
Role of metabolic reprogramming of cancer‑associated fibroblasts in tumor development and progression (Review)
- Authors:
- Ruyue Li
- Yintao Li
-
Affiliations: School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China, Department of Medical Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China - Published online on: August 25, 2025 https://doi.org/10.3892/ijo.2025.5796
- Article Number: 90
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Fidler IJ: The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y and Bai Y: Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis. 14:5872023. View Article : Google Scholar : PubMed/NCBI | |
Glabman RA, Choyke PL and Sato N: Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers (Basel). 14:39062022. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Wang X, Wang X, Xu M and Sheng W: The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis. 13:8742022. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Tong Z, Ren Z, Ye M and Hu K: Cancer-associated fibroblasts and its derived exosomes: A new perspective for reshaping the tumor microenvironment. Mol Med. 29:662023. View Article : Google Scholar : PubMed/NCBI | |
Li C, Teixeira AF, Zhu HJ and Ten Dijke P: Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer. 20:1542021. View Article : Google Scholar : | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Arima Y, Matsueda S and Saya H: Significance of cancer-associated fibroblasts in the interactions of cancer cells with the tumor microenvironment of heterogeneous tumor tissue. Cancers (Basel). 15:25362023. View Article : Google Scholar | |
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D and Wu C: Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Transduct Target Ther. 9:1492024. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Reyes I and Chandel NS: Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 11:1022020. View Article : Google Scholar : PubMed/NCBI | |
Akter R, Awais M, Boopathi V, Ahn JC, Yang DC, Kang SC, Yang DU and Jung SK: Inversion of the warburg effect: Unraveling the metabolic nexus between obesity and cancer. ACS Pharmacol Transl Sci. 7:560–569. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Wang X, Song C, He Z, Wang R, Xu Y, Jiang G, Wan Y, Mei J and Mao W: The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics. 13:1774–1808. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Cui L, Lu S and Xu S: Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 15:422024. View Article : Google Scholar : PubMed/NCBI | |
Medina M: Metabolic reprogramming is a Hallmark of metabolism itself. Bioessays. 42:e20000582020. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Zhuo L and Wang X: Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Semin Cell Dev Biol. 64:125–131. 2017. View Article : Google Scholar | |
Avagliano A, Granato G, Ruocco MR, Romano V, Belviso I, Carfora A, Montagnani S and Arcucci A: Metabolic reprogramming of cancer associated fibroblasts: The slavery of stromal fibroblasts. Biomed Res Int. 2018:60754032018. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Li W, Li X, Jin X, Liao Q, Li Y and Zhou Y: 'Reverse Warburg effect' of cancer-associated fibroblasts (Review). Int J Oncol. 60:672022. View Article : Google Scholar | |
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, et al: Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond). 42:401–434. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yoon H, Tang CM, Banerjee S, Delgado AL, Yebra M, Davis J and Sicklick JK: TGF-β1-mediated transition of resident fibroblasts to cancer-associated fibroblasts promotes cancer metastasis in gastrointestinal stromal tumor. Oncogenesis. 10:132021. View Article : Google Scholar | |
Hartupee J and Mann DL: Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol. 93:143–148. 2016. View Article : Google Scholar : | |
Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Féral CC, Cook M, et al: ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell. 20:229–245. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Yu X, Yang F, Zhang Z, Shen J, Sun J, Choksi S, Jitkaew S and Shu Y: Reprogramming of normal fibroblasts into cancer-associated fibroblasts by miRNAs-Mediated CCL2/VEGFA signaling. PLoS Genet. 12:e10062442016. View Article : Google Scholar : PubMed/NCBI | |
Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G and Sahai E: Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 15:637–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yin C, Evason KJ, Asahina K and Stainier DY: Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 123:1902–1910. 2013. View Article : Google Scholar : PubMed/NCBI | |
Omary MB, Lugea A, Lowe AW and Pandol SJ: The pancreatic stellate cell: A star on the rise in pancreatic diseases. J Clin Invest. 117:50–59. 2007. View Article : Google Scholar : | |
Wang F, Li L, Piontek K, Sakaguchi M and Selaru FM: Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 67:940–954. 2018. View Article : Google Scholar | |
Peng Y and Li Z and Li Z: GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun. 440:558–563. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shangguan L, Ti X, Krause U, Hai B, Zhao Y, Yang Z and Liu F: Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells. 30:2810–2819. 2012. View Article : Google Scholar : PubMed/NCBI | |
Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, Franzen CA, Gupta GN, Osipo C, Zlobin A, et al: Osteopontin mediates an MZF1-TGF-β1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene. 34:4821–4833. 2015. View Article : Google Scholar | |
Iwano M, Plieth D, Danoff TM, Xue C, Okada H and Neilson EG: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 110:341–350. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zeisberg EM, Potenta S, Xie L, Zeisberg M and Kalluri R: Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang PC, Chung JY, Xue VW, Xiao J, Meng XM, Huang XR, Zhou S, Chan AS, Tsang AC, Cheng AS, et al: Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Adv Sci (Weinh). 9:e21012352022. View Article : Google Scholar | |
Tang PM, Zhang YY, Xiao J, Tang PC, Chung JY, Li J, Xue VW, Huang XR, Chong CC, Ng CF, et al: Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci USA. 117:20741–20752. 2020. View Article : Google Scholar | |
Dulauroy S, Di Carlo SE, Langa F, Eberl G and Peduto L: Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 18:1262–1270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 34:55–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wikström P, Marusic J, Stattin P and Bergh A: Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate. 69:799–809. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gieniec KA, Butler LM, Worthley DL and Woods SL: Cancer-associated fibroblasts-heroes or villains? Br J Cancer. 121:293–302. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kanzaki R and Pietras K: Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 111:2708–2717. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nurmik M, Ullmann P, Rodriguez F, Haan S and Letellier E: In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 146:895–905. 2020. View Article : Google Scholar | |
Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, Noeen S, Kattermann K, Greenberg M, Williams A, et al: Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell. 39:1531–1547.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, et al: Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 22:1592023. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Xia X, Huang LB, An H, Cao M, Kim GD, Chen HN, Zhang WH, Shu Y, Kong X, et al: Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. 13:66192022.PubMed/NCBI | |
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cords L, Engler S, Haberecker M, Rüschoff JH, Moch H, de Souza N and Bodenmiller B: Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell. 42:396–412.e5. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li J, Li Z, et al: Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12:620–638. 2022. View Article : Google Scholar : | |
Roulis M, Kaklamanos A, Schernthanner M, Bielecki P, Zhao J, Kaffe E, Frommelt LS, Qu R, Knapp MS, Henriques A, et al: Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature. 580:524–529. 2020. View Article : Google Scholar : | |
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : | |
Kazakova AN, Lukina MM, Anufrieva KS, Bekbaeva IV, Ivanova OM, Shnaider PV, Slonov A, Arapidi GP and Shender VO: Exploring the diversity of cancer-associated fibroblasts: Insights into mechanisms of drug resistance. Front Cell Dev Biol. 12:14031222024. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar | |
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson DA: IL1-Induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar | |
Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, Yao J, Wang Y, Jiao F, Xiao X, et al: Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov. 7:362021. View Article : Google Scholar : PubMed/NCBI | |
Niu N, Shen X, Wang Z, Chen Y, Weng Y, Yu F, Tang Y, Lu P, Liu M, Wang L, et al: Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell. 42:869–884.e9. 2024. View Article : Google Scholar | |
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, et al: Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 24:1277–1289. 2018. View Article : Google Scholar : PubMed/NCBI | |
Foster DS, Januszyk M, Delitto D, Yost KE, Griffin M, Guo J, Guardino N, Delitto AE, Chinta M, Burcham AR, et al: Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell. 40:1392–1406.e7. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Yang C, Peng A, Sun T, Ji X, Mi J, Wei L, Shen S and Feng Q: Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer. 22:1702023. View Article : Google Scholar : PubMed/NCBI | |
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J and Ma X: Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (2020). 4:e2182023. View Article : Google Scholar | |
Li Z, Sun C and Qin Z: Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 11:8322–8336. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mamun AA, Hayashi H, Yamamura A, Nayeem MJ and Sato M: Hypoxia induces the translocation of glucose transporter 1 to the plasma membrane in vascular endothelial cells. J Physiol Sci. 70:442020. View Article : Google Scholar : PubMed/NCBI | |
Snell CE, Turley H, McIntyre A, Li D, Masiero M, Schofield CJ, Gatter KC, Harris AL and Pezzella F: Proline-hydroxylated hypoxia-inducible factor 1α (HIF-1α) upregulation in human tumours. PLoS One. 9:e889552014. View Article : Google Scholar | |
Xu G, Li M, Wu J, Qin C, Tao Y and He H: Circular RNA circ-NRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 12:2789–2802. 2020. View Article : Google Scholar | |
Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, Zhang J, Zhao S, Zhou BP and Mi J: Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep. 10:1335–1348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-García A, Samsó P, Fontova P, Simon-Molas H, Manzano A, Castaño E, Rosa JL, Martinez-Outshoorn U, Ventura F, Navarro-Sabaté À and Bartrons R: TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J. 284:3437–3454. 2017. View Article : Google Scholar | |
Wei X, Hou Y, Long M, Jiang L and Du Y: Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne). 13:9273292022. View Article : Google Scholar | |
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F and Zhou H: TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol. 15:1352022. View Article : Google Scholar | |
Wang SF, Tseng LM and Lee HC: Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 30:612023. View Article : Google Scholar : | |
Shimura T, Sasatani M, Kawai H, Kamiya K, Kobayashi J, Komatsu K and Kunugita N: Radiation-Induced myofibroblasts promote tumor growth via mitochondrial ROS-Activated TGFβ Signaling. Mol Cancer Res. 16:1676–1686. 2018. View Article : Google Scholar | |
Chakraborty PK, Mustafi SB, Xiong X, Dwivedi SKD, Nesin V, Saha S, Zhang M, Dhanasekaran D, Jayaraman M, Mannel R, et al: MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat Commun. 8:146342017. View Article : Google Scholar : PubMed/NCBI | |
Sung JS, Kang CW, Kang S, Jang Y, Chae YC, Kim BG and Cho NH: ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts. Oncogene. 39:664–676. 2020. View Article : Google Scholar | |
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI | |
Qiao Y, Liu Y, Ran R, Zhou Y, Gong J, Liu L, Zhang Y, Wang H, Fan Y, Fan Y, et al: Lactate metabolism and lactylation in breast cancer: mechanisms and implications. Cancer Metastasis Rev. 44:482025. View Article : Google Scholar : | |
Kozlov AM, Lone A, Betts DH and Cumming RC: Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts. Sci Rep. 10:83882020. View Article : Google Scholar | |
Ishihara S, Hata K, Hirose K, Okui T, Toyosawa S, Uzawa N, Nishimura R and Yoneda T: The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep. 12:62612022. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Zhu J, Ren J, Tong Y, Wang L, Ma S and Wang J: Lactate increases tumor malignancy by promoting tumor small extracellular vesicles production via the GPR81-cAMP-PKA-HIF-1α axis. Front Oncol. 12:10365432022. View Article : Google Scholar | |
Yang L, Gilbertsen A, Xia H, Benyumov A, Smith K, Herrera J, Racila E, Bitterman PB and Henke CA: Hypoxia enhances IPF mesenchymal progenitor cell fibrogenicity via the lactate/GPR81/HIF1α pathway. JCI insight. 8:e1638202023. View Article : Google Scholar | |
Fontana F, Giannitti G, Marchesi S and Limonta P: The PI3K/Akt pathway and glucose metabolism: A dangerous liaison in cancer. Int J Biol Sci. 20:3113–3125. 2024. View Article : Google Scholar : PubMed/NCBI | |
Payen VL, Porporato PE, Baselet B and Sonveaux P: Metabolic changes associated with tumor metastasis, part 1: Tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci. 73:1333–1348. 2016. View Article : Google Scholar | |
Mestre-Farrera A, Bruch-Oms M, Peña R, Rodríguez-Morató J, Alba-Castellón L, Comerma L, Quintela-Fandino M, Duñach M, Baulida J, Pozo ÓJ and García de Herreros A: Glutamine-directed migration of cancer-activated fibroblasts facilitates epithelial tumor invasion. Cancer Res. 81:438–451. 2021. View Article : Google Scholar | |
He C, Peng M, Zeng X, Dong H, Sun Z, Xu J, Liu M, Liu L, Huang Y, Peng Z, et al: Microenvironmental G protein-coupled estrogen receptor-mediated glutamine metabolic coupling between cancer-associated fibroblasts and triple-negative breast cancer cells governs tumour progression. Clin Transl Med. 14:e701312024. View Article : Google Scholar : PubMed/NCBI | |
Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, et al: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 536:479–483. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kay EJ, Paterson K, Riera-Domingo C, Sumpton D, Däbritz JHM, Tardito S, Boldrini C, Hernandez-Fernaud JR, Athineos D, Dhayade S, et al: Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat Metab. 4:693–710. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kay EJ, Zanivan S and Rufini A: Proline metabolism shapes the tumor microenvironment: From collagen deposition to immune evasion. Curr Opin Biotechnol. 84:1030112023. View Article : Google Scholar : PubMed/NCBI | |
Huynh TYL, Zareba I, Baszanowska W, Lewoniewska S and Palka J: Understanding the role of key amino acids in regulation of proline dehydrogenase/proline oxidase (prodh/pox)-dependent apoptosis/autophagy as an approach to targeted cancer therapy. Mol Cell Biochem. 466:35–44. 2020. View Article : Google Scholar | |
Ino Y, Yamazaki-Itoh R, Oguro S, Shimada K, Kosuge T, Zavada J, Kanai Y and Hiraoka N: Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS One. 8:e551462013. View Article : Google Scholar : PubMed/NCBI | |
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K and Yang JL: Lipid metabolic reprogramming in tumor microenvironment: From mechanisms to therapeutics. J Hematol Oncol. 16:1032023. View Article : Google Scholar : PubMed/NCBI | |
Jabbari K, Cheng Q, Winkelmaier G, Furuta S and Parvin B: CD36(+) fibroblasts secrete protein ligands that growth-suppress triple-negative breast cancer cells while elevating adipogenic markers for a model of cancer-associated fibroblast. Int J Mol Sci. 23:127442022. View Article : Google Scholar : PubMed/NCBI | |
Zhu GQ, Tang Z, Huang R, Qu WF, Fang Y, Yang R, Tao CY, Gao J, Wu XL, Sun HX, et al: CD36(+) cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 9:252023. View Article : Google Scholar | |
Lopes-Coelho F, André S, Félix A and Serpa J: Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol. 462(Pt B): 93–106. 2018. View Article : Google Scholar | |
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Gu Z, Wan J, Lou X, Liu S, Wang Y, Bian Y, Wang F, Li Z and Qin Z: Stearoyl-CoA Desaturase-1 dependent lipid droplets accumulation in cancer-associated fibroblasts facilitates the progression of lung cancer. Int J Biol Sci. 18:6114–6128. 2022. View Article : Google Scholar : | |
Santi A, Caselli A, Ranaldi F, Paoli P, Mugnaioni C, Michelucci E and Cirri P: Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 1853:3211–3223. 2015. View Article : Google Scholar | |
Beach JA, Aspuria PJ, Cheon DJ, Lawrenson K, Agadjanian H, Walsh CS, Karlan BY and Orsulic S: Sphingosine kinase 1 is required for TGF-β mediated fibroblastto-myofibroblast differentiation in ovarian cancer. Oncotarget. 7:4167–4182. 2016. View Article : Google Scholar | |
Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, Bhattacharyya S, Tumanov S, Allen-Petersen BL, Link J, Kendsersky ND, et al: A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 9:617–627. 2019. View Article : Google Scholar : | |
Charo C, Holla V, Arumugam T, Hwang R, Yang P, Dubois RN, Menter DG, Logsdon CD and Ramachandran V: Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor. Pancreas. 42:467–474. 2013. View Article : Google Scholar : | |
Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP and Sotgia F: Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle. 11:3956–3963. 2012. View Article : Google Scholar : | |
Chirieac LR: Tumor cell proliferation, proliferative index and mitotic count in lung cancer. Transl Lung Cancer Res. 5:554–556. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, et al: Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol. 35(Suppl): S25–S54. 2015. View Article : Google Scholar | |
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM and Álvarez-Teijeiro S: Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother. 161:1145022023. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Outschoorn UE, Lisanti MP and Sotgia F: Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 25:47–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, Lanciotti M, Serni S, Cirri P and Chiarugi P: Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 72:5130–5140. 2012. View Article : Google Scholar : PubMed/NCBI | |
Becker LM, O'Connell JT, Vo AP, Cain MP, Tampe D, Bizarro L, Sugimoto H, McGow AK, Asara JM, Lovisa S, et al: Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31:1077012020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhao Z, Liu W and Li X: SNHG3 Functions as miRNA sponge to promote breast cancer cells growth through the metabolic reprogramming. Appl Biochem Biotechnol. 191:1084–1099. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, Song Y, Chen S, Hu Q and Ni Y: ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics. 10:12044–12059. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S, Hofman P, Bellvert F, Meneguzzi G, Bulavin DV, et al: Tumor-Stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29:124–140.e10. 2019. View Article : Google Scholar | |
Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, et al: Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24:685–700. 2016. View Article : Google Scholar : PubMed/NCBI | |
Linares JF, Cordes T, Duran A, Reina-Campos M, Valencia T, Ahn CS, Castilla EA, Moscat J, Metallo CM and Diaz-Meco MT: ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab. 26:817–829.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mishra R, Haldar S, Placencio V, Madhav A, Rohena-Rivera K, Agarwal P, Duong F, Angara B, Tripathi M, Liu Z, et al: Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest. 128:4472–4484. 2018. View Article : Google Scholar : | |
Gerashchenko TS, Novikov NM, Krakhmal NV, Zolotaryova SY, Zavyalova MV, Cherdyntseva NV, Denisov EV and Perelmuter VM: Markers of cancer cell invasion: Are they good enough? J Clin Med. 8:10922019. View Article : Google Scholar : PubMed/NCBI | |
Bànkfalvi A and Piffkò J: Prognostic and predictive factors in oral cancer: The role of the invasive tumour front. J Oral Pathol Med. 29:291–298. 2000. View Article : Google Scholar | |
Sahai E: Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 15:87–96. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wirtz D, Konstantopoulos K and Searson PC: The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 11:512–522. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nagelkerke A, Bussink J, Rowan AE and Span PN: The mechanical microenvironment in cancer: How physics affects tumours. Semin Cancer Biol. 35:62–70. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu QP, Luo Q, Deng B, Ju Y and Song GB: Stiffer matrix accelerates migration of hepatocellular carcinoma cells through enhanced aerobic glycolysis via the MAPK-YAP signaling. Cancers (Basel). 12:4902020. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Zhou Z, Xu S, Liao C, Chen X, Li B, Peng J, Li D and Yang L: Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling. Cancer Lett. 478:93–106. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Lin Y, Zhang H, Liu C, Cheng Z, Yang X, Zhang J, Xiao Y, Sang N, Qian X, et al: Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis. 11:2672020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liu F, Wu X, Zhu G, Tang Z, Qu W, Zhao Q, Huang R, Tian M, Fang Y, et al: Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Exp Cell Res. 435:1139472024. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Tang S, Hou Y, Xi L, Chen Y, Yin J, Peng M, Zhao M, Cui X and Liu M: Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling. EBioMedicine. 41:370–383. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shan T, Chen S, Chen X, Lin WR, Li W, Ma J, Wu T, Cui X, Ji H, Li Y and Kang Y: Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep. 37:1971–1979. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siemann DW and Horsman MR: Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther. 153:107–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D and Pezzella F: Overview on the different patterns of tumor vascularization. Cells. 10:6392021. View Article : Google Scholar : PubMed/NCBI | |
Katayama Y, Uchino J, Chihara Y, Tamiya N, Kaneko Y, Yamada T and Takayama K: Tumor neovascularization and developments in therapeutics. Cancers (Basel). 11:3162019. View Article : Google Scholar : PubMed/NCBI | |
Dudley AC and Griffioen AW: Pathological angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis. 26:313–347. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Li X, Wang L, Hong X and Yang J: Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne). 13:9882952022. View Article : Google Scholar : PubMed/NCBI | |
Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, et al: The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 9:1960–1971. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Shi X, Yang M, Luo J, Gao Q, Wang X, Wu Y, Tian Y, Wu F and Zhou H: Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway. Int J Oral Sci. 13:122021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Jiang E, Zhao H, Chen Y, Xu Y, Feng C, Li J and Shang Z: Glycometabolic reprogramming-mediated proangiogenic phenotype enhancement of cancer-associated fibroblasts in oral squamous cell carcinoma: role of PGC-1α/PFKFB3 axis. Br J Cancer. 127:449–461. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J and Shi X: Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res. 37:3242018. View Article : Google Scholar : PubMed/NCBI | |
Hsu WH, LaBella KA, Lin Y, Xu P, Lee R, Hsieh CE, Yang L, Zhou A, Blecher JM, Wu CJ, et al: Oncogenic KRAS drives lipofibrogenesis to promote angiogenesis and colon cancer progression. Cancer Discov. 13:2652–2673. 2023. View Article : Google Scholar : PubMed/NCBI | |
Verginadis II, Avgousti H, Monslow J, Skoufos G, Chinga F, Kim K, Leli NM, Karagounis IV, Bell BI, Velalopoulou A, et al: A stromal integrated stress response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol. 24:940–953. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qian CN, Mei Y and Zhang J: Cancer metastasis: Issues and challenges. Chin J Cancer. 36:382017. View Article : Google Scholar : PubMed/NCBI | |
Fares J, Fares MY, Khachfe HH, Salhab HA and Fares Y: Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 5:282020. View Article : Google Scholar : PubMed/NCBI | |
Eble JA and Niland S: The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 36:171–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
Curtis M, Kenny HA, Ashcroft B, Mukherjee A, Johnson A, Zhang Y, Helou Y, Batlle R, Liu X, Gutierrez N, et al: Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab. 29:141–155.e9. 2019. View Article : Google Scholar : | |
Wang Y, Wang X, Bai B, Shaha A, He X, He Y, Ye Z, Shah VH and Kang N: Targeting Src SH3 domain-mediated glycolysis of HSC suppresses transcriptome, myofibroblastic activation, and colorectal liver metastasis. Hepatology. 80:578–594. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, et al: Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 13:572022. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhu CC, Ni B, Zhang ZZ, Jiang SH, Hu LP, Wang X, Zhang XX, Huang PQ, Yang Q, et al: Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine. 49:157–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Wang X, Wu C, Qiao J, Jin H and Li H: A protracted war against cancer drug resistance. Cancer Cell Int. 24:3262024. View Article : Google Scholar : PubMed/NCBI | |
Lei ZN, Tian Q, Teng QX, Wurpel JND, Zeng L, Pan Y and Chen ZS: Understanding and targeting resistance mechanisms in cancer. MedComm (2020). 4:e2652023. View Article : Google Scholar : PubMed/NCBI | |
Dhanyamraju PK: Drug resistance mechanisms in cancers: Execution of pro-survival strategies. J Biomed Res. 38:95–121. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zaal EA and Berkers CR: The influence of metabolism on drug response in cancer. Front Oncol. 8:5002018. View Article : Google Scholar : PubMed/NCBI | |
Broekgaarden M, Anbil S, Bulin AL, Obaid G, Mai Z, Baglo Y, Rizvi I and Hasan T: Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer. Biomaterials. 222:1194212019. View Article : Google Scholar : PubMed/NCBI | |
Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP and Martinez-Outschoorn UE: Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: Implications for preventing chemotherapy resistance. Cancer Biol Ther. 12:1085–1097. 2011. View Article : Google Scholar | |
Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, et al: A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 71:523–530. 2013. View Article : Google Scholar | |
Mohanti BK, Rath GK, Anantha N, Kannan V, Das BS, Chandramouli BA, Banerjee AK, Das S, Jena A, Ravichandran R, et al: Improving cancer radiotherapy with 2-deoxy-D-glucose: Phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys. 35:103–111. 1996. View Article : Google Scholar : PubMed/NCBI | |
Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A and Cognetti F: Lonidamine: Efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc). 39:157–174. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kelly W, Diaz Duque AE, Michalek J, Konkel B, Caflisch L, Chen Y, Pathuri SC, Madhusudanannair-Kunnuparampil V, Floyd J and Brenner A: Phase II investigation of TVB-2640 (Denifanstat) with bevacizumab in patients with first relapse high-grade astrocytoma. Clin Cancer Res. 29:2419–2425. 2023. View Article : Google Scholar : PubMed/NCBI | |
Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, et al: Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 22:1108–1119. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schlaepfer IR and Joshi M: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. 161:bqz0462020. View Article : Google Scholar : PubMed/NCBI | |
Yao CH, Liu GY, Wang R, Moon SH, Gross RW and Patti GJ: Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biol. 16:e20037822018. View Article : Google Scholar | |
Gugiatti E, Tenca C, Ravera S, Fabbi M, Ghiotto F, Mazzarello AN, Bagnara D, Reverberi D, Zarcone D, Cutrona G, et al: A reversible carnitine palmitoyltransferase (CPT1) inhibitor offsets the proliferation of chronic lymphocytic leukemia cells. Haematologica. 103:e531–e536. 2018. View Article : Google Scholar : PubMed/NCBI | |
Harding JJ, Telli M, Munster P, Voss MH, Infante JR, DeMichele A, Dunphy M, Le MH, Molineaux C, Orford K, et al: A Phase I Dose-Escalation and Expansion Study of Telaglenastat in Patients with Advanced or Metastatic Solid Tumors. Clin Cancer Res. 27:4994–5003. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang WH, Qiu Y, Stamatatos O, Janowitz T and Lukey MJ: Enhancing the Efficacy of Glutamine Metabolism Inhibitors in Cancer Therapy. Trends Cancer. 7:790–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wicker CA, Hunt BG, Krishnan S, Aziz K, Parajuli S, Palackdharry S, Elaban WR, Wise-Draper TM, Mills GB, Waltz SE and Takiar V: Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Lett. 502:180–188. 2021. View Article : Google Scholar : PubMed/NCBI | |
Han J, Li Q, Chen Y and Yang Y: Recent metabolomics analysis in tumor metabolism reprogramming. Front Mol Biosci. 8:7639022021. View Article : Google Scholar : PubMed/NCBI | |
Ciavardelli D, Bellomo M, Consalvo A, Crescimanno C and Vella V: Metabolic alterations of thyroid cancer as potential therapeutic targets. Biomed Res Int. 2017:25450312017. View Article : Google Scholar : PubMed/NCBI | |
Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, et al: Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 17:1682018. View Article : Google Scholar : PubMed/NCBI | |
Wright K, Ly T, Kriet M, Czirok A and Thomas SM: Cancer-Associated Fibroblasts: Master tumor microenvironment modifiers. Cancers (Basel). 15:18992023. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Yang X, Yuan Z and Wang H: Metabolic reprogramming in immune response and tissue inflammation. Arterioscler Thromb Vasc Biol. 40:1990–2001. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A and Haberkorn U: Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem. 4:162019. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Liu J, Qian H and Zhuang Q: Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp Mol Med. 55:1322–1332. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Li T, Sun L, Yuan Y and Zhu Y: Potential mechanisms of cancer-associated fibroblasts in therapeutic resistance. Biomed Pharmacother. 166:1154252023. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Xue W, Yuan H, Wang Z and Yu L: Nano-Drug delivery systems targeting CAFs: A promising treatment for pancreatic cancer. Int J Nanomedicine. 19:2823–2849. 2024. View Article : Google Scholar : PubMed/NCBI | |
Giuliani S, Accetta C, di Martino S, De Vitis C, Messina E, Pescarmona E, Fanciulli M, Ciliberto G, Mancini R and Falcone I: Metabolic reprogramming in melanoma: An epigenetic point of view. Pharmaceuticals (Basel). 18:8532025. View Article : Google Scholar : PubMed/NCBI | |
Kumar D, New J, Vishwakarma V, Joshi R, Enders J, Lin F, Dasari S, Gutierrez WR, Leef G, Ponnurangam S, et al: Cancer-Associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res. 78:3769–3782. 2018. View Article : Google Scholar : PubMed/NCBI | |
Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A, Lau AN, Gabitova L, Pazina T, Gupta S, Luong T, et al: Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 11:446–479. 2021. View Article : Google Scholar | |
Balaban S, Nassar ZD, Zhang AY, Hosseini-Beheshti E, Centenera MM, Schreuder M, Lin HM, Aishah A, Varney B, Liu-Fu F, et al: Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol Cancer Res. 17:949–962. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Guo G, Huang L, Deng L, Chang CS, Achyut BR, Canning M, Xu N, Arbab AS, Bollag RJ, et al: CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 11:5152020. View Article : Google Scholar | |
Broz MT, Ko EY, Ishaya K, Xiao J, De Simone M, Hoi XP, Piras R, Gala B, Tessaro FHG, Karlstaedt A, et al: Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas. Nat Commun. 15:24982024. View Article : Google Scholar : PubMed/NCBI | |
Emberley E, Pan A, Chen J, Dang R, Gross M, Huang T, Li W, MacKinnon A, Singh D, Sotirovska N, et al: The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma. PLoS One. 16:e02592412021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang Y, Li Z, Xue W, Hu S and Kong X: Lipid metabolism as a target for cancer drug resistance: Progress and prospects. Front Pharmacol. 14:12743352023. View Article : Google Scholar : | |
Wang Z, Tang Y, Tan Y, Wei Q and Yu W: Cancer-associated fibroblasts in radiotherapy: Challenges and new opportunities. Cell Commun Signal. 17:472019. View Article : Google Scholar : PubMed/NCBI |