1
|
Singh D, Vignat J, Lorenzoni V, Eslahi M,
Ginsburg O, Lauby-Secretan B, Arbyn M, Basu P, Bray F and
Vaccarella S: Global estimates of incidence and mortality of
cervical cancer in 2020: A baseline analysis of the WHO global
cervical cancer elimination initiative. Lancet Glob Health.
11:e197–e206. 2023.PubMed/NCBI View Article : Google Scholar
|
2
|
Lyman GH, et al: Axillary node dissection
in breast cancer: Review of the literature and clinical guidelines.
J Clin Oncol. 23:6313–6320. 2005.
|
3
|
Devane LA, Baban CK, O'Doherty A, Quinn C,
McDermott EW and Prichard RS: The impact of neoadjuvant
chemotherapy on margin re-excision in breast-conserving surgery.
World J Surg. 44:1547–1551. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Cortazar P, Zhang L, Untch M, Mehta K,
Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L,
Valagussa P, et al: Pathological complete response and long-term
clinical benefit in breast cancer: The CTNeoBC pooled analysis.
Lancet. 384:164–172. 2014.PubMed/NCBI View Article : Google Scholar
|
5
|
Min SK, Lee SK, Woo J, Jung SM, Ryu JM, Yu
J, Lee JE, Kim SW, Chae BJ and Nam SJ: Relation between tumor size
and lymph node metastasis according to subtypes of breast cancer. J
Breast Cancer. 24:75–84. 2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Lin G, Chen W, Fan Y, Zhou Y, Li X, Hu X,
Cheng X, Chen M, Kong C, Chen M, et al: Machine learning
radiomics-based prediction of non-sentinel lymph node metastasis in
Chinese breast cancer patients with 1-2 positive sentinel lymph
nodes: A multicenter study. Acad Radiol. 31:3081–3095.
2024.PubMed/NCBI View Article : Google Scholar
|
7
|
Houssami N, Macaskill P, von Minckwitz G,
Marinovich ML and Mamounas E: Meta-analysis of the association of
breast cancer subtype and pathologic complete response to
neoadjuvant chemotherapy. Eur J Cancer. 48:3342–3354.
2012.PubMed/NCBI View Article : Google Scholar
|
8
|
Yang YF, Liao YY, Li LQ, Xie SR, Xie YF
and Peng NF: Changes in ER, PR and HER2 receptors status after
neoadjuvant chemotherapy in breast cancer. Pathol Res Pract.
209:797–802. 2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Vila J, Mittendorf EA, Farante G, Bassett
RL, Veronesi P, Galimberti V, Peradze N, Stauder MC,
Chavez-MacGregor M, Litton JF, et al: Nomograms for predicting
axillary response to neoadjuvant chemotherapy in clinically
node-positive patients with breast cancer. Ann Surg Oncol.
23:3501–3509. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Kim TH, Kang DK, Kim JY, Han S and Jung Y:
Histologic grade and decrease in tumor dimensions affect axillary
lymph node status after neoadjuvant chemotherapy in breast cancer
patients. J Breast Cancer. 18:394–399. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Rivadeneira DE, Simmons RM, Christos PJ,
Hanna K, Daly JM and Osborne MP: Predictive factors associated with
axillary lymph node metastases in T1a and T1b breast carcinomas. J
Am Coll Surg. 191:1–6. 2000.PubMed/NCBI View Article : Google Scholar
|
12
|
Tawfik K, Kimler BF, Davis MK, Fan F and
Tawfik O: Ki-67 expression in axillary lymph node metastases in
breast cancer is prognostically significant. Hum Pathol. 44:39–46.
2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Li FY, Wu SG, Zhou J, Sun JY, Lin Q, Lin
HX, Guan XX and He ZY: Prognostic value of Ki-67 in breast cancer
patients with positive axillary lymph nodes: a retrospective cohort
study. PLoS One. 9(e87264)2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang SR, Cao CL, Du TT, Wang JL, Li J, Li
WX and Chen M: Machine learning model for predicting axillary lymph
node metastasis in clinically node positive breast cancer based on
peritumoral ultrasound radiomics and SHAP feature analysis. J
Ultrasound Med. 43:1611–1625. 2024.PubMed/NCBI View Article : Google Scholar
|
15
|
Zheng X, Yao Z, Huang Y, Yu Y, Wang Y, Liu
Y, Mao R, Li F, Xiao Y, Wang Y, et al: Deep learning radiomics can
predict axillary lymph node status in early-stage breast cancer.
Nat Commun. 11(1236)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Steyerberg EW: Clinical prediction models:
A practical approach to development, validation, and updating, 2nd
edition. New York: Springer, 2019.
|
17
|
Wang W, Wang X, Liu J, Zhu Q, Wang X and
Wang P: Nomogram for predicting axillary lymph node pathological
response in node-positive breast cancer patients after neoadjuvant
chemotherapy. Chin Med J (Engl). 135:333–340. 2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Kim R, Chang JM, Lee HB, Lee SH, Kim SY,
Kim ES, Cho N and Moon WK: Predicting axillary response to
neoadjuvant chemotherapy: Breast MRI and US in patients with
node-positive breast cancer. Radiology. 293:49–57. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Chen M, Kong C, Lin G, Chen W, Guo X, Chen
Y, Cheng X, Chen M, Shi C, Xu M, et al: Development and validation
of convolutional neural network-based model to predict the risk of
sentinel or non-sentinel lymph node metastasis in patients with
breast cancer: A machine learning study. EClinicalMedicine.
63(102176)2023.PubMed/NCBI View Article : Google Scholar
|
20
|
Fang Y, Zhang Q, Wu Y and Wu J:
HER2-positive is an independent indicator for predicting
pathological complete response to neoadjuvant therapy and
Ki67-changed after neoadjuvant chemotherapy predicts favorable
prognosis in Chinese women with locally advanced breast cancer.
Medicine (Baltimore). 103(e37170)2024.PubMed/NCBI View Article : Google Scholar
|
21
|
Rais G, Mokfi R, Boutaggount F, Maskrout
M, Bennour S, Senoussi C and Rais F: Assessment of the predictive
role of Ki-67 in breast cancer patients' responses to neoadjuvant
chemotherapy. Eur J Breast Health. 20:199–206. 2024.PubMed/NCBI View Article : Google Scholar
|
22
|
Fasching PA, Heusinger K, Haeberle L,
Niklos M, Hein A, Bayer CM, Rauh C, Schulz-Wendtland R, Bani MR,
Schrauder M, et al: Ki67, chemotherapy response, and prognosis in
breast cancer patients receiving neoadjuvant treatment. BMC Cancer.
11(486)2011.PubMed/NCBI View Article : Google Scholar
|
23
|
Yoshioka T, Hosoda M, Yamamoto M, Taguchi
K, Hatanaka KC, Takakuwa E, Hatanaka Y, Matsuno Y and Yamashita H:
Prognostic significance of pathologic complete response and Ki67
expression after neoadjuvant chemotherapy in breast cancer. Breast
Cancer. 22:185–191. 2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Spring LM, Fell G, Arfe A, Sharma C,
Greenup R, Reynolds KL, Smith BL, Alexander B, Moy B, Isakoff SJ,
et al: Pathologic complete response after neoadjuvant chemotherapy
and impact on breast cancer recurrence and survival: A
comprehensive meta-analysis. Clin Cancer Res. 26:2838–2848.
2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Wei W, Ma Q, Feng H, Wei T, Jiang F, Fan
L, Zhang W, Xu J and Zhang X: Deep learning radiomics for
prediction of axillary lymph node metastasis in patients with
clinical stage T1-2 breast cancer. Quant Imaging Med Surg.
13:4995–5011. 2023.PubMed/NCBI View Article : Google Scholar
|
26
|
Shi W, Su Y, Zhang R, Xia W, Lian Z, Mao
N, Wang Y, Zhang A, Gao X and Zhang Y: Prediction of axillary lymph
node metastasis using a magnetic resonance imaging radiomics model
of invasive breast cancer primary tumor. Cancer Imaging.
24(122)2024.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhang D, Zhou W, Lu WW, Qin XC, Zhang XY,
Luo YH, Wu J, Wang JL, Zhao JJ and Zhang CX: Ultrasound-based deep
learning radiomics for enhanced axillary lymph node metastasis
assessment: a multicenter study. Oncologist.
30(oyaf090)2025.PubMed/NCBI View Article : Google Scholar : https://pubmed.ncbi.nlm.nih.gov/40349137/.
|