
Mesenchymal stem cell therapy for breast cancer‑related secondary lymphedema (Review)
- Authors:
- Shunxin Han
- Junrong Cai
- Yuteng Zhang
- Feng Lu
-
Affiliations: Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China - Published online on: June 23, 2025 https://doi.org/10.3892/mco.2025.2868
- Article Number: 73
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Grada AA and Phillips TJ: Lymphedema: Pathophysiology and clinical manifestations. J Am Acad Dermatol. 77:1009–1020. 2017.PubMed/NCBI View Article : Google Scholar | |
Hu LR and Pan J: Adipose-derived stem cell therapy shows promising results for secondary lymphedema. World J Stem Cells. 12:612–620. 2020.PubMed/NCBI View Article : Google Scholar | |
Vargo M, Aldrich M, Donahue P, Iker E, Koelmeyer L, Crescenzi R and Cheville A: Current diagnostic and quantitative techniques in the field of lymphedema management: A critical review. Med Oncol. 41(241)2024.PubMed/NCBI View Article : Google Scholar | |
McLaughlin SA, Brunelle CL and Taghian A: Breast cancer-related lymphedema: Risk factors, screening, management, and the impact of locoregional treatment. J Clin Oncol. 38:2341–2350. 2020.PubMed/NCBI View Article : Google Scholar | |
Aguilera-Eguía RA, Seron P, Gutiérrez-Arias R and Zaror C: Which physical therapy intervention is most effective in reducing secondary lymphoedema associated with breast cancer? Protocol for a systematic review and network meta-analysis. BMJ Open. 12(e065045)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Wang L, Chen Y, Wu Q, Chen G, Shen X, Wang Q, Yan Y, Yu Y, Zhong Y, et al: Outcomes of novel coronavirus disease 2019 (COVID-19) infection in 107 patients with cancer from Wuhan, China. Cancer. 126:4023–4031. 2020.PubMed/NCBI View Article : Google Scholar | |
Jariwala P and Kaur N: A descriptive study on prevalence of arm/shoulder problems and its impact on quality of life in breast cancer survivors. Indian J Cancer. 58:201–206. 2021.PubMed/NCBI View Article : Google Scholar | |
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022.PubMed/NCBI View Article : Google Scholar | |
Hasenoehrl T, Palma S, Ramazanova D, Kölbl H, Dorner TE, Keilani M and Crevenna R: Resistance exercise and breast cancer-related lymphedema-a systematic review update and meta-analysis. Support Care Cancer. 28:3593–3603. 2020.PubMed/NCBI View Article : Google Scholar | |
DiSipio T, Rye S, Newman B and Hayes S: Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 14:500–515. 2013.PubMed/NCBI View Article : Google Scholar | |
Dessources K, Aviki E and Leitao MM Jr: Lower extremity lymphedema in patients with gynecologic malignancies. Int J Gynecol Cancer. 30:252–260. 2020.PubMed/NCBI View Article : Google Scholar | |
Bruno C, Cesta CE, Hjellvik V, Ulrichsen SP, Bjørk MH, Esen B, Gillies MB, Gissler M, Havard A, Karlstad Ø, et al: Corrigendum to Antipsychotic use during pregnancy and risk of specific neurodevelopmental disorders and learning difficulties in children: A multinational cohort study [eClinicalMedicine 70 (2024) 102531/DOI: 10.1016/j.eclinm.2024.102531]. EClinicalMedicine 81: 103139, 2025. | |
Hassan AM, Fisher CS and Hassanein AH: ASO author reflections: navigating the nuances of lymphedema prevention with immediate lymphatic reconstruction. Ann Surg Oncol: Apr 20, 2025 (Epub ahead of print). | |
Bouhali S, Merchant F, Karni RJ, Gutierrez C and Rasmussen JC: 3D rendering and analysis of dermal backflow as an early indicator of cancer-acquired lymphedema using RGB-D and near-infrared fluorescence lymphatic imaging. Proc SPIE 12930, Medical Imaging 2024: Clinical and Biomedical Imaging, 1293008, 2024. | |
Frueh FS, Körbel C, Gassert L, Müller A, Gousopoulos E, Lindenblatt N, Giovanoli P, Laschke MW and Menger MD: High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb. Sci Rep. 6(34673)2016.PubMed/NCBI View Article : Google Scholar | |
Wang N, Liao C, Cao X, Nishimura M, Brackenier YWE, Yurt M, Gao M, Abraham D, Alkan C, Iyer SS, et al: Spherical echo-planar time-resolved imaging (sEPTI) for rapid 3D quantitative T2* and susceptibility imaging. Magn Reson Med. 93:121–137. 2025.PubMed/NCBI View Article : Google Scholar | |
Xie K, Jiang H, Chen X, Ning Y, Yu Q, Lv F, Liu R, Zhou Y, Xu L, Yue Q and Peng J: Multiparameter MRI-based model integrating radiomics and deep learning for preoperative staging of laryngeal squamous cell carcinoma. Sci Rep. 15(16239)2025.PubMed/NCBI View Article : Google Scholar | |
Rogan S, Taeymans J, Luginbuehl H, Aebi M, Mahnig S and Gebruers N: Therapy modalities to reduce lymphoedema in female breast cancer patients: A systematic review and meta-analysis. Breast Cancer Res Treat. 159:1–14. 2016.PubMed/NCBI View Article : Google Scholar | |
Gao Y, Ma T, Han M, Yu M and Wang X, Lv Y and Wang X: Effects of acupuncture and moxibustion on breast cancer-related lymphedema: A systematic review and meta-analysis of randomized controlled trials. Integr Cancer Ther. 20(15347354211044107)2021.PubMed/NCBI View Article : Google Scholar | |
Keeley V: Advances in understanding and management of lymphoedema (cancer, primary). Curr Opin Support Palliat Care. 11:355–360. 2017.PubMed/NCBI View Article : Google Scholar | |
Raju A and Chang DW: Vascularized lymph node transfer for treatment of lymphedema: A comprehensive literature review. Ann Surg. 261:1013–1023. 2015.PubMed/NCBI View Article : Google Scholar | |
No authors listed. Successful mesenchymal stem cell treatment of leg ulcers complicated by Behcet disease: A case report and literature review: Erratum. Medicine (Baltimore). 97(e0670)2018.PubMed/NCBI View Article : Google Scholar | |
Toyserkani NM, Christensen ML, Sheikh SP and Sørensen JA: Stem cells show promising results for lymphoedema treatment-a literature review. J Plast Surg Hand Surg. 49:65–71. 2015.PubMed/NCBI View Article : Google Scholar | |
Das M, Mayilsamy K, Mohapatra SS and Mohapatra S: Mesenchymal stem cell therapy for the treatment of traumatic brain injury: Progress and prospects. Rev Neurosci. 30:839–855. 2019.PubMed/NCBI View Article : Google Scholar | |
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM and Caplan AI: Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med. 4(22)2019.PubMed/NCBI View Article : Google Scholar | |
Jensen MR, Simonsen L, Karlsmark T and Bülow J: Microvascular filtration is increased in the forearms of patients with breast cancer-related lymphedema. J Appl Physiol (1985). 114:19–27. 2013.PubMed/NCBI View Article : Google Scholar | |
Castilla DM, Liu ZJ, Tian R, Li Y, Livingstone AS and Velazquez OC: A novel autologous cell-based therapy to promote diabetic wound healing. Ann Surg. 256:560–572. 2012.PubMed/NCBI View Article : Google Scholar | |
Wariss BR, de Souza Abrahão K, de Aguiar SS, Bergmann A and Thuler LCS: Effectiveness of four inflammatory markers in predicting prognosis in 2374 women with breast cancer. Maturitas. 101:51–56. 2017.PubMed/NCBI View Article : Google Scholar | |
Cong C, Rao C, Ma Z, Yu M, He Y, He Y, Hao Z, Li C, Lou H and Gao D: ‘Nano-lymphatic’ photocatalytic water-splitting for relieving tumor interstitial fluid pressure and achieving hydrodynamic therapy†. Mater Horiz. 7:3266–3274. 2020. | |
Zhuang T, Lei Y, Chang JJ, Zhou YP, Li Y, Li YX, Yang YF, Chen MH, Meng T, Fu SM, et al: A2AR-mediated lymphangiogenesis via VEGFR2 signaling prevents salt-sensitive hypertension. Eur Heart J. 44:2730–2742. 2023.PubMed/NCBI View Article : Google Scholar | |
Schoofs H, Daubel N, Schnabellehner S, Grönloh MLB, Palacios Martínez S, Halme A, Marks AM, Jeansson M, Barcos S, Brakebusch C, et al: Dynamic cytoskeletal regulation of cell shape supports resilience of lymphatic endothelium. Nature. 641:465–475. 2025.PubMed/NCBI View Article : Google Scholar | |
Chen CE, Chiang NJ, Perng CK, Ma H and Lin CH: Review of preclinical and clinical studies of using cell-based therapy for secondary lymphedema. J Surg Oncol. 121:109–120. 2020.PubMed/NCBI View Article : Google Scholar | |
Avraham T, Zampell JC, Yan A, Elhadad S, Weitman ES, Rockson SG, Bromberg J and Mehrara BJ: Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. FASEB J. 27:1114–1126. 2013.PubMed/NCBI View Article : Google Scholar | |
Nishioka T, Katayama KI, Kumegawa S, Isono K, Baba T, Tsujimoto H, Yamada G, Inoue N and Asamura S: Increased infiltration of CD4+ T cell in the complement deficient lymphedema model. BMC Immunol. 24(42)2023.PubMed/NCBI View Article : Google Scholar | |
Uemura K, Katayama KI, Nishioka T, Watanabe H, Yamada G, Inoue N and Asamura S: Dynamics of immune cell infiltration and fibroblast-derived IL-33/ST2 axis induction in a mouse model of post-surgical lymphedema. Int J Mol Sci. 26(1371)2025.PubMed/NCBI View Article : Google Scholar | |
Ogata F, Fujiu K, Matsumoto S, Nakayama Y, Shibata M, Oike Y, Koshima I, Watabe T, Nagai R and Manabe I: Excess lymphangiogenesis cooperatively induced by macrophages and CD4(+) T cells drives the pathogenesis of lymphedema. J Invest Dermatol. 136:706–714. 2016.PubMed/NCBI View Article : Google Scholar | |
Ogino R, Yokooji T, Hayashida M, Suda S, Yamakawa S and Hayashida K: Emerging anti-inflammatory pharmacotherapy and cell-based therapy for lymphedema. Int J Mol Sci. 23(7614)2022.PubMed/NCBI View Article : Google Scholar | |
Higgins ET, Busse WW, Esnault S, Christian BT, Klaus DR, Bach JC, Frye CJ and Rosenkranz MA: Fueling the fire in the lung-brain axis: The salience network connects allergen-provoked TH17 responses to psychological stress in asthma. Brain Behav Immun. 128:276–288. 2025.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
De Castro V, Abdellaoui O, Dehecq B, Ndao B, Mercier-Letondal P, Dauvé A, Garnache-Ottou F, Adotévi O, Loyon R and Godet Y: Characterization of the aryl hydrocarbon receptor as a potential candidate to improve cancer T cell therapies. Cancer Immunol Immunother. 74(200)2025.PubMed/NCBI View Article : Google Scholar | |
Li H, Wu Y, Song XH, Li CX, Cai Y and Chen C: Expression of Th1 and Th2 cytokines in serum of patients with lupus nephritis. Mod Prev Med. 40 746:2013. | |
Zhu Q, Yang H, Altaf F, Wu N, Hu Y, Su L, Li J, Liu J, Wang G, Igbiriki DG, et al: SOCS8 deficiency models MAFLD-like progression in the zebrafish gut-liver axis. Water Biology and Security. Elsevier, pp100414, 2025. | |
Lee SO and Kim IK: Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol. 12(1363811)2024.PubMed/NCBI View Article : Google Scholar | |
Duhon BH, Phan TT, Taylor SL, Crescenzi RL and Rutkowski JM: Current mechanistic understandings of lymphedema and lipedema: Tales of fluid, fat, and fibrosis. Int J Mol Sci. 23(6621)2022.PubMed/NCBI View Article : Google Scholar | |
Peña Quián Y, Hernández Ramirez P, Batista Cuellar JF, Perera Pintado A and Coca Pérez MA: Lymphoscintigraphy for the assessment of autologous stem cell implantation in chronic lymphedema. Clin Nucl Med. 40:217–219. 2015.PubMed/NCBI View Article : Google Scholar | |
Toyserkani NM, Jensen CH, Tabatabaeifar S, Jørgensen MG, Hvidsten S, Simonsen JA, Andersen DC, Sheikh SP and Sørensen JA: Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: Lymphoscintigraphic evaluation with 1 year of follow-up. J Plast Reconstr Aesthet Surg. 72:71–77. 2019.PubMed/NCBI View Article : Google Scholar | |
Jørgensen MG, Toyserkani NM, Hansen FCG, Thomsen JB and Sørensen JA: Prospective validation of indocyanine green lymphangiography staging of breast cancer-related lymphedema. Cancers (Basel). 13(1540)2021.PubMed/NCBI View Article : Google Scholar | |
Kern S, Eichler H, Stoeve J, Klüter H and Bieback K: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24:1294–1301. 2006.PubMed/NCBI View Article : Google Scholar | |
Yu SJ, Kim HJ, Lee ES, Park CG, Cho SJ and Jeon SH: β-catenin accumulation is associated with increased expression of nanog protein and predicts maintenance of MSC self-renewal. Cell Transplant. 26:365–377. 2017.PubMed/NCBI View Article : Google Scholar | |
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P and Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 13:4279–4295. 2002.PubMed/NCBI View Article : Google Scholar | |
Le Blanc K and Ringdén O: Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 262:509–525. 2007.PubMed/NCBI View Article : Google Scholar | |
Hassanein AH, Sinha M, Neumann CR, Mohan G, Khan I and Sen CK: A murine tail lymphedema model. J Vis Exp. (10.3791/61848)2021.PubMed/NCBI View Article : Google Scholar | |
Arruda G, Ariga S, de Lima TM, Souza HP and Andrade M: A modified mouse-tail lymphedema model. Lymphology. 53:29–37. 2020.PubMed/NCBI | |
Yu J and Guo W: Modern medical progress of peripheral lymphedema treated by integrated traditional Chinese and western medicine. Adv Clin Med. 12:4228–4234. 2022. | |
Hou C, Wu X and Jin X: Autologous bone marrow stromal cells transplantation for the treatment of secondary arm lymphedema: A prospective controlled study in patients with breast cancer related lymphedema. Jpn J Clin Oncol. 38:670–674. 2008.PubMed/NCBI View Article : Google Scholar | |
Zhou H, Wang M, Hou C, Jin X and Wu X: Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn J Clin Oncol. 41:841–846. 2011.PubMed/NCBI View Article : Google Scholar | |
Ismail AM, Abdou SM, Abdelnaby AY, Hamdy MA, El Saka AA and Gawaly A: Stem cell therapy using bone marrow-derived mononuclear cells in treatment of lower limb lymphedema: A randomized controlled clinical trial. Lymphat Res Biol. 16:270–277. 2018.PubMed/NCBI View Article : Google Scholar | |
Weigand A, Beier JP, Arkudas A, Al-Abboodi M, Polykandriotis E, Horch RE and Boos AM: The arteriovenous (AV) loop in a small animal model to study angiogenesis and vascularized tissue engineering. J Vis Exp. (54676)2016.PubMed/NCBI View Article : Google Scholar | |
Boos AM, Loew JS, Weigand A, Deschler G, Klumpp D, Arkudas A, Bleiziffer O, Gulle H, Kneser U, Horch RE and Beier JP: Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med. 7:654–664. 2013.PubMed/NCBI View Article : Google Scholar | |
Weigand A, Horch RE, Boos AM, Beier JP and Arkudas A: The arteriovenous loop: Engineering of axially vascularized tissue. Eur Surg Res. 59:286–299. 2018.PubMed/NCBI View Article : Google Scholar | |
Robering JW, Al-Abboodi M, Titzmann A, Horn I, Beier JP, Horch RE, Kengelbach-Weigand A and Boos AM: Tissue engineering of lymphatic vasculature in the arteriovenous loop model of the rat. Tissue Eng Part A. 27:129–141. 2021.PubMed/NCBI View Article : Google Scholar | |
Levi B, Glotzbach JP, Sorkin M, Hyun J, Januszyk M, Wan DC, Li S, Nelson ER, Longaker MT and Gurtner GC: Molecular analysis and differentiation capacity of adipose-derived stem cells from lymphedema tissue. Plast Reconstr Surg. 132:580–589. 2013.PubMed/NCBI View Article : Google Scholar | |
Dhumale P, Nielsen JV, Hansen ACS, Burton M, Beck HC, Jørgensen MG, Toyserkani NM, Haahr MK, Hansen ST, Lund L, et al: CD31 defines a subpopulation of human adipose-derived regenerative cells with potent angiogenic effects. Sci Rep. 13(14401)2023.PubMed/NCBI View Article : Google Scholar | |
Ackermann M, Wettstein R, Senaldi C, Kalbermatten DF, Konerding MA, Raffoul W and Erba P: Impact of platelet rich plasma and adipose stem cells on lymphangiogenesis in a murine tail lymphedema model. Microvasc Res. 102:78–85. 2015.PubMed/NCBI View Article : Google Scholar | |
Hayashida K, Yoshida S, Yoshimoto H, Fujioka M, Saijo H, Migita K, Kumaya M and Akita S: Adipose-derived stem cells and vascularized lymph node transfers successfully treat mouse hindlimb secondary lymphedema by early reconnection of the lymphatic system and lymphangiogenesis. Plast Reconstr Surg. 139:639–651. 2017.PubMed/NCBI View Article : Google Scholar | |
Ogino R, Hayashida K, Yamakawa S and Morita E: Adipose-derived stem cells promote intussusceptive lymphangiogenesis by restricting dermal fibrosis in irradiated tissue of mice. Int J Mol Sci. 21(3885)2020.PubMed/NCBI View Article : Google Scholar | |
Dai T, Jiang Z, Cui C, Sun Y, Lu B, Li H, Cao W, Chen B, Li S and Guo L: The roles of podoplanin-positive/podoplanin-negative cells from adipose-derived stem cells in lymphatic regeneration. Plast Reconstr Surg. 145:420–431. 2020.PubMed/NCBI View Article : Google Scholar | |
Jørgensen MG, Toyserkani NM, Jensen CH, Andersen DC, Sheikh SP and Sørensen JA: Adipose-derived regenerative cells and lipotransfer in alleviating breast cancer-related lymphedema: An open-label phase I trial with 4 years of follow-up. Stem Cells Transl Med. 10:844–854. 2021.PubMed/NCBI View Article : Google Scholar | |
Yang S, Sun Y and Yan C: Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology. 22(316)2024.PubMed/NCBI View Article : Google Scholar | |
Kasseroller RG and Brenner E: Effectiveness of manual lymphatic drainage in intensive phase I therapy of breast cancer-related lymphedema-a retrospective analysis. Support Care Cancer. 32(5)2023.PubMed/NCBI View Article : Google Scholar | |
Tashiro K, Yoshioka Y and Ochiya T: Extracellular vesicles from adipose-derived stem cells relieve extremity lymphedema in mouse models. Plast Reconstr Surg. 152:1011–1021. 2023.PubMed/NCBI View Article : Google Scholar | |
Cheng X, Henick BS and Cheng K: Anticancer therapy targeting cancer-derived extracellular vesicles. ACS Nano. 18:6748–6765. 2024.PubMed/NCBI View Article : Google Scholar | |
Yuan Z, Zhu Z, Zhu F, Ding F, Wang Y, Wang X, Luo X, Yang J, Liu F and Sun D: Impact of human adipose tissue-derived stem cells on dermatofibrosarcoma protuberans cells in an indirect co-culture: An in vitro study. Stem Cell Res Ther. 12(440)2021.PubMed/NCBI View Article : Google Scholar | |
Diao X, Guo C, Zheng H, Zhao K, Luo Y, An M, Lin Y, Chen J, Li Y, Li Y, et al: SUMOylation-triggered ALIX activation modulates extracellular vesicles circTLCD4-RWDD3 to promote lymphatic metastasis of non-small cell lung cancer. Signal Transduct Target Ther. 8(426)2023.PubMed/NCBI View Article : Google Scholar | |
Li Y, Zheng H, Luo Y, Lin Y, An M, Kong Y, Zhao Y, Yin Y, Ai L, Huang J and Chen C: An HGF-dependent positive feedback loop between bladder cancer cells and fibroblasts mediates lymphangiogenesis and lymphatic metastasis. Cancer Commun (Lond). 43:1289–1311. 2023.PubMed/NCBI View Article : Google Scholar | |
Zhang HF, Wang YL, Tan YZ, Wang HJ, Tao P and Zhou P: Enhancement of cardiac lymphangiogenesis by transplantation of CD34+VEGFR-3+ endothelial progenitor cells and sustained release of VEGF-C. Basic Res Cardiol. 114(43)2019.PubMed/NCBI View Article : Google Scholar | |
Kawai Y, Shiomi H, Abe H, Naka S, Kurumi Y and Tani T: Cell transplantation therapy for a rat model of secondary lymphedema. J Surg Res. 189:184–191. 2014.PubMed/NCBI View Article : Google Scholar | |
Deng J, Dai T, Sun Y, Zhang Q, Jiang Z, Li S and Cao W: Overexpression of Prox1 induces the differentiation of human adipose-derived stem cells into lymphatic endothelial-like cells in vitro. Cell Reprogram. 19:54–63. 2017.PubMed/NCBI View Article : Google Scholar | |
Ou HX, Guo BB, Liu Q, Li YK, Yang Z, Feng WJ and Mo ZC: Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin. 39:1249–1258. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen DB: Experimental study of bone marrow mesenchymal stem cells (BMSCs) promoting hematopoietic reconstruction and immune regulation POST-HSCT. Fujian Medical University, 2022. | |
Salek Farrokhi A, Zarnani AH, Rezaei Kahmini F and Moazzeni SM: Mesenchymal stem cells induce expansion of regulatory T cells in abortion-prone mice. Reproduction. 161:477–487. 2021.PubMed/NCBI View Article : Google Scholar | |
Gousopoulos E, Proulx ST, Bachmann SB, Scholl J, Dionyssiou D, Demiri E, Halin C, Dieterich LC and Detmar M: Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function. JCI Insight. 1(e89081)2016.PubMed/NCBI View Article : Google Scholar | |
Choi G, Na H, Kuen DS, Kim BS and Chung Y: Autocrine TGF-β1 maintains the stability of Foxp3+ regulatory T cells via IL-12Rβ2 downregulation. Biomolecules. 10(819)2020.PubMed/NCBI View Article : Google Scholar | |
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E and Papadopoulou A: Promises and pitfalls of next-generation treg adoptive immunotherapy. Cancers (Basel). 15(5877)2023.PubMed/NCBI View Article : Google Scholar | |
Mao LL, Yuan H, Wang WW, Wang YJ, Yang MF, Sun BL, Zhang ZY and Yang XY: Adoptive regulatory T-cell therapy attenuates perihematomal inflammation in a mouse model of experimental intracerebral hemorrhage. Cell Mol Neurobiol. 37:919–929. 2017.PubMed/NCBI View Article : Google Scholar | |
Ehyaeeghodraty V, Molavi B, Nikbakht M, Malek Mohammadi A, Mohammadi S, Ehyaeeghodraty N, Fallahi B, Mousavi SA, Vaezi M and Sefidbakht S: Effects of mobilized peripheral blood stem cells on treatment of primary lower extremity lymphedema. J Vasc Surg Venous Lymphat Disord. 8:445–451. 2020.PubMed/NCBI View Article : Google Scholar | |
Białobrzeska M, Stępniewski J, Martyniak A, Szuba A and Dulak J: Generation of human induced pluripotent stem cell line from peripheral blood of patient with lymphedema-distichiasis syndrome. Stem Cell Res. 85(103693)2025.PubMed/NCBI View Article : Google Scholar | |
Ren Y, Kebede MA, Ogunleye AA, Emerson MA, Evenson KR, Carey LA, Hayes SC and Troester MA: Burden of lymphedema in long-term breast cancer survivors by race and age. Cancer. 128:4119–4128. 2022.PubMed/NCBI View Article : Google Scholar | |
Huang Y, Luo L, Xu Y, Li J, Wu Z, Zhao C, Wen J, Jiang P, Zhu H, Wang L, et al: UHRF1-mediated epigenetic reprogramming regulates glycolysis to promote progression of B-cell acute lymphoblastic leukemia. Cell Death Dis. 16(351)2025.PubMed/NCBI View Article : Google Scholar | |
Deng Y, Lin A, Lai C, He W, Li J, Zhang N, Huang S, Tong L, Lai Y, Huo Y and Xu J: Combined inhibition of importin-β and PBR enhances osteogenic differentiation of BMSCs by reducing nuclear accumulation of glucocorticoid receptor and promoting its mitochondrial translocation. J Steroid Biochem Mol Biol. 250(106731)2025.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Xu W, Liu G, Ma L and Li Z: Therapeutic efficacy of autologous bone marrow mesenchymal stem cell transplantation in patients with spinal cord injury: A meta-analysis. EFORT Open Rev. 10:309–315. 2025.PubMed/NCBI View Article : Google Scholar | |
Xiang Q, Xu F, Li Y, Liu X, Chen Q, Huang J, Yu N, Zeng Z, Yuan M, Zhang Q, et al: Transcriptome analysis and functional identification of adipose-derived mesenchymal stem cells in secondary lymphedema. Gland Surg. 9:558–574. 2020.PubMed/NCBI View Article : Google Scholar | |
Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M and Stojkovic M: Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 15:36–45. 2018.PubMed/NCBI View Article : Google Scholar | |
Yoon YS, Park JS, Tkebuchava T, Luedeman C and Losordo DW: Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation. 109:3154–3157. 2004.PubMed/NCBI View Article : Google Scholar | |
Lan T, Luo M and Wei X: Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 14(195)2021.PubMed/NCBI View Article : Google Scholar | |
Ljujic B, Milovanovic M, Volarevic V, Murray B, Bugarski D, Przyborski S, Arsenijevic N, Lukic ML and Stojkovic M: Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice. Sci Rep. 3(2298)2013.PubMed/NCBI View Article : Google Scholar | |
Marcella S, Braile M, Grimaldi AM, Soricelli A and Smaldone G: Exploring thymic stromal lymphopoietin in the breast cancer microenvironment: A preliminary study. Oncol Lett. 29(182)2025.PubMed/NCBI View Article : Google Scholar | |
Zang L, Li Y, Hao H, Liu J, Cheng Y, Li B, Yin Y, Zhang Q, Gao F, Wang H, et al: Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: A single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther. 13(180)2022.PubMed/NCBI View Article : Google Scholar | |
Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S and Rodeghiero F: Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: Present and future. Stem Cell Res Ther. 7(93)2016.PubMed/NCBI View Article : Google Scholar | |
Thongsit A, Oontawee S, Siriarchavatana P, Rodprasert W, Somparn P, Na Nan D, Osathanon T, Egusa H and Sawangmake C: Scalable production of anti-inflammatory exosomes from three-dimensional cultures of canine adipose-derived mesenchymal stem cells: Production, stability, bioactivity, and safety assessment. BMC Vet Res. 21(81)2025.PubMed/NCBI View Article : Google Scholar | |
Xie X, Song Q, Dai C, Cui S, Tang R, Li S, Chang J, Li P, Wang J, Li J, et al: Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer's disease: A phase I/II clinical trial. Gen Psychiatr. 36(e101143)2023.PubMed/NCBI View Article : Google Scholar | |
Chu M, Wang H, Bian L, Huang J, Wu D, Zhang R, Fei F, Chen Y and Xia J: Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia. Stem Cell Rev Rep. 18:2152–2163. 2022.PubMed/NCBI View Article : Google Scholar |