
The role of mesenchymal stem cell‑derived exosomes in asthma (Review)
- Authors:
- Kaiying Lv
- Jiawei Gao
- Liuxin Yang
- Xingxing Yuan
-
Affiliations: Department of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China - Published online on: April 11, 2025 https://doi.org/10.3892/mmr.2025.13531
- Article Number: 166
-
Copyright: © Lv et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, Paoletti G, Virchow JC, Heffler E and Canonica WG: Biologics and airway remodeling in severe asthma. Allergy. 77:3538–3552. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng Q, Pan J, Zhou ZL, Yin F, Xie HY, Chen PP, Li JY, Zheng PQ, Zhou L, Zhang W, et al: Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol Sin. 42:954–963. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stern J, Pier J and Litonjua AA: Asthma epidemiology and risk factors. Semin Immunopathol. 42:5–15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ntontsi P, Photiades A, Zervas E, Xanthou G and Samitas K: Genetics and epigenetics in asthma. Int J Mol Sci. 22:24122021. View Article : Google Scholar : PubMed/NCBI | |
Chupp GL, Kaur R and Mainardi A: New therapies for emerging endotypes of asthma. Annu Rev Med. 71:289–302. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ray A, Das J and Wenzel SE: Determining asthma endotypes and outcomes: Complementing existing clinical practice with modern machine learning. Cell Rep Med. 3:1008572022. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Prescott WG and Zhou X: Advances in non-type 2 asthma in the severe cases: From molecular insights to novel treatment strategies. Eur Respir J. 64:23008262024. View Article : Google Scholar : PubMed/NCBI | |
von Mutius E and Smits HH: Primary prevention of asthma: From risk and protective factors to targeted strategies for prevention. Lancet. 396:854–866. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lommatzsch M, Brusselle GG, Levy ML, Canonica GW, Pavord ID, Schatz M and Virchow JC: A2BCD: A concise guide for asthma management. Lancet Respir Med. 11:573–576. 2023. View Article : Google Scholar : PubMed/NCBI | |
McDowell PJ, McDowell R, Busby J, Eastwood MC, Patel PH, Jackson DJ, Mansur A, Patel M, Burhan H, Doe S, et al: Clinical remission with biologic therapies in severe asthma: A matter of definition. Eur Respir J. 63:24001602024. View Article : Google Scholar : PubMed/NCBI | |
Wenzel SE: Severe adult asthmas: Integrating clinical features, biology, and therapeutics to improve outcomes. Am J Respir Crit Care Med. 203:809–821. 2021. View Article : Google Scholar : PubMed/NCBI | |
Thomas D, McDonald VM, Pavord ID and Gibson PG: Asthma remission: What is it and how can it be achieved? Eur Respir J. 60:21025832022. View Article : Google Scholar : PubMed/NCBI | |
Coleman C, Khaleva E, Rattu A, Frankemölle B, Nielsen H, Roberts G and Williams C: Narrative review to capture patients' perceptions and opinions about Non-response and response to biological therapy for severe asthma. Eur Respir J. 61:22008372023. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Yuan Z, Weng J, Pei D, Du X, He C and Lai P: Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 14:242021. View Article : Google Scholar : PubMed/NCBI | |
Mathieu M, Martin-Jaular L, Lavieu G and Thery C: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Fang J, Liu B, Shao C and Shi Y: Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell. 29:1515–1530. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li P, Gong Z, Shultz LD and Ren G: Mesenchymal stem cells: From regeneration to cancer. Pharmacol Ther. 200:42–54. 2019. View Article : Google Scholar : PubMed/NCBI | |
Varderidou-Minasian S and Lorenowicz MJ: Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: Challenges and opportunities. Theranostics. 10:5979–5997. 2020. View Article : Google Scholar : PubMed/NCBI | |
van Griensven M and Balmayor ER: Extracellular vesicles are key players in mesenchymal stem cells' dual potential to regenerate and modulate the immune system. Adv Drug Deliv Rev. 207:1152032024. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Ma D, Yang B, An Q, Zhao J, Gao X and Zhang L: Research progress of engineered mesenchymal stem cells and their derived exosomes and their application in autoimmune/inflammatory diseases. Stem Cell Res Ther. 14:712023. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L and Yuan Z: Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: From basic to clinics. Int J Nanomedicine. 17:1757–1781. 2022. View Article : Google Scholar : PubMed/NCBI | |
Brusselle GG and Koppelman GH: Biologic therapies for severe asthma. N Engl J Med. 386:157–171. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Liu X, Long Y and Chen Y: Emerging therapeutic potential of mesenchymal stem Cell-derived extracellular vesicles in chronic respiratory diseases: An overview of recent progress. Front Bioeng Biotechnol. 10:8450422022. View Article : Google Scholar : PubMed/NCBI | |
Bao Y and Zhu X: Role of chemokines and inflammatory cells in respiratory allergy. J Asthma Allergy. 15:1805–1822. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim YM, Kim H, Lee S, Kim S, Lee JU, Choi Y, Park HW, You G, Kang H, Lee S, et al: Airway G-CSF identifies neutrophilic inflammation and contributes to asthma progression. Eur Respir J. 55:19008272020. View Article : Google Scholar : PubMed/NCBI | |
Al-Shaikhly T, Murphy RC, Parker A, Lai Y, Altman MC, Larmore M, Altemeier WA, Frevert CW, Debley JS, Piliponsky AM, et al: Location of eosinophils in the airway wall is critical for specific features of airway hyperresponsiveness and T2 inflammation in asthma. Eur Respir J. 60:21018652022. View Article : Google Scholar : PubMed/NCBI | |
Nagakumar P, Puttur F, Gregory LG, Denney L, Fleming L, Bush A, Lloyd CM and Saglani S: Pulmonary type-2 innate lymphoid cells in paediatric severe asthma: Phenotype and response to steroids. Eur Respir J. 54:18018092019. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Xu Y, Wang L, Zhu Z, Aodeng S, Chen H, Cai M, Huang Z, Han J, Wang L, et al: Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol. 23:1484–1494. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tiotiu A, Badi Y, Kermani NZ, Sanak M, Kolmert J, Wheelock CE, Hansbro PM, Dahlén SE, Sterk PJ, Djukanovic R, et al: Association of differential mast cell activation with granulocytic inflammation in severe asthma. Am J Respir Crit Care Med. 205:397–411. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dwyer DF, Ordovas-Montanes J, Allon SJ, Buchheit KM, Vukovic M, Derakhshan T, Feng C, Lai J, Hughes TK, Nyquist SK, et al: Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci Immunol. 6:eabb72212021. View Article : Google Scholar : PubMed/NCBI | |
Chacón P, Vega-Rioja A, Doukkali B, Del Valle Rodriguez A, Fernández-Delgado L, Domínguez-Cereijo L, Segura C, Pérez-Machuca BM, Perkins JR, El Bekay R, et al: Human neutrophils couple nitric oxide production and extracellular traps formation in allergic asthma. Am J Respir Crit Care Med. 210:593–606. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jesenak M, Durdik P, Oppova D, Franova S, Diamant Z, Golebski K, Banovcin P, Vojtkova J and Novakova E: Dysfunctional mucociliary clearance in asthma and airway remodeling-new insights into an old topic. Respir Med. 218:1073722023. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Cheng T, Guo Y, Gao R, Ma X, Mao X and Han X: Cd147 induces asthmatic airway remodeling and activation of circulating fibrocytes in a mouse model of asthma. Respir Res. 25:62024. View Article : Google Scholar : PubMed/NCBI | |
Defnet AE, Shah SD, Huang W, Shapiro P, Deshpande DA and Kane MA: Dysregulated retinoic acid signaling in airway smooth muscle cells in asthma. FASEB J. 35:e220162021. View Article : Google Scholar : PubMed/NCBI | |
Shimizu K, Tanabe N, Oguma A, Kimura H, Suzuki M, Yokota I, Makita H, Sato S, Hirai T, Nishimura M and Konno S: Parenchymal destruction in asthma: Fixed airflow obstruction and lung function trajectory. J Allergy Clin Immunol. 149:934–942.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Halwani R, Al-Muhsen S, Al-Jahdali H and Hamid Q: Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol. 44:127–133. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kraik K, Tota M, Laska J, Lacwik J, Pazdzierz L, Sedek L and Gomulka K: The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells. 13:12712024. View Article : Google Scholar : PubMed/NCBI | |
Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, et al: TGF-β1 drives inflammatory th cell but not treg cell compartment upon allergen exposure. Front Immunol. 12:7632432021. View Article : Google Scholar : PubMed/NCBI | |
Whitehead GS, Thomas SY, Nakano K, Royer DJ, Burke CG, Nakano H and Cook DN: A neutrophil/TGF-β axis limits the pathogenicity of allergen-specific CD4+ T cells. JCI Insight. 7:e1502512022. View Article : Google Scholar : PubMed/NCBI | |
Lim JO, Kim WI, Pak SW, Lee SJ, Park SH, Shin IS and Kim JC: Toll-like receptor 4 is a key regulator of asthma exacerbation caused by aluminum oxide nanoparticles via regulation of NF-κB phosphorylation. J Hazard Mater. 448:1308842023. View Article : Google Scholar : PubMed/NCBI | |
Athari SS: Targeting cell signaling in allergic asthma. Signal Transduct Target Ther. 4:452019. View Article : Google Scholar : PubMed/NCBI | |
de Jesús TJ, Centore JT and Ramakrishnan P: Differential regulation of basal expression of inflammatory genes by NF-κB family subunits. Cell Mol Immunol. 16:720–723. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shang L, Wang L, Shi X, Wang N, Zhao L, Wang J and Liu C: HMGB1 was negatively regulated by HSF1 and mediated the TLR4/MyD88/NF-κB signal pathway in asthma. Life Sci. 241:1171202020. View Article : Google Scholar : PubMed/NCBI | |
Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN and Peri F: TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel). 5:342017. View Article : Google Scholar : PubMed/NCBI | |
Liu JH, Li C, Zhang CH and Zhang ZH: LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology. 26:18–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kwak HJ, Park DW, Seo JY, Moon JY, Kim TH, Sohn JW, Shin DH, Yoon HJ, Park SS and Kim SH: The wnt/β-catenin signaling pathway regulates the development of airway remodeling in patients with asthma. Exp Mol Med. 47:e1982015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhong B, Geng Y, Hao J, Jin Q, Zhang Y, Dong L, Gao D, Li J and Hou W: TIPE2 inhibits PDGF-BB-induced phenotype switching in airway smooth muscle cells through the PI3K/Akt signaling pathway. Respir Res. 22:2382021. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Li Y, Cheng R, Gao J, Li Y and Lou C: TRIM37 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells. Biomed Pharmacother. 101:24–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Friedenstein AJ, Piatetzky S II and Petrakova KV: Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 16:381–390. 1966.PubMed/NCBI | |
Pærregaard SI, Wulff L, Schussek S, Niss K, Mörbe U, Jendholm J, Wendland K, Andrusaite AT, Brulois KF, Nibbs RJB, et al: The small and large intestine contain related mesenchymal subsets that derive from embryonic gli1+ precursors. Nat Commun. 14:23072023. View Article : Google Scholar | |
Miclau K, Hambright WS, Huard J, Stoddart MJ and Bahney CS: Cellular expansion of mscs: Shifting the regenerative potential. Aging Cell. 22:e137592023. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Dong J, Fan X, Yong J, Yang M, Liu Y, Zhang X, Lv L, Wen L, Qiao J, et al: Characterization of mesenchymal stem cells in human fetal bone marrow by single-cell transcriptomic and functional analysis. Signal Transduct Target Ther. 8:1262023. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Huang Y and Yang L: Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis. Ageing Res Rev. 80:1016842022. View Article : Google Scholar : PubMed/NCBI | |
Huang CW, Lu SY, Huang TC, Huang BM, Sun HS, Yang SH, Chuang JI, Hsueh YY, Wu YT and Wu CC: FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics. 10:2817–2831. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ and Chen H: Exosomal RNAs: Novel potential biomarkers for diseases-A review. Int J Mol Sci. 23:24612022. View Article : Google Scholar : PubMed/NCBI | |
Krylova SV and Feng D: The machinery of exosomes: Biogenesis, release, and uptake. Int J Mol Sci. 24:13372023. View Article : Google Scholar : PubMed/NCBI | |
Gurung S, Perocheau D, Touramanidou L and Baruteau J: The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun Signal. 19:472021. View Article : Google Scholar : PubMed/NCBI | |
Hessvik NP and Llorente A: Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75:193–208. 2018. View Article : Google Scholar : PubMed/NCBI | |
Colombo M, Raposo G and Thery C: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Guo K, Jiang J and Lin S: Mesenchymal stem cell-derived exosomes as delivery vehicles for non-coding RNAs in lung diseases. Biomed Pharmacother. 170:1160082024. View Article : Google Scholar : PubMed/NCBI | |
Niazi V, Parseh B, Ahani M, Karami F, Gilanchi S, Atarodi K, Soufi M, Soleimani M, Ghafouri-Fard S, Taheri M and Zali H: Communication between stromal and hematopoietic stem cell by exosomes in normal and malignant bone marrow niche. Biomed Pharmacother. 132:1108542020. View Article : Google Scholar : PubMed/NCBI | |
Yaghoubi Y, Movassaghpour A, Zamani M, Talebi M, Mehdizadeh A and Yousefi M: Human umbilical cord mesenchymal stem cells Derived-exosomes in diseases treatment. Life Sci. 233:1167332019. View Article : Google Scholar : PubMed/NCBI | |
Dilsiz N: A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol. 50:1021212024. View Article : Google Scholar : PubMed/NCBI | |
Li K, Wong DK, Hong KY and Raffai RL: Cushioned-density gradient ultracentrifugation (C-DGUC): A refined and high performance method for the isolation, characterization, and use of exosomes. Methods Mol Biol. 1740:69–83. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A and Nieuwland R: Single-step isolation of extracellular vesicles by Size-exclusion chromatography. J Extracell Vesicles. 32014.doi: 10.3402/jev.v3.23430. | |
Rahmatinejad F, Kharat Z, Jalili H, Renani MK and Mobasheri H: Comparison of morphology, protein concentration, and size distribution of bone marrow and Wharton's jelly-derived mesenchymal stem cells exosomes isolated by ultracentrifugation and Polymer-based precipitation techniques. Tissue Cell. 88:1024272024. View Article : Google Scholar : PubMed/NCBI | |
Mousavi SM, Amin Mahdian SM, Ebrahimi MS, Taghizadieh M, Vosough M, Sadri Nahand J, Hosseindoost S, Vousooghi N, Javar HA, Larijani B, et al: Microfluidics for detection of exosomes and microRNAs in cancer: State of the art. Mol Ther Nucleic Acids. 28:758–791. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mondal SK and Whiteside TL: Immunoaffinity-Based isolation of melanoma Cell-Derived and T Cell-derived exosomes from plasma of melanoma patients. Methods Mol Biol. 2265:305–321. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sharma V, Nikolajeff F and Kumar S: Employing nanoparticle tracking analysis of salivary neuronal exosomes for early detection of neurodegenerative diseases. Transl Neurodegener. 12:72023. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Zhang Z, Feng G, Zhang Y, Li H, Lambert C, Mallouk N and Li G: Transmission electron microscopy assessment of a novel method for isolating pure exosomes from serum. Biotech Histochem. 98:391–395. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lyu TS, Ahn Y, Im YJ, Kim SS, Lee KH, Kim J, Choi Y, Lee D, Kang E, Jin G, et al: The characterization of exosomes from fibrosarcoma cell and the useful usage of Dynamic Light Scattering (DLS) for their evaluation. PLoS One. 16:e02319942021. View Article : Google Scholar : PubMed/NCBI | |
Miron RJ and Zhang Y: Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol. 94:231–256. 2024. View Article : Google Scholar : PubMed/NCBI | |
Su N, Hao Y, Wang F, Hou W, Chen H and Luo Y: Mesenchymal stromal Exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair. Sci Adv. 7:eabf72072021. View Article : Google Scholar : PubMed/NCBI | |
Tan F, Li X, Wang Z, Li J, Shahzad K and Zheng J: Clinical applications of Stem cell-derived exosomes. Signal Transduct Target Ther. 9:172024. View Article : Google Scholar : PubMed/NCBI | |
Planat-Benard V, Varin A and Casteilla L: MSCs and inflammatory cells crosstalk in regenerative medicine: Concerted actions for optimized resolution driven by energy metabolism. Front Immunol. 12:6267552021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu Q, Shi J, Xu X and Xu J: The role of TNF-α in the fate regulation and functional reprogramming of mesenchymal stem cells in an inflammatory microenvironment. Front Immunol. 14:10748632023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Tian Y, Xie L, Liu X, Huang Z and Su W: Mesenchymal stem cells in allergic diseases: Current status. Allergol Int. 69:35–45. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, Antunes M, Robinson KL, Mitsialis SA, Kourembanas S, et al: Systemic administration of human bone Marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal Extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 4:1302–1316. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saikumar Jayalatha AK, Ketelaar ME, Hesse L, Badi YE, Zounemat-Kermani N, Brouwer S, Dijk NF, van den Berge M, Guryev V, Sayers I, et al: IL-33 induced gene expression in activated Th2 effector cells is dependent on IL-1RL1 haplotype and asthma status. Eur Respir J. 63:24000052024. View Article : Google Scholar : PubMed/NCBI | |
Stark JM, Liu J, Tibbitt CA, Christian M, Ma J, Wintersand A, Dunst J, Kreslavsky T, Murrell B, Adner M, et al: Recombinant multimeric dog allergen prevents airway hyperresponsiveness in a model of asthma marked by vigorous TH 2 and TH 17 cell responses. Allergy. 77:2987–3001. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Lu Y, Wu W and Feng Y: HMSC-Derived Exosome Inhibited Th2 Cell Differentiation via Regulating miR-146a-5p/SERPINB2 Pathway. J Immunol Res. 2021:66965252021. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Abel PW, Casale TB and Tu Y: TTH17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol. 149:467–479. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fang SB, Zhang HY, Wang C, He BX, Liu XQ, Meng XC, Peng YQ, Xu ZB, Fan XL, Wu ZJ, et al: Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J Extracell Vesicles. 9:17232602020. View Article : Google Scholar : PubMed/NCBI | |
Zhou JY, Alvarez CA and Cobb BA: Integration of IL-2 and IL-4 signals coordinates divergent regulatory T cell responses and drives therapeutic efficacy. Elife. 10:e574172021. View Article : Google Scholar : PubMed/NCBI | |
Du YM, Zhuansun YX, Chen R, Lin L, Lin Y and Li JG: Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res. 363:114–120. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhuansun Y, Du Y, Huang F, Lin L, Chen R, Jiang S and Li J: MSCs exosomal miR-1470 promotes the differentiation of CD4+CD25+FOXP3+ Tregs in asthmatic patients by inducing the expression of P27KIP1. Int Immunopharmacol. 77:1059812019. View Article : Google Scholar : PubMed/NCBI | |
Bencivenga D, Stampone E, Roberti D, Della Ragione F and Borriello A: p27Kip1, an intrinsically unstructured protein with scaffold properties. Cells. 10:22542021. View Article : Google Scholar : PubMed/NCBI | |
Li C, Deng C, Zhou T, Hu J, Dai B, Yi F, Tian N, Jiang L, Dong X, Zhu Q, et al: MicroRNA-370 carried by M2 macrophage-derived exosomes alleviates asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Int J Biol Sci. 17:1795–1807. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dong B, Wang C, Zhang J, Zhang J, Gu Y, Guo X, Zuo X, Pan H, Hsu AC, Wang G and Wang F: Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe Steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res Ther. 12:2042021. View Article : Google Scholar : PubMed/NCBI | |
Dehnavi S, Khodadadi A, Asadirad A and Ghadiri AA: Immune response modulation by allergen loaded into mesenchymal stem Cell-derived exosomes as an effective carrier through sublingual immunotherapy. Immunobiology. 228:1523612023. View Article : Google Scholar : PubMed/NCBI | |
Bandeira E, Jang SC, Lässer C, Johansson K, Rådinger M and Park KS: Effects of mesenchymal stem Cell-derived nanovesicles in experimental allergic airway inflammation. Respir Res. 24:32023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang N, Cheng Q, Zhang H, Liu F and Shang Y: MiR-21-5p in Macrophage-derived exosomes targets Smad7 to promote epithelial mesenchymal transition of airway epithelial cells. J Asthma Allergy. 14:513–524. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shan L, Liu S, Zhang Q, Zhou Q and Shang Y: Human bone marrow-mesenchymal stem cell-derived exosomal microRNA-188 reduces bronchial smooth muscle cell proliferation in asthma through suppressing the JARID2/Wnt/β-catenin axis. Cell Cycle. 21:352–367. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zucca E, Corsini E, Galbiati V, Lange-Consiglio A and Ferrucci F: Evaluation of amniotic mesenchymal cell derivatives on cytokine production in equine alveolar macrophages: An in vitro approach to lung inflammation. Stem Cell Res Ther. 7:1372016. View Article : Google Scholar : PubMed/NCBI | |
Zulueta A, Colombo M, Peli V, Falleni M, Tosi D, Ricciardi M, Baisi A, Bulfamante G, Chiaramonte R and Caretti A: Lung mesenchymal stem Cells-derived extracellular vesicles attenuate the inflammatory profile of cystic fibrosis epithelial cells. Cell Signal. 51:110–118. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng CY, Bai SY, Li ML, Zhao JY, Sun JM, Bao HJ, Ren Y and Su XM: Adipose-derived mesenchymal stem cell-derived exosomal miR-301a-3p regulates airway smooth muscle cells during asthma by targeting STAT3. J Asthma Allergy. 15:99–110. 2022. View Article : Google Scholar : PubMed/NCBI | |
Abbaszadeh H, Ghorbani F, Abbaspour-Aghdam S, Kamrani A, Valizadeh H, Nadiri M, Sadeghi A, Shamsasenjan K, Jadidi-Niaragh F, Roshangar L and Ahmadi M: Chronic obstructive pulmonary disease and asthma: Mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools. Stem Cell Res Ther. 13:2622022. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Chen Y, Yin G and Xie Q: Therapeutic prospects of MicroRNAs carried by mesenchymal stem Cells-derived extracellular vesicles in autoimmune diseases. Life Sci. 277:1194582021. View Article : Google Scholar : PubMed/NCBI | |
de Castro LL, Xisto DG, Kitoko JZ, Cruz FF, Olsen PC, Redondo PAG, Ferreira TPT, Weiss DJ, Martins MA, Morales MM and Rocco PRM: Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther. 8:1512017. View Article : Google Scholar : PubMed/NCBI | |
Song J, Zhu XM and Wei QY: MSCs reduce airway remodeling in the lungs of asthmatic rats through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 24:11199–11211. 2020.PubMed/NCBI | |
Peng YQ, Deng XH, Xu ZB, Wu ZC and Fu QL: Mesenchymal stromal cells and their small extracellular vesicles in allergic diseases: From immunomodulation to therapy. Eur J Immunol. 53:e21495102023. View Article : Google Scholar : PubMed/NCBI | |
Yuan JY, Wang XY, Tong ZY, Dong YC, Zhao JY, Zhang Y and Shang Y: Promising therapeutic functions of bone marrow mesenchymal stem cells Derived-exosome in asthma. Can Respir J. 2022:14857192022.PubMed/NCBI | |
Liu W, Lin H, Nie W, Wan J, Jiang Q and Zhang A: Exosomal miR-221-3p derived from bone marrow mesenchymal stem cells alleviates asthma progression by targeting FGF2 and inhibiting the ERK1/2 signaling pathway. Evid Based Complement Alternat Med. 2022:59108742022.PubMed/NCBI | |
Dong L, Wang Y, Zheng T, Pu Y, Ma Y, Qi X, Zhang W, Xue F, Shan Z, Liu J, et al: Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Res Ther. 12:42021. View Article : Google Scholar : PubMed/NCBI | |
Li X and Yang N: Exosome miR-223-3p in the bone marrow-derived mesenchymal stem cells alleviates the inflammation and airway remodeling through NLRP3-induced ASC/Caspase-1/GSDMD signaling pathway. Int Immunopharmacol. 123:1107462023. View Article : Google Scholar : PubMed/NCBI | |
Sadeghi M, Dehnavi S, Khodadadi A, Ghadiri AA, Ganji A, Sharifat M and Asadirad A: Immunomodulatory features of MSC-derived exosomes decorated with DC-specific aptamer for improving sublingual immunotherapy in allergic mouse model. Stem Cell Res Ther. 15:4812024. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Wang Y, Ma Y and Yang J: MiR-223 plays a protecting role in neutrophilic asthmatic mice through the inhibition of NLRP3 inflammasome. Respir Res. 21:1162020. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Stevens P, Karpurapu M, Lee H, Englert JA, Yan P, Lee TJ, Pabla N, Pietrzak M, Park GY, et al: Targeting ETosis by miR-155 inhibition mitigates mixed granulocytic asthmatic lung inflammation. Front Immunol. 13:9435542022. View Article : Google Scholar : PubMed/NCBI |