1
|
Carling T and Udelsman R: Thyroid cancer.
Annu Rev Med. 65:125–137. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Laha D, Nilubol N and Boufraqech M: New
therapies for advanced Thyroid cancer. Front Endocrinol (Lausanne).
11:822020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lim H, Devesa SS, Sosa JA, Check D and
Kitahara CM: Trends in thyroid cancer incidence and mortality in
the United States, 1974–2013. JAMA. 317:1338–1348. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen DW, Lang BHH, McLeod DSA, Newbold K
and Haymart MR: Thyroid cancer. Lancet. 401:1531–1544. 2023.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Grimm D: Recent advances in thyroid cancer
research. Int J Mol Sci. 23:46312022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Maniakas A, Dadu R, Busaidy NL, Wang JR,
Ferrarotto R, Lu C, Williams MD, Gunn GB, Hofmann MC, Cote G, et
al: Evaluation of overall survival in patients with anaplastic
thyroid carcinoma, 2000–2019. JAMA Oncol. 6:1397–1404. 2020.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Araque KA, Gubbi S and Klubo-Gwiezdzinska
J: Updates on the management of thyroid cancer. Horm Metab Res.
52:562–577. 2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Salgado SA, Kaye ER, Sargi Z, Chung CH and
Papaleontiou M: Management of advanced thyroid cancer: Overview,
advances, and opportunities. Am Soc Clin Oncol Educ Book.
43:e3897082023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nakahara R, Maeda K, Aki S and Osawa T:
Metabolic adaptations of cancer in extreme tumor microenvironments.
Cancer Sci. 114:1200–1207. 2023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang L, Venneti S and Nagrath D:
Glutaminolysis: A hallmark of cancer metabolism. Annu Rev Biomed
Eng. 19:163–194. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li T and Le A: Glutamine metabolism in
cancer. Adv Exp Med Biol. 1063:13–32. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu PS, Chen YT, Li X, Hsueh PC, Tzeng SF,
Chen H, Shi PZ, Xie X, Parik S, Planque M, et al: CD40 signal
rewires fatty acid and glutamine metabolism for stimulating
macrophage anti-tumorigenic functions. Nat Immunol. 24:452–462.
2023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jin L, Alesi GN and Kang S: Glutaminolysis
as a target for cancer therapy. Oncogene. 35:3619–3625. 2016.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu Y, Yu X, Fan C, Wang H, Wang R, Feng C
and Guan H: Targeting glutaminase-mediated glutamine dependence in
papillary thyroid cancer. J Mol Med (Berl). 96:777–790. 2018.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang GQ, Xi C, Ju NT, Shen CT, Qiu ZL,
Song HJ and Luo QY: Targeting glutamine metabolism exhibits
anti-tumor effects in thyroid cancer. J Endocrinol Invest.
47:1953–1969. 2024. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen S, Zhou Z, Li Y, Du Y and Chen G:
Application of single-cell sequencing to the research of tumor
microenvironment. Front Immunol. 14:12855402023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ren X, Zhang L, Zhang Y, Li Z, Siemers N
and Zhang Z: Insights gained from single-cell analysis of immune
cells in the tumor microenvironment. Annu Rev Immunol. 39:583–609.
2021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu L, Hou Y, Deng C, Tao Z, Chen Z, Hu J
and Chen K: Single cell sequencing reveals that CD39 inhibition
mediates changes to the tumor microenvironment. Nat Commun.
13:67402022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hao X, Zheng Z, Liu H, Zhang Y, Kang J,
Kong X, Rong D, Sun G, Sun G, Liu L, et al: Inhibition of APOC1
promotes the transformation of M2 into M1 macrophages via the
ferroptosis pathway and enhances anti-PD1 immunotherapy in
hepatocellular carcinoma based on single-cell RNA sequencing. Redox
Biol. 56:1024632022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Colaprico A, Silva TC, Olsen C, Garofano
L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM,
Castiglioni I, et al: TCGAbiolinks: An R/Bioconductor package for
integrative analysis of TCGA data. Nucleic Acids Res. 44:e712016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Butler A, Hoffman P, Smibert P, Papalexi E
and Satija R: Integrating single-cell transcriptomic data across
different conditions, technologies, and species. Nat Biotechnol.
36:411–420. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Van de Sande B, Flerin C, Davie K, De
Waegeneer M, Hulselmans G, Aibar S, Seurinck R, Saelens W, Cannoodt
R, Rouchon Q, et al: A scalable SCENIC workflow for single-cell
gene regulatory network analysis. Nat Protoc. 15:2247–2276. 2020.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Qiu X, Mao Q, Tang Y, Wang L, Chawla R,
Pliner HA and Trapnell C: Reversed graph embedding resolves complex
single-cell trajectories. Nat Methods. 14:979–982. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Karmaus PWF, Chen X, Lim SA, Herrada AA,
Nguyen TM, Xu B, Dhungana Y, Rankin S, Chen W, Rosencrance C, et
al: Metabolic heterogeneity underlies reciprocal fates of T(H)17
cell stemness and plasticity. Nature. 565:101–105. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Armingol E, Officer A, Harismendy O and
Lewis NE: Deciphering cell-cell interactions and communication from
gene expression. Nat Rev Genet. 22:71–88. 2021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fang Z, Tian Y, Sui C, Guo Y, Hu X, Lai Y,
Liao Z, Li J, Feng G, Jin L and Qian K: Single-Cell transcriptomics
of proliferative phase endometrium: Systems analysis of cell-cell
communication network using CellChat. Front Cell Dev Biol.
10:9197312022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gene Ontology Consortium, . Gene ontology
consortium: Going forward. Nucleic Acids Res. 43:D1049–D1056. 2015.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ye Z, An S, Gao Y, Xie E, Zhao X, Guo Z,
Li Y, Shen N, Ren J and Zheng J: The prediction of in-hospital
mortality in chronic kidney disease patients with coronary artery
disease using machine learning models. Eur J Med Res. 28:332023.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liberzon A, Subramanian A, Pinchback R,
Thorvaldsdóttir H, Tamayo P and Mesirov JP: Molecular signatures
database (MSigDB) 3.0. Bioinformatics. 27:1739–1740. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Liberzon A, Birger C, Thorvaldsdóttir H,
Ghandi M, Mesirov JP and Tamayo P: The molecular signatures
database (MSigDB) hallmark gene set collection. Cell Syst.
1:417–425. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fan X, Chen H, Jiang F, Xu C, Wang Y, Wang
H, Li M, Wei W, Song J, Zhong D and Li G: Comprehensive analysis of
cuproptosis-related genes in immune infiltration in ischemic
stroke. Front Neurol. 13:10771782022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu S, Lv X and Li Y, Gao X, Ma Z, Fu X and
Li Y: Integrated Machine learning and single-sample gene set
enrichment analysis identifies a TGF-beta signaling pathway derived
score in headneck squamous cell carcinoma. J Oncol.
2022:31402632022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ru B, Wong CN, Tong Y, Zhong JY, Zhong
SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen I, et al: TISIDB: An
integrated repository portal for tumor-immune system interactions.
Bioinformatics. 35:4200–4202. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ito K and Murphy D: Application of ggplot2
to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol.
2:e792013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Maeser D, Gruener RF and Huang RS:
oncoPredict: An R package for predicting in vivo or cancer patient
drug response and biomarkers from cell line screening data. Brief
Bioinform. 22:bbab2602021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yang W, Soares J, Greninger P, Edelman EJ,
Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, et
al: Genomics of drug sensitivity in cancer (GDSC): A resource for
therapeutic biomarker discovery in cancer cells. Nucleic Acids Res.
41:D955–D961. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mayakonda A, Lin DC, Assenov Y, Plass C
and Koeffler HP: Maftools: Efficient and comprehensive analysis of
somatic variants in cancer. Genome Res. 28:1747–1756. 2018.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu Z, Wang L, Guo C, Liu L, Jiao D, Sun
Z, Wu K, Zhao Y and Han X: TTN/OBSCN ‘Double-Hit’ predicts
favourable prognosis, ‘immune-hot’ subtype and potentially better
immunotherapeutic efficacy in colorectal cancer. J Cell Mol Med.
25:3239–3251. 2021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ren R, Du Y, Niu X and Zang R: ZFPM2-AS1
transcriptionally mediated by STAT1 regulates thyroid cancer cell
growth, migration and invasion via miR-515-5p/TUSC3. J Cancer.
12:3393–3406. 2021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lin X, Zhang J, Zhao RH, Zhang WJ, Wu JF
and Xue G: APOE is a prognostic biomarker and correlates with
immune infiltrates in papillary thyroid carcinoma. J Cancer.
13:1652–1663. 2022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhu H, Tang K, Chen G and Liu Z:
Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B.
23:705–731. 2022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Mino-Kenudson M, Schalper K, Cooper W,
Dacic S, Hirsch FR, Jain D, Lopez-Rios F, Tsao MS, Yatabe Y,
Beasley MB, et al: Predictive biomarkers for immunotherapy in lung
cancer: Perspective from the international association for the
study of lung cancer pathology committee. J Thorac Oncol.
17:1335–1354. 2022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S,
Sun L, Liu Y, Du Y, Guo X, et al: Identification of a tumour immune
barrier in the HCC microenvironment that determines the efficacy of
immunotherapy. J Hepatol. 78:770–782. 2023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Huang J, Sun W, Wang Z, Lv C, Zhang T,
Zhang D, Dong W, Shao L, He L, Ji X, et al: FTO suppresses
glycolysis and growth of papillary thyroid cancer via decreasing
stability of APOE mRNA in an N6-methyladenosine-dependent manner. J
Exp Clin Cancer Res. 41:422022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fan X and Zhao Y: miR-451a inhibits cancer
growth, epithelial-mesenchymal transition and induces apoptosis in
papillary thyroid cancer by targeting PSMB8. J Cell Mol Med.
23:8067–8075. 2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhong J, Liu C, Chen YJ, Zhang QH, Yang J,
Kang X, Chen SR, Wen GB, Zu XY and Cao RX: The association between
S100A13 and HMGA1 in the modulation of thyroid cancer proliferation
and invasion. J Transl Med. 14:802016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Liu C, Jiang WG, Hargest R and Martin TA:
The role of SIPA1 in the development of cancer and metastases
(Review). Mol Clin Oncol. 13:322020.PubMed/NCBI
|
53
|
Zhou Z, Chen G, Shen M, Li J, Liu K, Liu
M, Shi S, Yang D, Chen W, Chen S, et al: Genome-scale CRISPR-Cas9
knockout screening in nasopharyngeal carcinoma for radiosensitive
and radioresistant genes. Transl Oncol. 30:1016252023. View Article : Google Scholar : PubMed/NCBI
|