
Efficacy of exosomes in acute kidney injury treatment and the associated mechanism (Review)
- Authors:
- Zehao Zhang
- Lecheng She
- Ming Bai
-
Affiliations: Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China - Published online on: March 26, 2025 https://doi.org/10.3892/mmr.2025.13503
- Article Number: 137
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Scholz H, Boivin FJ, Schmidt-Ott KM, Bachmann S, Eckardt KU, Scholl UI and Persson PB: Kidney physiology and susceptibility to acute kidney injury: Implications for renoprotection. Nat Rev Nephrol. 17:335–349. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pan T, Jia P, Chen N, Fang Y, Liang Y, Guo M and Ding X: Delayed Remote ischemic preconditioning confersrenoprotection against septic acute kidney injury via exosomal miR-21. Theranostics. 9:405–423. 2019. View Article : Google Scholar : PubMed/NCBI | |
He Y, Li X and Huang B, Yang Y, Luo N, Song W and Huang B: Exosomal circvma21 derived from Adipose-derived stem cells alleviates Sepsis-induced acute kidney injury by targeting Mir-16-5p. Shock. 60:419–426. 2023.PubMed/NCBI | |
Jorgensen SCJ, Murray KP, Lagnf AM, Melvin S, Bhatia S, Shamim MD, Smith JR, Brade KD, Simon SP, Nagel J, et al: A multicenter evaluation of Vancomycin-associated acute kidney injury in hospitalized patients with acute bacterial skin and skin structure infections. Infect Dis Ther. 9:89–106. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fathy N, Farouk S, Sayed RH and Fahim AT: Ezetimibe ameliorates cisplatin-induced nephrotoxicity: A novel therapeutic approach via modulating AMPK/Nrf2/TXNIP signaling. FASEB J. 38:e233822024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hu C, Zhai P, Zhang J, Jiang J, Suo J, Hu B, Wang J, Weng X, Zhou X, et al: Fibroblastic reticular cell-derived exosomes are a promising therapeutic approach for septic acute kidney injury. Kidney Int. 105:508–523. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang TY, Chien MS and Su WT: Therapeutic potential of pretreatment with exosomes derived from stem cells from the apical papilla against Cisplatin-induced acute kidney injury. Int J Mol Sci. 23:57212022. View Article : Google Scholar : PubMed/NCBI | |
Guo G, Wang Y, Kou W and Gan H: Identifying the molecular mechanisms of sepsis-associated acute kidney injury and predicting potential drugs. Front Genet. 13:10622932022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Xu JY and Tan HB: LncRNA TUG1 regulates the development of ischemia-reperfusion mediated acute kidney injury through miR-494-3p/E-cadherin axis. J Inflamm (Lond). 18:122021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang J, Zhang J, Tan Y, Li Y and Peng Z: Exosomes highlight future directions in the treatment of acute kidney injury. Int J Mol Sci. 24:155682023. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, Wang W, Ma Z and Shi X: Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 25:3562021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhu G, He W, Yin H, Lin F, Gou X and Li X: BMSCs protect against renal ischemia-reperfusion injury by secreting exosomes loaded with miR-199a-5p that target BIP to inhibit endoplasmic reticulum stress at the very early reperfusion stages. FASEB J. 33:5440–5456. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhou B, Yang X, Zhao J, Hu J, Ding Y, Zhan S, Yang Y, Chen J, Zhang F, et al: Exosomal circEZH2_005, an intestinal injury biomarker, alleviates intestinal ischemia/reperfusion injury by mediating Gprc5a signaling. Nat Commun. 14:5437–5453. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Pei L, Lin F, Yin H, Li X, He W, Liu N and Gou X: Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. J Cell Physiol. 234:23736–23749. 2019. View Article : Google Scholar : PubMed/NCBI | |
Herman M, Randall GW, Spiegel JL, Maldonado DJ and Simoes S: Endo-lysosomal dysfunction in neurodegenerative diseases: Opinion on current progress and future direction in the use of exosomes as biomarkers. Philos Trans R Soc Lond B Biol Sci. 379:202203872024. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Brocchini S and Williams GR: Extracellular Vesicle-embedded materials. J Control Release. 361:280–296. 2023. View Article : Google Scholar : PubMed/NCBI | |
Canney M, Clark EG and Hiremath S: Biomarkers in acute kidney injury: On the cusp of a new era? J Clin Invest. 133:e1714312023. View Article : Google Scholar : PubMed/NCBI | |
Cao JY, Wang B, Tang TT, Wen Y, Li ZL, Feng ST, Wu M, Liu D, Yin D, Ma KL, et al: Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics. 11:5248–5266. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Li HF, Chen HH and Lin H: MicroRNAs as biomarkers and therapeutic targets in Inflammation- and Ischemia-Reperfusion-related acute renal injury. Int J Mol Sci. 21:67382020. View Article : Google Scholar : PubMed/NCBI | |
Uccelli A, Moretta L and Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8:726–736. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li C, Zhang L, Wu M, Cao K, Jiang F, Chen D, Li N and Li W: The significance of exosomes in the development and treatment of hepatocellular carcinoma. Mol Cancer. 19:12020. View Article : Google Scholar : PubMed/NCBI | |
Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, Zheng Y, Riquelme JA, Kearney J, Sharma V, et al: Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol. 65:1525–1236. 2015. View Article : Google Scholar : PubMed/NCBI | |
Damania A, Jaiman D, Teotia AK and Kumar A: Mesenchymal stromal Cell-derived Exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury. Stem Cell Res Ther. 9:312018. View Article : Google Scholar : PubMed/NCBI | |
Huang Y and Yang L: Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases. Stem Cell Res Ther. 12:219–230. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Zuo B, Wang Y, Li S, Yang J and Sun D: Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. Life Sci. 255:1177192020. View Article : Google Scholar : PubMed/NCBI | |
Elahi FM, Farwell DG, Nolta JA and Anderson JD: Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells. 38:15–21. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Chen M, Guo Q, Shen L, Liu X, Pan J, Zhang Y, Xu T, Zhang D and Wei G: Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage. Cell Mol Biol Lett. 28:1202023. View Article : Google Scholar | |
Zhang W, Zhang J and Huang H: Exosomes from adipose-derived stem cells inhibit inflammation and oxidative stress in LPS-acute kidney injury. Exp Cell Res. 420:1133322022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, et al: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 4:342013. View Article : Google Scholar : PubMed/NCBI | |
Xing Z, Zhao C, Liu H and Fan Y: endothelial progenitor Cell-derived extracellular vesicles: A novel candidate for regenerative medicine and disease treatment. Adv Healthc Mater. 9:e20002552020. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Hu C, Zhang B, Li M, Deng F and Zhao S: Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9. Biol Proced Online. 25:102023. View Article : Google Scholar : PubMed/NCBI | |
Li W, Wang W, He X, Liao Z, Aierken A, Hua J, Wang Y, Lu D and Zhang S: Rapid recovery of male cats with postrenal acute kidney injury by treating with allogeneic adipose mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 13:3792022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liao J, Su X, Li W, Bi Z, Wang J, Su Q, Huang H, Wei Y, Gao Y, et al: Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics. 10:9561–9578. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang J, Yang B, Qiao R, Li A, Guo H, Ding J, Li H, Ye H, Wu D, et al: Transfer of MicroRNA-216a-5p from exosomes secreted by human Urine-derived stem cells reduces renal Ischemia/reperfusion injury. Front Cell Dev Biol. 8:6105872020. View Article : Google Scholar : PubMed/NCBI | |
Grange C, Papadimitriou E, Dimuccio V, Pastorino C, Molina J, O'Kelly R, Niedernhofer LJ, Robbins PD, Camussi G and Bussolati B: Urinary extracellular vesicles carrying klotho improve the recovery of renal function in an acute tubular injury model. Mol Ther. 28:490–502. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Wu J, Bi Q and Wang W: Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res Ther. 13:2972022. View Article : Google Scholar : PubMed/NCBI | |
Thapa K, Singh TG and Kaur A: Targeting ferroptosis in ischemia/reperfusion renal injury. Naunyn Schmiedebergs Arch Pharmacol. 395:1331–1341. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Que KT, Zhang Z, Yi ZJ, Zhao PX, You Y, Gong JP and Liu ZJ: Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med. 7:4012–4022. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wallach D, Kang TB and Kovalenko A: Concepts of tissue injury and cell death in inflammation: A historical perspective. Nat Rev Immunol. 14:51–59. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Ye Y, Lin R, Liu T, Wang S, Feng Z, Wang X, Cao H, Chen X, Miao J, et al: Ferroptosis: A promising candidate for exosome-mediated regulation in different diseases. Cell Commun Signal. 22:62024. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Tang Y, Jin C, Wang M, Li L, Liu Z, Shi H, Sun Z, Hou X, Chen W, et al: Neutrophil membrane engineered HuMSC sEVs alleviate cisplatin-induced AKI by enhancing cellular uptake and targeting. J Nanobiotechnology. 20:3532022. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Xu X, Zhang B, Xu J, Pan Z, Gong A, Zhang X, Li R, Sun Y, Yan Y, et al: 3,3′-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing. Theranostics. 7:1674–1688. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma M, Luo Q, Fan L, Li W, Li Q, Meng Y, Yun C, Wu H, Lu Y, Cui S, et al: The urinary exosomes derived from premature infants attenuate cisplatin-induced acute kidney injury in mice via microRNA-30a-5p/mitogen-activated protein kinase 8 (MAPK8). Bioengineered. 13:1650–1665. 2022. View Article : Google Scholar : PubMed/NCBI | |
Awdishu L, Le A, Amato J, Jani V, Bal S, Mills RH, Carrillo-Terrazas M, Gonzalez DJ, Tolwani A, Acharya A, et al: Urinary exosomes identify inflammatory pathways in vancomycin associated acute kidney injury. Int J Mol Sci. 22:27842021. View Article : Google Scholar : PubMed/NCBI | |
Vinas JL, Burger D, Zimpelmann J, Haneef R, Knoll W, Campbell P, Gutsol A, Carter A, Allan DS and Burns KD: Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int. 90:1238–1250. 2016. View Article : Google Scholar : PubMed/NCBI | |
Burger D, Vinas JL, Akbari S, Dehak H, Knoll W, Gutsol A, Carter A, Touyz RM, Allan DS and Burns KD: Human endothelial colony-forming cells protect against acute kidney injury: Role of exosomes. Am J Pathol. 185:2309–2323. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Huang H, Liu W, Liu S, Wang XY, Diao ZL, Zhang AH, Guo W, Han X, Dong X and Katilov O: Endothelial progenitor cells-derived exosomal microRNA-21-5p alleviates sepsis-induced acute kidney injury by inhibiting RUNX1 expression. Cell Death Dis. 12:3352021. View Article : Google Scholar : PubMed/NCBI | |
Keung C, Nguyen TC, Lim R, Gerstenmaier A, Sievert W and Moore GT: Local fistula injection of allogeneic human amnion epithelial cells is safe and well tolerated in patients with refractory complex perianal Crohn's disease: A phase I open label study with long-term follow up. EBioMedicine. 98:10487992023. View Article : Google Scholar : PubMed/NCBI | |
Chi D, Chen Y, Xiang C, Yao W, Wang H, Zheng X, Xu D, Li N, Xie M, Wang S, et al: Human Amnion epithelial cells and their derived exosomes alleviate Sepsis-associated acute kidney injury via mitigating endothelial dysfunction. Front Med (Lausanne). 9:8296062022. View Article : Google Scholar : PubMed/NCBI | |
Kang X, Chen Y, Xin X, Liu M, Ma Y, Ren Y, Ji J, Yu Q, Qu L, Wang S, et al: Human amniotic epithelial cells and their derived exosomes protect against Cisplatin-induced acute kidney injury without compromising its antitumor activity in mice. Front Cell Dev Biol. 9:7520532021. View Article : Google Scholar : PubMed/NCBI | |
Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong X, Wu WJ, Chen J, Ni HF, Tang TT, et al: Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 27:210–226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Cui Y, Jiao M, Yao J, Zhao J, Tian Y, Dong J and Liao L: Crosstalk between proximal tubular epithelial cells and other interstitial cells in tubulointerstitial fibrosis after renal injury. Front Endocrinol (Lausanne). 14:12563752023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang C, Du Y, Yang X, Liu M, Yang W, Lei G and Wang G: Exosomal transfer of microRNA-590-3p between renal tubular epithelial cells after renal Ischemia-reperfusion injury regulates autophagy by targeting TRAF6. Chin Med J (Engl). 135:2467–2477. 2022.PubMed/NCBI | |
Ganesh A and Testai FD: Remote ischemic conditioning for acute ischemic stroke: Does stroke etiology matter? Stroke. 55:880–882. 2024. View Article : Google Scholar : PubMed/NCBI | |
Han R, Yang X, Ji X and Zhou B: Remote ischemic preconditioning prevents high-altitude cerebral edema by enhancing glucose metabolic reprogramming. CNS Neurosci Ther. 30:e700262024. View Article : Google Scholar : PubMed/NCBI | |
Torregroza C, Gnaegy L, Raupach A, Stroethoff M, Feige K, Heinen A, Hollmann MW and Huhn R: Influence of hyperglycemia and diabetes on cardioprotection by humoral factors released after remote ischemic preconditioning (RIPC). Int J Mol Sci. 22:88802021. View Article : Google Scholar : PubMed/NCBI | |
Mukai A, Suehiro K, Kimura A, Fujimoto Y, Funao T, Mori T and Nishikawa K: Protective effects of remote ischemic preconditioning against spinal cord ischemia-reperfusion injury in rats. J Thorac Cardiovasc Surg. 163:e137–e156. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu X, Wang B, Sun H, Ren Y and Zhang H: Compounding engineered mesenchymal stem cell-derived exosomes: A potential rescue strategy for retinal degeneration. Biomed Pharmacother. 173:1164242024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Huo Y, Zhao C, Liu H, Shao Y, Zhu C, An L, Chen X and Chen Z: Engineered exosomes with enhanced stability and delivery efficiency for glioblastoma therapy. J Control Release. 368:170–183. 2024. View Article : Google Scholar : PubMed/NCBI | |
Donoso-Quezada J, Ayala-Mar S and Gonzalez-Valdez J: State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: A review. Crit Rev Biotechnol. 40:804–820. 2020. View Article : Google Scholar : PubMed/NCBI | |
Piffoux M, Volatron J, Cherukula K, Aubertin K, Wilhelm C, Silva AKA and Gazeau F: Engineering and loading therapeutic extracellular vesicles for clinical translation: A data reporting frame for comparability. Adv Drug Deliv Rev. 178:1139722021. View Article : Google Scholar : PubMed/NCBI | |
Mousavi SM, Hashemi SA, Gholami A, Kalashgrani MY, Vijayakameswara Rao N, Omidifar N, Hsiao WW, Lai CW and Chiang WH: Plasma-enabled smart nanoexosome platform as emerging immunopathogenesis for clinical viral infection. Pharmaceutics. 14:10542022. View Article : Google Scholar : PubMed/NCBI | |
Tran PHL, Wang T, Yin W, Tran TTD, Nguyen TNG, Lee BJ and Duan W: Aspirin-loaded nanoexosomes as cancer therapeutics. Int J Pharm. 572:1187862019. View Article : Google Scholar : PubMed/NCBI | |
Ji P, Yang Z, Li H, Wei M, Yang G, Xing H and Li Q: Smart exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast cancer. Mol Ther Nucleic Acids. 26:987–996. 2021. View Article : Google Scholar : PubMed/NCBI | |
Latifkar A, Hur YH, Sanchez JC, Cerione RA and Antonyak MA: New insights into extracellular vesicle biogenesis and function. J Cell Sci. 132:jcs2224062019. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Ge X, Wang C, Yin Z, Jia Z, Hu T, Li M, Wang D, Han Z, Wang L, et al: Intranasal delivery of Gene-edited microglial exosomes improves neurological outcomes after intracerebral hemorrhage by regulating neuroinflammation. Brain Sci. 13:6392023. View Article : Google Scholar : PubMed/NCBI | |
Hyun J, Eom J, Im J, Kim YJ, Seo I, Kim SW, Im GB, Kim YH, Lee DH, Park HS, et al: Fibroblast function recovery through rejuvenation effect of nanovesicles extracted from human adipose-derived stem cells irradiated with red light. J Control Release. 368:453–465. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Liu Z, Jia L, Sun Y, Guo R, Xi T, Li Z, Wu M, Jiang H and Li Y: Bioinspired engineering ADSC nanovesicles thermosensitive hydrogel enhance autophagy of dermal papilla cells for androgenetic alopecia treatment. Bioact Mater. 36:112–125. 2024.PubMed/NCBI | |
Tan X, Zhang J, Heng Y, Chen L, Wang Y, Wu S, Liu X, Xu B, Yu Z and Gu R: Locally delivered hydrogels with controlled release of nanoscale exosomes promote cardiac repair after myocardial infarction. J Control Release. 368:303–317. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Hu F, Xiang J, Zhou X, Wu B, Fan B, Tang H, Liu B and Chen L: Mesoporous microneedles enabled localized controllable delivery of stimulator of interferon gene agonist nanoexosomes for FLASH radioimmunotherapy against breast cancer. ACS Appl Mater Interfaces. 16:58180–58190. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tan A, Rajadas J and Seifalian AM: Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev. 65:357–367. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Pu M, Wang Y, Yu L, Song X and He Z: Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications. J Control Release. 336:233–251. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Jiang D, Rosenkrans ZT, Ehlerding EB, Ni D, Qi C, Kutyreff CJ, Barnhart TE, Engle JW, Huang P and Cai W: A Melanin-based natural antioxidant defense nanosystem for theranostic application in acute kidney injury. Adv Funct Mater. 29:10.1002/adfm.201904833. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mi L, Wang P, Yan J, Qian J, Lu J, Yu J, Wang Y, Liu H, Zhu M, Wan Y and Liu S: A novel photoelectrochemical immunosensor by integration of nanobody and TiO2 nanotubes for sensitive detection of serum cystatin C. Anal Chim Acta. 902:107–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rubio-Navarro A, Carril M, Padro D, Guerrero-Hue M, Tarin C, Samaniego R, Cannata P, Cano A, Villalobos JM, Sevillano ÁM, et al: CD163-macrophages are involved in Rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted Gold-coated iron oxide nanoparticles. Theranostics. 6:896–914. 2016. View Article : Google Scholar : PubMed/NCBI | |
Anwar M, Muhammad F, Akhtar B, Ur Rehman S and Saleemi MK: Nephroprotective effects of curcumin loaded chitosan nanoparticles in cypermethrin induced renal toxicity in rabbits. Environ Sci Pollut Res Int. 27:14771–14779. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Jin F, Liu D, Shu G, Wang X, Qi J, Sun M, Yang P, Jiang S, Ying X and Du Y: ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 10:2342–2357. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Rouatbi N, Wang JT, Baker R, Spicer J, Walters AA and Al-Jamal KT: Plasmid DNA ionisable lipid nanoparticles as non-inert carriers and potent immune activators for cancer immunotherapy. J Control Release. 369:251–265. 2024. View Article : Google Scholar : PubMed/NCBI | |
Koo J, Lim C and Oh KT: Recent advances in intranasal administration for Brain-targeting delivery: A comprehensive review of Lipid-based nanoparticles and Stimuli-responsive gel formulations. Int J Nanomedicine. 19:1767–1807. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wei X, He X, Xiao S, Shi Q, Chen P, Lee J, Guo X, Liu H and Fan Y: Osteoinductive dental pulp stem Cell-derived extracellular Vesicle-loaded multifunctional hydrogel for bone regeneration. ACS Nano. 18:8777–8797. 2024. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Yang T, Chen S, Deng N, Luo X, Liao R and Su B: Utilization of hydrogels in mesenchymal stem cell-based therapy for kidney diseases. Tissue Eng Part B Rev. 30:315–326. 2024. View Article : Google Scholar : PubMed/NCBI | |
Han DS, Erickson C, Hansen KC, Kirkbride-Romeo L, He Z, Rodell CB and Soranno DE: Mesenchymal stem cells delivered locally to Ischemia-reperfused kidneys via injectable hyaluronic acid hydrogels decrease extracellular matrix remodeling 1 month after injury in male mice. Cells. 12:17712023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Shang Y, Chen X, Wang Z, Zhu D, Liu Y, Zhang C, Chen P, Wu J, Wu L, et al: Delivery of MSCs with a hybrid β-Sheet peptide hydrogel consisting IGF-1C domain and D-Form peptide for acute kidney injury therapy. Int J Nanomedicine. 15:4311–4324. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xue HY and Wong HL: Targeting megalin to enhance delivery of anti-clusterin small-interfering RNA nanomedicine to chemo-treated breast cancer. Eur J Pharm Biopharm. 81:24–32. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oroojalian F, Rezayan AH, Mehrnejad F, Nia AH, Shier WT, Abnous K and Ramezani M: Efficient megalin targeted delivery to renal proximal tubular cells mediated by modified-polymyxin B-polyethylenimine based nano-gene-carriers. Mater Sci Eng C Mater Biol Appl. 79:770–782. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oroojalian F, Rezayan AH, Shier WT, Abnous K and Ramezani M: Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl-polyethylenimine-containing nanoplexes. Int J Pharm. 523:102–120. 2017. View Article : Google Scholar : PubMed/NCBI |