPCAT1 enhances castration resistant prostate cancer progression via increased mRNA synthesis and PAF production. PLoS One. 15:e02408012020. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Xu X, Hu J, Tan J, Wan Y and Cui F: Characteristics, clinical significance, and cancer immune interactions of lipid metabolism in prostate cancer. Transl Cancer Res. 13:3575–3588. 2024. View Article : Google Scholar : PubMed/NCBI | |
Khan F, Elsori D, Verma M, Pandey S, Rab SO, Siddiqui S, Alabdallah NM, Saeed M and Pandey P: Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol. 12:13990652024. View Article : Google Scholar : PubMed/NCBI | |
Winkelkotte AM, Al-Shami K, Chaves-Filho AB, Vogel FCE and Schulze A: Interactions of fatty acid and cholesterol metabolism with cellular stress response pathways in cancer. Cold Spring Harb Perspect Med. 15:a0415482024. View Article : Google Scholar : PubMed/NCBI | |
Park H, Lee S, Lee J, Moon H and Ro SW: Exploring the JAK/STAT signaling pathway in hepatocellular carcinoma: Unraveling signaling complexity and therapeutic implications. Int J Mol Sci. 24:137642023. View Article : Google Scholar : | |
Guo S and Yang Q: Bioinformatics analysis identifies PLA2G7 as a key antigen-presenting prognostic related gene promoting hepatocellular carcinoma through the STAT1/PD-L1 axis. Front Biosci (Landmark Ed). 29:392024. View Article : Google Scholar : PubMed/NCBI | |
Fernando W, Cruickshank BM, Arun RP, MacLean MR, Cahill HF, Morales-Quintanilla F, Dean CA, Wasson MD, Dahn ML, Coyle KM, et al: ALDH1A3 is the switch that determines the balance of ALDH+ and CD24-CD44+ cancer stem cells, EMT-MET, and glucose metabolism in breast cancer. Oncogene. 43:3151–3169. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gavert N and Ben-Ze'ev A: Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med. 14:199–209. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mallini P, Lennard T, Kirby J and Meeson A: Epithelial-to-mesenchymal transition: What is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev. 40:341–348. 2014. View Article : Google Scholar | |
Suman S, Das TP and Damodaran C: Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer. 109:2587–2596. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang CK, Wang XK, Liao XW, Han CY, Yu TD, Qin W, Zhu GZ, Su H, Yu L, Liu XG, et al: Aldehyde dehydrogenase 1 (ALDH1) isoform expression and potential clinical implications in hepatocellular carcinoma. PLoS One. 12:e01822082017. View Article : Google Scholar : PubMed/NCBI | |
Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S and Kokkanti RR: Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Front Cell Dev Biol. 11:12546122023. View Article : Google Scholar : | |
Liu C, Qiang J, Deng Q, Xia J, Deng L, Zhou L, Wang D, He X, Liu Y, Zhao B, et al: ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 81:5919–5934. 2021. View Article : Google Scholar | |
Stafforini DM: Diverse functions of plasma PAF-AH in tumorigenesis. Enzymes. 38:157–179. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vermonden P, Martin M, Glowacka K, Neefs I, Ecker J, Höring M, Liebisch G, Debier C, Feron O and Larondell Y: Phospholipase PLA2G7 is complementary to GPX4 in mitigating punicic-acid-induced ferroptosis in prostate cancer cells. iScience. 27:1097742024. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Badmann S, Kraus F, Topalov NE, Mayr D, Kolben T, Hester A, Beyer S, Mahner S, Jeschke U, et al: PLA2G7/PAF-AH as potential negative regulator of the Wnt signaling pathway mediates protective effects in BRCA1 mutant breast cancer. Int J Mol Sci. 24:8822023. View Article : Google Scholar : | |
Youssef KK and Nieto MA: Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol. 25:720–739. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fontana R, Mestre-Farrera A and Yang J: Update on epithelial-mesenchymal plasticity in cancer progression. Annu Rev Pathol. 19:133–156. 2024. View Article : Google Scholar : | |
Aban CE, Lombardi A, Neiman G, Biani MC, La Greca A, Waisman A, Moro LN, Sevlever G, Miriuka S and Luzzani C: Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT. Sci Rep. 11:20482021. View Article : Google Scholar : PubMed/NCBI | |
Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, et al: Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 107:15449–15454. 2010. View Article : Google Scholar : PubMed/NCBI | |
Al-Maghrabi J: Vimentin immunoexpression is associated with higher tumor grade, metastasis, and shorter survival in colorectal cancer. Int J Clin Exp Pathol. 13:493–500. 2020.PubMed/NCBI | |
Hjelmeland ME, Lien HE, Berg HF, Woie K, Werner HMJ, Amant F, Haldorsen IS, Trovik J and Krakstad C: Loss of vimentin expression in preoperative biopsies independently predicts poor prognosis, lymph node metastasis and recurrence in endometrial cancer. BJC Rep. 2:812024. View Article : Google Scholar : PubMed/NCBI | |
Shao W, Li J, Piao Q, Yao X, Li M, Wang S, Song Z, Sun Y, Zheng L, Wang G, et al: FRMD3 inhibits the growth and metastasis of breast cancer through the ubiquitination-mediated degradation of vimentin and subsequent impairment of focal adhesion. Cell Death Dis. 14:132023. View Article : Google Scholar : PubMed/NCBI | |
Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J and Brabletz T: The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30:770–782. 2011. View Article : Google Scholar : PubMed/NCBI | |
Du JW, Xu KY, Fang LY and Qi XL: Interleukin-17, produced by lymphocytes, promotes tumor growth and angiogenesis in a mouse model of breast cancer. Mol Med Rep. 6:1099–1102. 2012. View Article : Google Scholar : PubMed/NCBI | |
Benevides L, Cardoso CRB, Tiezzi DG, Marana HRC, Andrade JM and Silva JS: Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 43:1518–1528. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cochaud S, Giustiniani J, Thomas C, Laprevotte E, Garbar C, Savoye AM, Curé H, Mascaux C, Alberici G, Bonnefoy N, et al: IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2. Sci Rep. 3:34562013. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Ji J, Zhou D, Liu X, Zhang X, Liu Y, Xiang W, Wang M, Zhang L, Wang G, et al: The interaction of the senescent and adjacent breast cancer cells promotes the metastasis of heterogeneous breast cancer cells through Notch signaling. Int J Mol Sci. 22:8492021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Lin Y, Song J, Song M, Nie X, Sun H, Xu C, Han Z and Cai J: From mechanisms to medicine: Ferroptosis as a therapeutic target in liver disorders. Cell Commun Signal. 23:1252025. View Article : Google Scholar : | |
Liu C, Liu Z, Dong Z, Liu S, Kan H and Zhang S: Multifaceted interplays between the essential players and lipid peroxidation in ferroptosis. J Genet Genomics. 23:S1673-S8527(25)00024-4. 2025. | |
Bipasha M, Deepali V, Prabal D, Supriya K and Megha B: Ferroptosis: A mechanism of cell death with potential scope in cancer therapy. Asia Pac J Clin Oncol. 16: View Article : Google Scholar : 2025. | |
Fujii J and Imai H: Oxidative metabolism as a cause of lipid peroxidation in the execution of ferroptosis. Int J Mol Sci. 25:75442024. View Article : Google Scholar : PubMed/NCBI | |
Li K, Fan C, Chen J, Xu X, Lu C, Shao H and Xi Y: Role of oxidative stress-induced ferroptosis in cancer therapy. J Cell Mol Med. 28:e183992024. View Article : Google Scholar | |
Forcina GC and Dixon SJ: GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 19:e18003112019. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Chen X, Chen W, Yuan X, Su H, Shen J and Xu Y: Structural and thermodynamic characterization of protein-ligand interactions formed between lipoprotein-associated phospholipase A2 and inhibitors. J Med Chem. 59:5115–5120. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu JP, Cen SY, Xue Z, Wang TX, Gao Y, Zheng J, Zhang C, Hu J, Nie S, Xiong Y, et al: A class of disulfide compounds suppresses ferroptosis by stabilizing GPX4. ACS Chem Biol. 17:3389–3406. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, Gu Z, McCormick ML, Durham AB, Spitz DR, et al: Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 585:113–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Wang Y, Dan W, Zhang Y, Nie L, Ma Z, Zhuang Y, Liu B, Li M, Liu T, et al: PRMT5-mediated arginine methylation stabilizes GPX4 to suppress ferroptosis in cancer. Nat Cell Biol. 27:641–653. 2025. View Article : Google Scholar | |
Lane DJR, Metselaar B, Greenough M, Bush AI and Ayton SJ: Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer's disease. Essays Biochem. 65:925–940. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Ferroptosis in infection, inflammation, and immunity. J Exp Med. 218:e202105182021. View Article : Google Scholar : PubMed/NCBI | |
Mabeta P and Steenkamp V: The VEGF/VEGFR axis revisited: Implications for cancer therapy. Int J Mol Sci. 23:155852022. View Article : Google Scholar : PubMed/NCBI | |
Malekan M, Haass NK, Rokni GR, Gholizadeh N, Ebrahimzadeh MA and Kazeminejad A: VEGF/VEGFR axis and its signaling in melanoma: Current knowledge toward therapeutic targeting agents and future perspectives. Life Sci. 345:1225632024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Brekken RA: Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol. 111:1269–1286. 2022. View Article : Google Scholar | |
Hoeres T, Wilhelm M, Smetak M, Holzmann E, Schulze-Tanzil G and Birkmann J: Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor-1. Clin Exp Immunol. 192:54–67. 2018. View Article : Google Scholar : | |
Vecchi L, Araújo TG, Azevedo FVPDV, Mota STS, Ávila VDMR, Ribeiro MA and Goulart LR: Phospholipase A2 drives tumorigenesis and cancer aggressiveness through its interaction with annexin A1. Cells. 10:14722021. View Article : Google Scholar : | |
Musumeci F and Schenone S: Unlocking potential and limits of kinase inhibitors: The highway to enhanced cancer targeted therapy. Pharmaceutics. 16:6252024. View Article : Google Scholar : PubMed/NCBI | |
Alinezhad S, Väänänen RM, Mattsson J, Li Y, Tallgrén T, Ochoa N, Bjartell A, Åkerfelt M, Taimen P, Boström PJ, et al: Validation of novel biomarkers for prostate cancer progression by the combination of bioinformatics, clinical and functional studies. PLoS One. 11:e01582552016. View Article : Google Scholar | |
He Y, He Z, Zhang X and Liu S: Platelet-activating factor acetyl hydrolase IB2 dysregulated cell proliferation in ovarian cancer. Cancer Cell Int. 21:6972021. View Article : Google Scholar : PubMed/NCBI | |
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar | |
Cetraro P, Plaza-Diaz J, MacKenzie A and Abadía-Molina F: A review of the current impact of inhibitors of apoptosis proteins and their repression in cancer. Cancers (Basel). 14:16712022. View Article : Google Scholar : PubMed/NCBI | |
Vainio P, Gupta S, Ketola K, Mirtti T, Mpindi JP, Kohonen P, Fey V, Perälä M, Smit F, Verhaegh G, et al: Arachidonic acid pathway members PLA2G7, HPGD, EPHX2, and CYP4F8 identified as putative novel therapeutic targets in prostate cancer. Am J Pathol. 178:525–536. 2011. View Article : Google Scholar : | |
Zheng W, Lin Q, Issah MA, Liao Z and Shen J: Identification of PLA2G7 as a novel biomarker of diffuse large B cell lymphoma. BMC Cancer. 21:9272021. View Article : Google Scholar : | |
Qaderi K, Shahmoradi A, Thyagarajan A and Sahu RP: Impact of targeting the platelet-activating factor and its receptor in cancer treatment. Mil Med Res. 12:102025.PubMed/NCBI | |
Liao Y, Badmann S, Kaltofen T, Mayr D, Schmoeckel E, Deuster E, Mannewitz M, Landgrebe S, Kolben T, Hester A, et al: Platelet-activating factor acetylhydrolase expression in BRCA1 mutant ovarian cancer as a protective factor and potential negative regulator of the Wnt signaling pathway. Biomedicines. 9:7062021. View Article : Google Scholar : | |
Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Correction: hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 80:9222020. View Article : Google Scholar | |
Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, He Y, Wang L, Zhang Q, Kim A, et al: Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 181:442–459.e29. 2020. View Article : Google Scholar | |
Bonnefont-Rousselot D: Lipoprotein-associated phospholipase A2 (Lp-PLA2): Relevant biomarker and therapeutic target? Ann Pharm Fr. 83:45–57. 2025.In French. View Article : Google Scholar | |
Bharadwaj D and Mandal M: Tumor microenvironment: A playground for cells from multiple diverse origins. Biochim Biophys Acta Rev Cancer. 1879:1891582024. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Liu W, Meng F, Jiang Q, Tang W, Liu Z, Lin X, Xue R, Zhang S and Dong L: Inhibiting PLA2G7 reverses the immunosuppressive function of intratumoral macrophages and augments immunotherapy response in hepatocellular carcinoma. J Immunother Cancer. 12:e0080942024. View Article : Google Scholar : PubMed/NCBI | |
Pantazi D, Tellis C and Tselepis AD: Oxidized phospholipids and lipoprotein-associated phospholipase A2 (Lp-PLA2) in atherosclerotic cardiovascular disease: An update. Biofactors. 48:1257–1270. 2022. View Article : Google Scholar : PubMed/NCBI | |
Assunção LS, Magalhães KG, Carneiro AB, Molinaro R, Almeida PE, Atella GC, Castro-Faria-Neto HC and Bozza PT: Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:246–254. 2017. View Article : Google Scholar | |
Chu M, Ji H, Li K, Liu H, Peng M, Wang Z and Zhu X: Investigating the potential mechanism of quercetin against cervical cancer. Discov Oncol. 14:1702023. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y and Li Y: Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct Target Ther. 6:2632021. View Article : Google Scholar : | |
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F and Delort L: Crosstalk of inflammatory cytokines within the breast tumor microenvironment. Int J Mol Sci. 24:40022023. View Article : Google Scholar : PubMed/NCBI | |
Nezos A, Skarlis C, Psarrou A, Markakis K, Garantziotis P, Papanikolaou A, Gravani F, Voulgarelis M, Tzioufas AG, Koutsilieris M, et al: Lipoprotein-associated phospholipase A2: A novel contributor in Sjögren's syndrome-related lymphoma? Front Immunol. 12:6836232021. View Article : Google Scholar | |
Benli E, Bayrak A, Cirakoglu A, Bayrak T and Noyan T: Comparison of serum acetyl hydrolase (PAF-AH) and paraoxonase 1 (PON1) values between prostate cancer patients and a control group. Kaohsiung J Med Sci. 33:572–577. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Zhang B, Li B, Wu H and Jiang M: Cold and hot tumors: From molecular mechanisms to targeted therapy. Signal Transduct Target Ther. 9:2742024. View Article : Google Scholar : PubMed/NCBI | |
de Oliveira JB, Silva SB, Fernandes IL, Batah SS, Herrera AJR, Cetlin ADCVA and Fabro AT: Dendritic cell-based immunotherapy in non-small cell lung cancer: A comprehensive critical review. Front Immunol. 15:13767042024. View Article : Google Scholar : PubMed/NCBI | |
Cha YJ and Koo JS: Role of tumor-associated myeloid cells in breast cancer. Cells. 9:17852020. View Article : Google Scholar : | |
Yang J, Li X, Liu X and Liu Y: The role of tumor-associated macrophages in breast carcinoma invasion and metastasis. Int J Clin Exp Pathol. 8:6656–6664. 2015.PubMed/NCBI | |
Oliveira G, Stromhaug K, Klaeger S, Kula T, Frederick DT, Le PM, Forman J, Huang T, Li S, Zhang W, et al: Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature. 596:119–125. 2021. View Article : Google Scholar | |
Schol P, van Elsas MJ, Middelburg J, Twilhaar MKN, van Hall T, van der Sluis TC and van der Burg SH: Myeloid effector cells in cancer. Cancer Cell. 42:1997–2014. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song J, Li Y, Wu K, Hu Y and Fang L: MyD88 and its inhibitors in cancer: Prospects and challenges. Biomolecules. 14:5622024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, He M, Zhang G, Cao K, Yang M, Zhang H and Liu H: The immune landscape during the tumorigenesis of cervical cancer. Cancer Med. 10:2380–2095. 2021. View Article : Google Scholar : | |
Pang G, Li Y, Shi Q, Tian J, Lou H and Feng Y: Omics sciences for cervical cancer precision medicine from the perspective of the tumor immune microenvironment. Oncol Res. 33:821–836. 2025. View Article : Google Scholar : | |
Morigny P, Kaltenecker D, Zuber J, Machado J, Mehr L, Tsokanos FF, Kuzi H, Hermann CD, Voelkl M, Monogarov G, et al: Association of circulating PLA2G7 levels with cancer cachexia and assessment of darapladib as a therapy. J Cachexia Sarcopenia Muscle. 12:1333–1351. 2021. View Article : Google Scholar : | |
Noyori O, Komohara Y, Nasser H, Hiyoshi M, Ma C, Pan C, Carreras J, Nakamura N, Sato A, Ando K, et al: Expression of IL-34 correlates with macrophage infiltration and prognosis of diffuse large B-cell lymphoma. Clin Transl Immunology. 8:e10742019. View Article : Google Scholar : PubMed/NCBI | |
Saenger Y, Magidson J, Liaw B, de Moll E, Harcharik S, Fu Y, Wassmann K, Fisher D, Kirkwood J, Oh WK and Friedlander P: Blood mRNA expression profiling predicts survival in patients treated with tremelimumab. Clin Cancer Res. 20:3310–3318. 2014. View Article : Google Scholar | |
Zhu H, Shi H, Lu J, Zhu K, Yang L, Guo L, Tang L, Shi Y and Hu X: Proteomic profiling reveals the significance of lipid metabolism in small cell lung cancer recurrence and metastasis. J Transl Med. 22:11172024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : | |
Avci CB, Bagca BG, Nikanfar M, Takanlou LS, Takanlou MS and Nourazarian A: Tumor microenvironment and cancer metastasis: molecular mechanisms and therapeutic implications. Front Pharmacol. 15:14428882024. View Article : Google Scholar | |
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J and Zhou R: Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther. 9:1702024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Chen K, Zhu H, Qin H, Liu J and Cao X: Methyltransferase Setd2 prevents T cell-mediated autoimmune diseases via phospholipid remodeling. Proc Natl Acad Sci USA. 121:e23145611212024. View Article : Google Scholar | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar | |
Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P, Paradkar S, Boehnke N, Deik AA, Reinhardt F, et al: Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature. 585:603–608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ko CJ, Gao SL, Lin TK, Chu PY and Lin HY: Ferroptosis as a major factor and therapeutic target for neuroinflammation in Parkinson's disease. Biomedicines. 9:16792021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li LX, Ding H, Torres VE, Yu C and Li X: Ferroptosis promotes cyst growth in autosomal dominant polycystic kidney disease mouse models. J Am Soc Nephrol. 32:2759–2776. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Nam M, Son HY, Hyun K, Jang SY, Kim JW, Kim MW, Jung Y, Jang E, Yoon S, et al: Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci USA. 117:32433–32442. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez R, Schreiber SL and Conrad M: Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Mol Cell. 82:728–740. 2022. View Article : Google Scholar : | |
Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, et al: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 547:453–457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shin S, Baek DS, Mellors JW, Dimitrov DS and Li W: Development of fully human antibodies targeting SIRPα and PLA2G7 for cancer therapy. Antibodies (Basel). 14:212025. View Article : Google Scholar |