1
|
Woolf AD and Pfleger B: Burden of major
musculoskeletal conditions. Bull World Health Organ. 81:646–656.
2003.PubMed/NCBI
|
2
|
Hiligsmann M, Cooper C, Arden N, Boers M,
Branco JC, Luisa Brandi M, Bruyère O, Guillemin F, Hochberg MC,
Hunter DJ, et al: Health economics in the field of osteoarthritis:
An expert's consensus paper from the European Society for Clinical
and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO).
Semin Arthritis Rheum. 43:303–313. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ma J, Matkar S, He X and Hua X: FOXO
family in regulating cancer and metabolism. Semin Cancer Biol.
50:32–41. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Akasaki Y, Hasegawa A, Saito M, Asahara H,
Iwamoto Y and Lotz MK: Dysregulated FOXO transcription factors in
articular cartilage in aging and osteoarthritis. Osteoarthritis
Cartilage. 22:162–170. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Matsuzaki T, Alvarez-Garcia O, Mokuda S,
Nagira K, Olmer M, Gamini R, Miyata K, Akasaki Y, Su AI, Asahara H
and Lotz MK: FoxO transcription factors modulate autophagy and
proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci
Transl Med. 10:eaan07462018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mortuza R, Chen S, Feng B, Sen S and
Chakrabarti S: High glucose induced alteration of SIRTs in
endothelial cells causes rapid aging in a p300 and FOXO regulated
pathway. PLoS One. 8:e545142013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liang C, Xing H, Wang C, Xu X, Hao Y and
Qiu B: Resveratrol improves the progression of osteoarthritis by
regulating the SIRT1-FoxO1 pathway-mediated cholesterol metabolism.
Mediators Inflamm. 2023:29362362023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu H, Wang J, Yue G and Xu J:
Placenta-derived mesenchymal stem cells protect against diabetic
kidney disease by upregulating autophagy-mediated SIRT1/FOXO1
pathway. Ren Fail. 46:23033962024. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ren CZ, Wu ZT, Wang W, Tan X, Yang YH,
Wang YK, Li ML and Wang WZ: SIRT1 exerts anti-hypertensive effect
via FOXO1 activation in the rostral ventrolateral medulla. Free
Radic Biol Med. 188:1–13. 2022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang S, Lu Y, Shi W, Ren Y, Xiao K, Chen
W, Li L and Zhao J: SIRT1/FOXO1 axis-mediated hippocampal
angiogenesis is involved in the antidepressant effect of chaihu
shugan san. Drug Des Devel Ther. 16:2783–2801. 2022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ju J, Li XM, Zhao XM, Li FH, Wang SC, Wang
K, Li RF, Zhou LY, Liang L, Wang Y, et al: Circular RNA FEACR
inhibits ferroptosis and alleviates myocardial ischemia/reperfusion
injury by interacting with NAMPT. J Biomed Sci. 30:452023.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou M, Liu YW, He YH, Zhang JY, Guo H,
Wang H, Ren JK, Su YX, Yang T, Li JB, et al: FOXO1 reshapes
neutrophils to aggravate acute brain damage and promote late
depression after traumatic brain injury. Mil Med Res.
11:202024.PubMed/NCBI
|
13
|
Magani SKJ, Mupparthi SD, Gollapalli BP,
Shukla D, Tiwari AK, Gorantala J, Yarla NS and Tantravahi S:
Salidroside-Can it be a multifunctional drug? Curr Drug Metab.
21:512–524. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen
Y, Tang Q, Zheng G, Zhang Z, Wu Y, et al: Salidroside attenuates
neuroinflammation and improves functional recovery after spinal
cord injury through microglia polarization regulation. J Cell Mol
Med. 22:1148–1166. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu X, Zhou M, Dai Z, Luo S, Shi Y, He Z
and Chen Y: Salidroside alleviates ulcerative colitis via
inhibiting macrophage pyroptosis and repairing the
dysbacteriosis-associated Th17/Treg imbalance. Phytother Res.
37:367–382. 2023. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Chen H, Zhu J, Le Y, Pan J, Liu Y, Liu Z,
Wang C, Dou X and Lu D: Salidroside inhibits doxorubicin-induced
cardiomyopathy by modulating a ferroptosis-dependent pathway.
Phytomedicine. 99:1539642022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pu WL, Zhang MY, Bai RY, Sun LK, Li WH, Yu
YL, Zhang Y, Song L, Wang ZX, Peng YF, et al: Anti-inflammatory
effects of Rhodiola rosea L: A review. Biomed Pharmacother.
121:1095522020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gao H, Peng L, Li C, Ji Q and Li P:
Salidroside alleviates cartilage degeneration through NF-κB pathway
in osteoarthritis rats. Drug Des Devel Ther. 14:1445–1454. 2020.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Sa L, Wei X, Huang Q, Cai Y, Lu D, Mei R
and Hu X: Contribution of salidroside to the relieve of symptom and
sign in the early acute stage of osteoarthritis in rat model. J
Ethnopharmacol. 259:1128832020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen L, Zhang YH, Wang S, Zhang Y, Huang T
and Cai YD: Prediction and analysis of essential genes using the
enrichments of gene ontology and KEGG pathways. PLoS One.
12:e01841292017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen L, Chu C, Lu J, Kong X, Huang T and
Cai YD: Gene ontology and KEGG pathway enrichment analysis of a
drug target-based classification system. PLoS One. 10:e01264922015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gosset M, Berenbaum F, Thirion S and
Jacques C: Primary culture and phenotyping of murine chondrocytes.
Nat Protoc. 3:1253–1260. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang G, Huang C, Wang R, Guo J, Qin Y and
Lv S: Chondroprotective effects of Apolipoprotein D in knee
osteoarthritis mice through the PI3K/AKT/mTOR signaling pathway.
Int Immunopharmacol. 133:1120052024. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu B, Lu Y, Wang Y, Ge L, Zhai N and Han
J: A protocol for isolation and identification and comparative
characterization of primary osteoblasts from mouse and rat
calvaria. Cell Tissue Bank. 20:173–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang F, Xiao J, Li M, He Q, Wang X, Pan Z,
Li S, Wang H and Zhou C: Picroside II suppresses chondrocyte
pyroptosis through MAPK/NF-κB/NLRP3 signaling pathway alleviates
osteoarthritis. PLoS One. 19:e03087312024. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee HI, Jang SY, Kang HT and Hwang ES:
p53-, SIRT1-, and PARP-1-independent downregulation of p21WAF1
expression in nicotinamide-treated cells. Biochem Biophys Res
Commun. 368:298–304. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Minnig MCC, Golightly YM and Nelson AE:
Epidemiology of osteoarthritis: Literature update 2022–2023. Curr
Opin Rheumatol. 36:108–112. 2024. View Article : Google Scholar : PubMed/NCBI
|
28
|
Berenbaum F, Wallace IJ, Lieberman DE and
Felson DT: Modern-day environmental factors in the pathogenesis of
osteoarthritis. Nat Rev Rheumatol. 14:674–681. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen W, Xiao J, Zhou Y, Liu W, Jian J,
Yang J, Chen B, Ye Z, Liu J, Xu X, et al: Curcumenol regulates
Histone H3K27me3 demethylases KDM6B affecting Succinic acid
metabolism to alleviate cartilage degeneration in knee
osteoarthritis. Phytomedicine. 133:1559222024. View Article : Google Scholar : PubMed/NCBI
|
30
|
Johnson CI, Argyle DJ and Clements DN: In
vitro models for the study of osteoarthritis. Vet J. 209:40–49.
2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li M, Xiao J, Chen B, Pan Z, Wang F, Chen
W, He Q, Li J, Li S, Wang T, et al: Loganin inhibits the
ROS-NLRP3-IL-1β axis by activating the NRF2/HO-1 pathway against
osteoarthritis. Chin J Nat Med. 22:977–990. 2024.PubMed/NCBI
|
32
|
Xiao J, Zhang G, Mai J, He Q, Chen W, Li
J, Ma Y, Pan Z, Yang J, Li S, et al: Bioinformatics analysis
combined with experimental validation to explore the mechanism of
XianLing GuBao capsule against osteoarthritis. J Ethnopharmacol.
294:1152922022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li
Y and Peng Z: ROS-induced lipid peroxidation modulates cell death
outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis.
Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dixon SJ and Olzmann JA: The cell biology
of ferroptosis. Nat Rev Mol Cell Biol. 25:424–442. 2024. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen X, Han D, Liu T, Huang C, Hu Z, Tan X
and Wu S: Asiatic acid improves high-fat-diet-induced osteoporosis
in mice via regulating SIRT1/FOXO1 signaling and inhibiting
oxidative stress. Histol Histopathol. 37:769–777. 2022.PubMed/NCBI
|
37
|
Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang
X, Cui XG, Zhao XR, Zhao H, Hao MF, Li MD, et al: Curcumin
alleviates oxidative stress and inhibits apoptosis in diabetic
cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J
Cell Mol Med. 24:12355–12367. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Song H, Ding Z, Chen J, Chen T, Wang T and
Huang J: The AMPK-SIRT1-FoxO1-NF-κB signaling pathway participates
in hesperetin-mediated neuroprotective effects against traumatic
brain injury via the NLRP3 inflammasome. Immunopharmacol
Immunotoxicol. 44:970–983. 2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Song S, Chu L, Liang H, Chen J, Liang J,
Huang Z, Zhang B and Chen X: Protective effects of dioscin against
doxorubicin-induced hepatotoxicity via regulation of
Sirt1/FOXO1/NF-κb signal. Front Pharmacol. 10:10302019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tan Y, Bie YL, Chen L, Zhao YH, Song L,
Miao LN, Yu YQ, Chai H, Ma XJ and Shi DZ: Lingbao huxin pill
alleviates apoptosis and inflammation at infarct border zone
through SIRT1-Mediated FOXO1 and NF-κ B pathways in rat model of
acute myocardial infarction. Chin J Integr Med. 28:330–338. 2022.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Almeida M and Porter RM: Sirtuins and
FoxOs in osteoporosis and osteoarthritis. Bone. 121:284–292. 2019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu J, He X, Zhen P, Chen H, Zhou S, Tian
Q, Wang R and Li X: Sirtuin type 1 signaling pathway mediates the
effect of diosgenin on chondrocyte metabolisms in osteoarthritis.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 42:121–127. 2017.(In Chinese).
PubMed/NCBI
|
43
|
Liu S, Yang H, Hu B and Zhang M: Sirt1
regulates apoptosis and extracellular matrix degradation in
resveratrol-treated osteoarthritis chondrocytes via the
Wnt/β-catenin signaling pathways. Exp Ther Med. 14:5057–5062.
2017.PubMed/NCBI
|
44
|
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y,
Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of
ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang S, Li W, Zhang P, Wang Z, Ma X, Liu
C, Vasilev K, Zhang L, Zhou X, Liu L, et al: Mechanical overloading
induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis
via Piezo1 channel facilitated calcium influx. J Adv Res. 41:63–75.
2022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Han J, Zhan LN, Huang Y, Guo S, Zhou X,
Kapilevich L, Wang Z, Ning K, Sun M and Zhang XA: Moderate
mechanical stress suppresses chondrocyte ferroptosis in
osteoarthritis by regulating NF-κB p65/GPX4 signaling pathway. Sci
Rep. 14:50782024. View Article : Google Scholar : PubMed/NCBI
|
47
|
Burton LH, Radakovich LB, Marolf AJ and
Santangelo KS: Systemic iron overload exacerbates osteoarthritis in
the strain 13 guinea pig. Osteoarthritis Cartilage. 28:1265–1275.
2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Jing X, Lin J, Du T, Jiang Z, Li T, Wang
G, Liu X, Cui X and Sun K: Iron overload is associated with
accelerated progression of osteoarthritis: The role of DMT1
mediated iron homeostasis. Front Cell Dev Biol. 8:5945092021.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Simão M, Gavaia PJ, Camacho A, Porto G,
Pinto IJ, Ea HK and Cancela ML: Intracellular iron uptake is
favored in Hfe-KO mouse primary chondrocytes mimicking an
osteoarthritis-related phenotype. Biofactors. 45:583–597. 2019.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Fang Y, Chen X, Tan Q, Zhou H, Xu J and Gu
Q: Inhibiting ferroptosis through disrupting the NCOA4-FTH1
interaction: A new mechanism of action. ACS Cent Sci. 7:980–989.
2021. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kong N, Chen X, Feng J, Duan T, Liu S, Sun
X, Chen P, Pan T, Yan L, Jin T, et al: Baicalin induces ferroptosis
in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B.
11:4045–4054. 2021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X,
Li X, Zhao C, Kuang W, Chen D and Zhu M: FTH1 inhibits ferroptosis
through ferritinophagy in the 6-OHDA Model of Parkinson's disease.
Neurotherapeutics. 17:1796–1812. 2020. View Article : Google Scholar : PubMed/NCBI
|