
Staphylococcal nuclease and tudor domain‑containing protein 1: An emerging therapeutic target in cancer (Review)
- Authors:
- Santosh Kumar Rai
- Mohd Imran Khan
- Rakesh Kumar
- Rakesh Ishwar Patil
- Sanjeev Dhawan
- Amit Panwar
- Anil Kumar
-
Affiliations: New Drug Discovery Research, Mankind Research Centre Unit‑1, Mankind Pharma Limited, Gurugram, Haryana 122051, India - Published online on: July 17, 2025 https://doi.org/10.3892/mco.2025.2881
- Article Number: 86
-
Copyright: © Rai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Atun R and Cavalli F: The global fight against cancer: Challenges and opportunities. Lancet. 391:412–413. 2018.PubMed/NCBI View Article : Google Scholar | |
Jariwala N, Rajasekaran D, Srivastava J, Gredler R, Akiel MA, Robertson CL, Emdad L, Fisher PB and Sarkar D: Role of the staphylococcal nuclease and tudor domain containing 1 in oncogenesis (Review). Int J Oncol. 46:465–473. 2015.PubMed/NCBI View Article : Google Scholar | |
Cui X, Zhang X, Liu M, Zhao C, Zhang N, Ren Y, Su C, Zhang W, Sun X, He J, et al: A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors. Genomics. 112:3958–3967. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Wang X, Cui X, Zhuo Y, Li H, Ha C, Xin L, Ren Y, Zhang W, Sun X, et al: Oncoprotein SND1 hijacks nascent MHC-I heavy chain to ER-associated degradation, leading to impaired CD8+ T cell response in tumor. Sci Adv. 6(eaba5412)2020.PubMed/NCBI View Article : Google Scholar | |
Dhiman G, Srivastava N, Goyal M, Rakha E, Lothion-Roy J, Mongan NP, Miftakhova RR, Khaiboullina SF, Rizvanov AA and Baranwalet M: Metadherin: A therapeutic target in multiple cancers. Front Oncol. 9(349)2019.PubMed/NCBI View Article : Google Scholar | |
Manna D and Sarkar D: Multifunctional role of astrocyte elevated gene-1 (AEG-1) in cancer: Focus on drug resistance. Cancers. 13(1792)2021.PubMed/NCBI View Article : Google Scholar | |
Guo F, Wan L, Zheng A, Stanevich V, Wei Y, Satyshur KA, Shen M, Lee W, Kang Y and Xing Y: Structural insights into the tumor-promoting function of the MTDH-SND1 complex. Cell Rep. 8:1704–1713. 2014.PubMed/NCBI View Article : Google Scholar | |
Davis E, Ermi AG and Sarkar D: Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH): A promising molecular marker and therapeutic target for hepatocellular carcinoma. Cancers (Basel). 17(1375)2025.PubMed/NCBI View Article : Google Scholar | |
Lehmusvaara S, Haikarainen T, Saarikettu J, Nieto GM and Silvennoinen O: Inhibition of RNA binding in snd1 increases the levels of mir-1-3p and sensitizes cancer cells to navitoclax. Cancers (Basel). 14(3100)2022.PubMed/NCBI View Article : Google Scholar | |
Chen H, Zhan M, Liu J, Liu Z, Shen M, Yang F, Kang Y, Yin F and Li Z: Structure-based design, optimization, and evaluation of potent stabilized peptide inhibitors disrupting MTDH and SND1 interaction. J Med Chem. 65:12188–12199. 2022.PubMed/NCBI View Article : Google Scholar | |
Shen M, Wei Y, Kim H, Wan L, Jiang YZ, Hang X, Raba M, Remiszewski S, Rowicki M, Wu CG, et al: Small-molecule inhibitors that disrupt the MTDH-SND1 complex suppress breast cancer progression and metastasis. Nat Cancer. 3:43–59. 2022.PubMed/NCBI View Article : Google Scholar | |
Shen M, Smith HA, Wei Y, Jiang YZ, Zhao S, Wang N, Rowicki M, Tang Y, Hang X, Wu S, et al: Pharmacological disruption of the MTDH-SND1 complex enhances tumor antigen presentation and synergizes with anti-PD-1 therapy in metastatic breast cancer. Nat Cancer. 3:60–74. 2022.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Guo X, Yan D, Dang X, Guo L, Jia T and Wang Q: Molecular dynamics simulation-driven focused virtual screening and experimental validation of inhibitors for MTDH-SND1 protein-protein interaction. J Chem Inf Model. 63:3614–3627. 2023.PubMed/NCBI View Article : Google Scholar | |
Almansour NM: Cheminformatics and biomolecular dynamics studies towards the discovery of anti-staphylococcal nuclease domain-containing 1 (SND1) inhibitors to treat metastatic breast cancer. Saudi Pharm J. 31(101751)2023.PubMed/NCBI View Article : Google Scholar | |
Li CL, Yang WZ, Chen YP and Yuan HS: Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucleic Acids Res. 36:3579–3589. 2008.PubMed/NCBI View Article : Google Scholar | |
Callebaut I and Mornon JP: The human EBNA-2 coactivator p100: Multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development. Biochem J. 321:125–132. 1997.PubMed/NCBI View Article : Google Scholar | |
Theobald DL, Mitton-Fry RM and Wuttke DS: Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct. 32:115–133. 2003.PubMed/NCBI View Article : Google Scholar | |
Ying M and Chen D: Tudor domain-containing proteins of Drosophila melanogaster. Dev Growth Differ. 54:32–43. 2012.PubMed/NCBI View Article : Google Scholar | |
Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB, Eisenman RN and Ness SA: Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol Cell. 2:417–425. 1998.PubMed/NCBI View Article : Google Scholar | |
Liang S, Zhu C, Suo C, Wei H, Yu Y, Gu X, Chen L, Yuan M, Shen S, Li S, et al: Mitochondrion-localized SND1 promotes mitophagy and liver cancer progression through PGAM5. Front Oncol. 12(857968)2022.PubMed/NCBI View Article : Google Scholar | |
Wright T, Wang Y and Bedford MT: The role of the PRMT5-SND1 axis in hepatocellular carcinoma. Epigenomes. 5(2)2021.PubMed/NCBI View Article : Google Scholar | |
Quintana AM, Liu F, O'Rourke JP and Ness SA: Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer. 11(30)2011.PubMed/NCBI View Article : Google Scholar | |
Zeng Q, Liu CH, Wu D, Jiang W, Zhang N and Tang H: LncRNA and circRNA in patients with non-alcoholic fatty liver disease: A systematic review. Biomolecules. 13(560)2023.PubMed/NCBI View Article : Google Scholar | |
Yankey A, Oh M, Lee BL, Desai TK and Somarowthu S: A novel partnership between lncTCF7 and SND1 regulates the expression of the TCF7 gene via recruitment of the SWI/SNF complex. Sci Rep. 14(19384)2024.PubMed/NCBI View Article : Google Scholar | |
Ochoa B, Chico Y and Martínez MJ: Insights into SND1 oncogene promoter regulation. Front Oncol. 1(606)2018.PubMed/NCBI View Article : Google Scholar | |
Hu YZ, Hu ZL, Liao TY, Li Y and Pan YL: LncRNA SND1-IT1 facilitates TGF-β1-induced epithelial-to-mesenchymal transition via miR-124/COL4A1 axis in gastric cancer. Cell Death Discov. 8(73)2022.PubMed/NCBI View Article : Google Scholar | |
Lin S and Gregory RI: MicroRNA biogenesis pathways in cancer. Nat Rev. 15:321–333. 2015.PubMed/NCBI View Article : Google Scholar | |
Ganesan H, Nandy SK, Banerjee A, Pathak S, Zhang H and Sun XF: RNA-interference-mediated miR-122-based gene regulation in colon cancer, a structural in silico analysis. Int J Mol Sci. 23(15257)2022.PubMed/NCBI View Article : Google Scholar | |
Ahmed EA, Rajendran P and Scherthan H: The microRNA-202 as a diagnostic biomarker and a potential tumor suppressor. Int J Mol Sci. 23(5870)2022.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Dong L, Wan F, Chen F, Liu D, Chen D and Long J: MiR-9-3p regulates the biological functions and drug resistance of gemcitabine-treated breast cancer cells and affects tumor growth through targeting MTDH. Cell Death Dis. 12(861)2021.PubMed/NCBI View Article : Google Scholar | |
Banerjee S, Kalyani-Yabalooru SR and Karunagaran D: Identification of mRNA and non-coding RNA hubs using network analysis in organ tropism regulated triple negative breast cancer metastasis. Comput Biol Med. 127(104076)2020.PubMed/NCBI View Article : Google Scholar | |
Levy DE and Lee CK: What does stat3 do? J Clin Investig. 109:1143–1148. 2002.PubMed/NCBI View Article : Google Scholar | |
Tsuchiya N, Ochiai M, Nakashima K, Ubagai T, Sugimura T and Nakagama H: SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res. 67:9568–9576. 2007.PubMed/NCBI View Article : Google Scholar | |
Bromberg J: Stat proteins and oncogenesis. J Clin Investig. 109:1139–1142. 2002.PubMed/NCBI View Article : Google Scholar | |
Kennell J and Cadigan KM: APC and beta-catenin degradation. Adv Exp Med Biol. 656:1–12. 2009.PubMed/NCBI View Article : Google Scholar | |
Chidambaranathan-Reghupaty S, Mendoza R, Fisher PB and Sarkar D: The multifaceted oncogene SND1 in cancer: Focus on hepatocellular carcinoma. Hepatoma Res. 4(32)2018.PubMed/NCBI View Article : Google Scholar | |
Gao X, Shi X, Fu X, Ge L, Zhang Y, Su C, Yang X, Silvennoinen O, Yao Z, He J, et al: Human tudor staphylococcal nuclease (Tudor-SN) protein modulates the kinetics of AGTR1-3' UTR granule formation. FEBS Lett. 588:2154–2161. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu J, Jiang Y, Zhang Q, Mao X, Wu T, Hao M, Zhang S, Meng Y, Wan X, Qiu L and Han J: KDM6A-SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance. Nucleic Acids Res. 52:7665–7686. 2024.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Gao M, Zhao W and Yu L: The chromatin architectural regulator SND1 mediates metastasis in triple-negative breast cancer by promoting CDH1 gene methylation. Breast Cancer Res. 25(129)2024.PubMed/NCBI View Article : Google Scholar | |
Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genetics. 19:81–92. 2018.PubMed/NCBI View Article : Google Scholar | |
Gao X, Yan F, Lin J, Gao L, Lu XL, Wei SC, Shen N, Pang JX, Ning QY, Komeno Y, et al: AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation. Leukemia. 29:1730–1740. 2015.PubMed/NCBI View Article : Google Scholar | |
Kim G, Kim JY, Lim SC, Lee KY, Kim O and Choi HS: SUV39H1/DNMT3A-dependent methylation of the RB1 promoter stimulates PIN1 expression and melanoma development. FASEB J. 32:5647–5660. 2018.PubMed/NCBI View Article : Google Scholar | |
Yu L, Xu J, Liu J, Zhang H, Sun C, Wang Q, Shi C, Zhou X, Hua D, Luo W, et al: The novel chromatin architectural regulator SND1 promotes glioma proliferation and invasion and predicts the prognosis of patients. Neuro Oncol. 21:742–754. 2019.PubMed/NCBI View Article : Google Scholar | |
Kim SK and Cho SW: The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front Pharmacol. 13(868695)2022.PubMed/NCBI View Article : Google Scholar | |
Garrido F, Aptsiauri N, Doorduijn EM, Lora AM and van Hall T: The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 39:44–51. 2016.PubMed/NCBI View Article : Google Scholar | |
Seliger B, Cabrera T, Garrido F and Ferrone S: HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol. 12:3–13. 2002.PubMed/NCBI View Article : Google Scholar | |
Gabathuler R, Reid G, Kolaitis G, Driscoll J and Jefferies WA: Comparison of cell lines deficient in antigen presentation reveals a functional role for TAP-1 alone in antigen processing. J Exp Med. 180:1415–1425. 1994.PubMed/NCBI View Article : Google Scholar | |
Qin Z, Harders C, Cao X, Huber C, Blankenstein T and Seliger B: Increased tumorigenicity, but unchanged immunogenicity of transporter for antigen presentation 1-deficient tumors. Cancer Res. 62:2856–2860. 2002.PubMed/NCBI | |
Blum JS, Wearsch PA and Cresswell P: Pathways of antigen processing. Annu Rev Immunol. 31:443–473. 2013.PubMed/NCBI View Article : Google Scholar | |
Leonhardt RM, Keusekotten K, Bekpen C and Knittler MR: Critical role for the tapasin-docking site of TAP2 in the functional integrity of the MHC class I-peptide-loading complex. J Immunol. 175:5104–5114. 2005.PubMed/NCBI View Article : Google Scholar | |
Panter MS, Jain A, Leonhardt RM, Ha T and Cresswell P: Dynamics of major histocompatibility complex class I association with the human peptide-loading complex. J Biol Chem. 287:31172–31184. 2012.PubMed/NCBI View Article : Google Scholar | |
Sadasivan B, Lehner PJ, Ortmann B, Spies T and Cresswell P: Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 5:103–114. 1996.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Cui X, Li P, Zhao Y, Ren Y, Zhang H, Zhang S, Li C, Wang X, Shi L, et al: EGC enhances tumor antigen presentation and CD8+ T cell-mediated antitumor immunity via targeting oncoprotein SND1. Cancer Lett. 592(216934)2024.PubMed/NCBI View Article : Google Scholar | |
Diao C, Guo P, Yang W, Sun Y, Liao Y, Yan Y, Zhao A, Cai X, Hao J, Hu S, et al: SPT6 recruits SND1 to co-activate human telomerase reverse transcriptase to promote colon cancer progression. Mol Oncol. 15:1180–1202. 2021.PubMed/NCBI View Article : Google Scholar | |
Rajasekaran D, Jariwala N, Mendoza RG, Robertson CL, Akiel MA, Dozmorov M, Fisher PB and Sarkar D: Staphylococcal nuclease and tudor domain containing 1 (SND1 Protein) promotes hepatocarcinogenesis by inhibiting monoglyceride lipase (MGLL). J Biol Chem. 291:10736–10746. 2016.PubMed/NCBI View Article : Google Scholar | |
Santhekadur PK, Akiel M, Emdad L, Gredler R, Srivastava J, Rajasekaran D, Robertson CL, Mukhopadhyay ND, Fisher PB and Sarkar D: Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling. FEBS Open Bio. 4:353–361. 2014.PubMed/NCBI View Article : Google Scholar | |
Santhekadur PK, Das SK, Gredler R, Chen D, Srivastava J, Robertson C, Baldwin AS, Fisher PB and Sarkar D: Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor κB and miR-221. J Biol Chem. 287:13952–13958. 2012.PubMed/NCBI View Article : Google Scholar | |
Liao SY, Rudoy D, Frank SB, Phan LT, Klezovitch O, Kwan J, Coleman I, Haffner MC, Li D, Nelson PS, et al: SND1 binds to ERG and promotes tumor growth in genetic mouse models of prostate cancer. Nat Commun. 14(7435)2023.PubMed/NCBI View Article : Google Scholar | |
Zheng HC: The molecular mechanisms of chemoresistance in cancers. Oncotarget. 8:59950–59964. 2017.PubMed/NCBI View Article : Google Scholar | |
Brasseur K, Gévry N and Asselin E: Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget. 8:4008–4042. 2017.PubMed/NCBI View Article : Google Scholar | |
Lu C and Shervington A: Chemoresistance in gliomas. Mol Cell Biochem. 312:71–80. 2008.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Ren P, Yang Z, Wang L and Hu C: Inhibition of SND1 overcomes chemoresistance in bladder cancer cells by promoting ferroptosis. Oncol Rep. 49(16)2023.PubMed/NCBI View Article : Google Scholar | |
Jariwala N, Rajasekaran D, Mendoza RG, Shen XN, Siddiq A, Akiel MA, Robertson CL, Subler MA, Windle JJ, Fisher PB, et al: Oncogenic role of SND1 in development and progression of hepatocellular carcinoma. Cancer Res. 77:3306–3316. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Wang Y, Fang Y, Jiang H, Yu L, Hu H and Zeng S: SND1 regulates organic anion transporter 2 protein expression and sensitivity of hepatocellular carcinoma cells to 5-fluorouracil. Drug Metab Dispos. 52:997–1008. 2024.PubMed/NCBI View Article : Google Scholar | |
Fu X, Duan Z, Lu X, Zhu Y, Ren Y, Zhang W, Sun X, Ge L and Yang J: SND1 promotes radioresistance in cervical cancer cells by targeting the DNA damage response. Cancer Biother Radiopharm. 39:425–434. 2024.PubMed/NCBI View Article : Google Scholar | |
Carruthers R, Ahmed SU, Strathdee K, Gomez-Roman N, Amoah-Buahin E, Watts C and Chalmers A: Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol Oncol. 9:192–203. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, Yuan J, Wang M, Chen D, Sun Y, et al: ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 16:864–875. 2024.PubMed/NCBI View Article : Google Scholar | |
Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A and Pichierri P: ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J. 29:3156–3169. 2010.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Dhani S, Gogvadze V and Zhivotovsky B: The crosstalk between SND1 and PDCD4 is associated with chemoresistance of non-small cell lung carcinoma cells. Cell Death Discov. 11(34)2025.PubMed/NCBI View Article : Google Scholar | |
Yin L, Duan JJ, Bian XW and Yu SC: Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 22(61)2020.PubMed/NCBI View Article : Google Scholar | |
Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, Díez M, Viladot M, Arance A and Muñoz M: Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 24 (Suppl 2):S26–S35. 2015.PubMed/NCBI View Article : Google Scholar | |
Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, Schwartz GF, Park PK, Rosenberg AL, Brill K and Mitchell EP: Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: A single-institution compilation compared with the National Cancer Institute's Surveillance, epidemiology, and end results database. Cancer. 110:876–884. 2007.PubMed/NCBI View Article : Google Scholar | |
Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod S: Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 13:4429–4434. 2007.PubMed/NCBI View Article : Google Scholar | |
Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A and Winer EP: Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: High incidence of central nervous system metastases. Cancer. 113:2638–2645. 2008.PubMed/NCBI View Article : Google Scholar | |
Gu X, Xue J, Ai L, Sun L, Zhu X, Wang Y and Liu C: SND1 expression in breast cancer tumors is associated with poor prognosis. Ann N Y Acad Sci. 1433:53–60. 2018.PubMed/NCBI View Article : Google Scholar | |
Cappellari M, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Saarikettu J, Silvennoinen O and Sette C: The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene. 33:3794–3802. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang N, Du X, Zang L, Song N, Yang T, Dong R, Wu T, He X and Lu J: Prognostic impact of Metadherin-SND1 interaction in colon cancer. Mol Biol Rep. 39:10497–10504. 2012.PubMed/NCBI View Article : Google Scholar | |
Hossain MJ, Korde R, Singh S, Mohmmed A, Dasaradhi PV, Chauhan VS and Malhotra P: Tudor domain proteins in protozoan parasites and characterization of Plasmodium falciparum tudor staphylococcal nuclease. Int J Parasitol. 38:513–526. 2008.PubMed/NCBI View Article : Google Scholar | |
Yoo BK, Santhekadur PK, Gredler R, Chen D, Emdad L, Bhutia S, Pannell L, Fisher PB and Sarkar D: Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatol. 53:1538–1548. 2011.PubMed/NCBI View Article : Google Scholar | |
Blanco MA, Alečković M, Hua Y, Li T, Wei Y, Xu Z, Cristea IM and Kang Y: Identification of staphylococcal nuclease domain-containing 1 (SND1) as a Metadherin-interacting protein with metastasis-promoting functions. J Biol Chem. 286:19982–19992. 2011.PubMed/NCBI View Article : Google Scholar | |
Pang P, Liu S, Hao X, Tian Y, Gong S, Miao D and Zhang Y: Exploring binding modes of the selected inhibitors to SND1 by all-atom molecular dynamics simulations. J Biomol Struct Dyn. 42:5536–5550. 2024.PubMed/NCBI View Article : Google Scholar | |
Shen H, Ding J, Ji J, Hu L, Min W, Hou Y, Wang D, Chen Y, Wang L, Zhu Y, et al: Discovery of novel small-molecule inhibitors disrupting the MTDH-SND1 protein-protein interaction. J Med Chem. 68:1844–1862. 2025.PubMed/NCBI View Article : Google Scholar | |
Li P, He Y, Chen T, Choy KY, Chow TS, Wong ILK, Yang X, Sun W, Su X, Chan TH and Chow LMC: Disruption of SND1-MTDH interaction by a high affinity peptide results in SND1 degradation and cytotoxicity to breast cancer cells in vitro and in vivo. Mol Cancer Ther. 20:76–84. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen H, Zhan M, Zhang Y, Liu J, Wang R, An Y, Gao Z, Jiang L, Xing Y, Kang Y, et al: Intracellular delivery of stabilized peptide blocking MTDH-SND1 interaction for breast cancer suppression. JACS Au. 4:139–149. 2023.PubMed/NCBI View Article : Google Scholar | |
Navarro-Imaz H, Ochoa B, García-Arcos I, Martínez MJ, Chico Y, Fresnedo O and Rueda Y: Molecular and cellular insights into the role of SND1 in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 1865(158589)2020.PubMed/NCBI View Article : Google Scholar | |
Shen H, Ding J, Ji J, Jiang B, Wang X and Yang P: Overcoming MTDH and MTDH-SND1 complex: Driver and potential therapeutic target of cancer. Cancer Insight. 3:55–82. 2023. | |
Duo L, Liu Y, Ren J, Tang B and Hirst JD: Artificial intelligence for small molecule anticancer drug discovery. Expert Opin Drug Discov. 19:933–948. 2024.PubMed/NCBI View Article : Google Scholar | |
Adon T, Shanmugarajan D, Ather H, Ansari SMA, Hani U, Madhunapantula SV and Honnavalli YK: Virtual screening for identification of dual inhibitors against CDK4/6 and aromatase enzyme. Molecules. 28(2490)2023.PubMed/NCBI View Article : Google Scholar | |
Zhu J, Li K, Xu L, Cai Y, Chen Y, Zhao X, Li H, Huang G and Jin J: Discovery of novel selective PI3Kγ inhibitors through combining machine learning-based virtual screening with multiple protein structures and bio-evaluation. J Adv Res. 36:1–13. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang Y and Zhang P: Prediction of histone deacetylase inhibition by triazole compounds based on artificial intelligence. Front Pharmacol. 14(1260349)2023.PubMed/NCBI View Article : Google Scholar | |
Nayarisseri A, Abdalla M, Joshi I, Yadav M, Bhrdwaj A, Chopra I, Khan A, Saxena A, Sharma K, Panicker A, et al: Potential inhibitors of VEGFR1, VEGFR2, and VEGFR3 developed through deep learning for the treatment of cervical cancer. Sci Rep. 14(13251)2024.PubMed/NCBI View Article : Google Scholar | |
Di Stefano M, Galati S, Ortore G, Caligiuri I, Rizzolio F, Ceni C, Bertini S, Bononi G, Granchi C, Macchia M, et al: Machine learning-based virtual screening for the identification of Cdk5 inhibitors. Int J Mol Sci. 23(10653)2022.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y and Xie Y: An overview of PROTACs: A promising drug discovery paradigm. Mol Biomed. 3(46)2022.PubMed/NCBI View Article : Google Scholar | |
Han X and Sun Y: Strategies for the discovery of oral PROTAC degraders aimed at cancer therapy. Cell Rep Phys Sci. 3(101062)2022. |