1
|
Byar KL and Fredericks T: Uterine
leiomyosarcoma. J Adv Pract Oncol. 13:70–76. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ahuja A, Agarwal P, Sardana R and Bhaskar
S: Extensively metastasizing leiomyosarcoma: A diagnostic
challenge. J Midlife Health. 8:148–150. 2017.PubMed/NCBI
|
3
|
Chapel DB, Sharma A, Lastra RR, Maccio L,
Bragantini E, Zannoni GF, George S, Quade BJ, Parra-Herran C and
Nucci MR: A novel morphology-based risk stratification model for
stage I uterine leiomyosarcoma: An analysis of 203 cases. Mod
Pathol. 35:794–807. 2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chapel DB, Nucci MR, Quade BJ and
Parra-Herran C: Epithelioid leiomyosarcoma of the uterus: Modern
outcome-based appraisal of diagnostic criteria in a large
institutional series. Am J Surg Pathol. 46:464–475. 2022.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Menon G, Mangla A and Yadav U:
Leiomyosarcoma. StatPearls [Internet]. StatPearls Publishing;
Treasure Island, FL: 2024
|
6
|
Soares Queirós C, Filipe P and Soares de
Almeida L: Cutaneous leiomyosarcoma: A 20-year retrospective study
and review of the literature. An Bras Dermatol. 96:278–283. 2021.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Bathan AJ, Constantinidou A, Pollack SM
and Jones RL: Diagnosis, prognosis, and management of
leiomyosarcoma: Recognition of anatomic variants. Curr Opin Oncol.
25:384–389. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Giannini A, Golia D'Augè T, Bogani G,
Laganà AS, Chiantera V, Vizza E, Muzii L and Di Donato V: Uterine
sarcomas: A critical review of the literature. Eur J Obstet Gynecol
Reprod Biol. 287:166–170. 2023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Giannini A, Cuccu I, D'Auge TG, De Angelis
E, Laganà AS, Chiantera V, Caserta D, Vitale SG, Muzii L, D'Oria O,
et al: The great debate: Surgical outcomes of laparoscopic versus
laparotomic myomectomy. A meta-analysis to critically evaluate
current evidence and look over the horizon. Eur J Obstet Gynecol
Reprod Biol. 297:50–58. 2024. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kyriazoglou A, Liontos M,
Ntanasis-Stathopoulos I and Gavriatopoulou M: The systemic
treatment of uterine leiomyosarcomas: A systematic review. No news
is good news? Medicine (Baltimore). 100:e253092021.PubMed/NCBI
|
11
|
Bhat SA, Vasi Z, Adhikari R, Gudur A, Ali
A, Jiang L, Ferguson R, Liang D and Kuchay S: Ubiquitin proteasome
system in immune regulation and therapeutics. Curr Opin Pharmacol.
67:1023102022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nunes AT and Annunziata CM: Proteasome
inhibitors: Structure and function. Semin Oncol. 44:377–380. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ji MM, Lee JM, Mon H, Xu J, Tatsuke T and
Kusakabe T: Proteasome inhibitor MG132 impairs autophagic flux
through compromising formation of autophagosomes in Bombyx cells.
Biochem Biophys Res Commun. 479:690–696. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Momose I and Kawada M: The therapeutic
potential of microbial proteasome inhibitors. Int Immunopharmacol.
37:23–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Guo N and Peng Z: MG132, a proteasome
inhibitor, induces apoptosis in tumor cells. Asia Pac J Clin Oncol.
9:6–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bulangalire N, Claeyssen C, Agbulut O and
Cieniewski-Bernard C: Impact of MG132 induced-proteotoxic stress on
αB-crystallin and desmin phosphorylation and O-GlcNAcylation and
their partition towards cytoskeleton. Biochimie. 226:121–135. 2024.
View Article : Google Scholar : PubMed/NCBI
|
17
|
La Frazia S, Amici C and Santoro MG:
Antiviral activity of proteasome inhibitors in herpes simplex
virus-1 infection: Role of nuclear factor-kappaB. Antivir Ther.
11:995–1004. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ortiz-Lazareno PC, Hernandez-Flores G,
Dominguez-Rodriguez JR, Lerma-Diaz JM, Jave-Suarez LF,
Aguilar-Lemarroy A, Gomez-Contreras PC, Scott-Algara D and
Bravo-Cuellar A: MG132 proteasome inhibitor modulates
proinflammatory cytokines production and expression of their
receptors in U937 cells: Involvement of nuclear factor-kappaB and
activator protein-1. Immunology. 124:534–541. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kaplan GS, Torcun CC, Grune T, Ozer NK and
Karademir B: Proteasome inhibitors in cancer therapy: Treatment
regimen and peripheral neuropathy as a side effect. Free Radic Biol
Med. 103:1–13. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Manasanch EE and Orlowski RZ: Proteasome
inhibitors in cancer therapy. Nat Rev Clin Oncol. 14:417–433. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Goldberg AL: Development of proteasome
inhibitors as research tools and cancer drugs. J Cell Biol.
199:583–588. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Maki RG, Kraft AS, Scheu K, Yamada J,
Wadler S, Antonescu CR, Wright JJ and Schwartz GK: A multicenter
phase II study of bortezomib in recurrent or metastatic sarcomas.
Cancer. 103:1431–1438. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Steinhilb ML, Turner RS and Gaut JR: The
protease inhibitor, MG132, blocks maturation of the amyloid
precursor protein Swedish mutant preventing cleavage by
beta-secretase. J Biol Chem. 276:4476–4484. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sun F, Anantharam V, Zhang D,
Latchoumycandane C, Kanthasamy A and Kanthasamy AG: Proteasome
inhibitor MG-132 induces dopaminergic degeneration in cell culture
and animal models. Neurotoxicology. 27:807–815. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ma Y, Chen B, Liu D, Yang Y, Xiong Z, Zeng
J and Dong Y: MG132 treatment attenuates cardiac remodeling and
dysfunction following aortic banding in rats via the NF-κB/TGFβ1
pathway. Biochem Pharmacol. 81:1228–1236. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zeng W, Qi W, Mu J, Wei Y, Yang LL, Zhang
Q, Wu Q, Tang JY and Feng B: MG132 protects against renal
dysfunction by regulating Akt-mediated inflammation in diabetic
nephropathy. Sci Rep. 9:20492019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shu Z, Li X, Zhang W, Huyan Z, Cheng D,
Xie S, Cheng H, Wang J and Du B: MG-132 activates sodium
palmitate-induced autophagy in human vascular smooth muscle cells
and inhibits senescence via the PI3K/AKT/mTOR axis. Lipids Health
Dis. 23:2822024. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gómez-Virgilio L, Silva-Lucero MD,
Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G,
Abarca-Fernandez AM, Zacapala-Gómez AE, Luna-Muñoz J, Montiel-Sosa
F, Soto-Rojas LO, et al: Autophagy: A key regulator of homeostasis
and disease: An overview of molecular mechanisms and modulators.
Cells. 11:22622022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Guo C, Sun L, Chen X and Zhang D:
Oxidative stress, mitochondrial damage and neurodegenerative
diseases. Neural Regen Res. 8:2003–2014. 2013.PubMed/NCBI
|
30
|
Zhitkovich A: N-acetylcysteine:
Antioxidant, aldehyde scavenger, and more. Chem Res Toxicol.
32:1318–1319. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Anwar S, Alrumaihi F, Sarwar T, Babiker
AY, Khan AA, Prabhu SV and Rahmani AH: Exploring therapeutic
potential of catalase: Strategies in disease prevention and
management. Biomolecules. 14:6972024. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mills J, Matos T, Charytonowicz E, Hricik
T, Castillo-Martin M, Remotti F, Lee FY and Matushansky I:
Characterization and comparison of the properties of sarcoma cell
lines in vitro and in vivo. Hum Cell. 22:85–93. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Smardová J, Pavlová S, Svitáková M,
Grochová D and Ravcuková B: Analysis of p53 status in human cell
lines using a functional assay in yeast: Detection of new non-sense
p53 mutation in codon 124. Oncol Rep. 14:901–907. 2005.PubMed/NCBI
|
34
|
Coley HM, Shotton CF, Kokkinos MI and
Thomas H: The effects of the CDK inhibitor seliciclib alone or in
combination with cisplatin in human uterine sarcoma cell lines.
Gynecol Oncol. 105:462–469. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Potts BC, Albitar MX, Anderson KC,
Baritaki S, Berkers C, Bonavida B, Chandra J, Chauhan D, Cusack JC
Jr, Fenical W, et al: Marizomib, a proteasome inhibitor for all
seasons: Preclinical profile and a framework for clinical trials.
Curr Cancer Drug Targets. 11:254–284. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Alwahsh M, Farhat J, Talhouni S, Hamadneh
L and Hergenröder R: Bortezomib advanced mechanisms of action in
multiple myeloma, solid and liquid tumors along with its novel
therapeutic applications. EXCLI J. 22:146–168. 2023.PubMed/NCBI
|
37
|
Latif A, Kapoor V, Lateef N, Ahsan MJ,
Usman RM, Malik SU, Ahmad N, Rosko N, Rudoni J, William P, et al:
Incidence and management of carfilzomib-induced cardiovascular
toxicity; A systematic review and meta-analysis. Cardiovasc Hematol
Disord Drug Targets. 21:30–45. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhai Y, Ye X, Hu F, Xu J, Guo X, Cao Y,
Lin Z, Zhou X, Guo Z and He J: Cardiovascular toxicity of
carfilzomib: The real-world evidence based on the adverse event
reporting system database of the FDA, the United States. Front
Cardiovasc Med. 8:7354662021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Richardson PG, Zweegman S, O'Donnell EK,
Laubach JP, Raje N, Voorhees P, Ferrari RH, Skacel T, Kumar SK and
Lonial S: Ixazomib for the treatment of multiple myeloma. Expert
Opin Pharmacother. 19:1949–1968. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Di K, Lloyd GK, Abraham V, MacLaren A,
Burrows FJ, Desjardins A, Trikha M and Bota DA: Marizomib activity
as a single agent in malignant gliomas: Ability to cross the
blood-brain barrier. Neuro Oncol. 18:840–848. 2016. View Article : Google Scholar : PubMed/NCBI
|