1
|
Gerdts E, Omvik P, Mo R and Kjeldsen SE:
Hypertension and heart disease. Tidsskr Nor Laegeforen.
124:802–805. 2004.(In Norwegian). PubMed/NCBI
|
2
|
Shimizu I and Minamino T: Physiological
and pathological cardiac hypertrophy. J Mol Cell Cardiol.
97:245–262. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fiedler B and Wollert KC: Targeting
calcineurin and associated pathways in cardiac hypertrophy and
failure. Expert Opin Ther Targets. 9:963–973. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nakamura M and Sadoshima J: Mechanisms of
physiological and pathological cardiac hypertrophy. Nat Rev
Cardiol. 15:387–407. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Marian AJ and Braunwald E: Hypertrophic
cardiomyopathy: Genetics, pathogenesis, clinical manifestations,
diagnosis, and therapy. Circ Res. 121:749–770. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wu S, Chen L and Zhou X: Circular RNAs in
the regulation of cardiac hypertrophy. Mol Ther Nucleic Acids.
27:484–490. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tham YK, Bernardo BC, Ooi JY, Weeks KL and
McMullen JR: Pathophysiology of cardiac hypertrophy and heart
failure: Signaling pathways and novel therapeutic targets. Arch
Toxicol. 89:1401–1438. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Samak M, Fatullayev J, Sabashnikov A,
Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH,
Wahlers T and Weymann A: Cardiac hypertrophy: An introduction to
molecular and cellular basis. Med Sci Monit Basic Res. 22:75–79.
2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou M, Xiao MS, Li Z and Huang C: New
progresses of circular RNA biology: From nuclear export to
degradation. RNA Biol. 18:1365–1373. 2021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang M, Bai X, Zeng X, Liu J, Liu F and
Zhang Z: circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta.
523:120–130. 2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Altesha MA, Ni T, Khan A, Liu K and Zheng
X: Circular RNA in cardiovascular disease. J Cell Physiol.
234:5588–5600. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kristensen LS, Jakobsen T, Hager H and
Kjems J: The emerging roles of circRNAs in cancer and oncology. Nat
Rev Clin Oncol. 19:188–206. 2022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li H, Xu JD, Fang XH, Zhu JN, Yang J, Pan
R, Yuan SJ, Zeng N, Yang ZZ, Yang H, et al: Circular RNA
circRNA_000203 aggravates cardiac hypertrophy via suppressing
miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res.
116:1323–1334. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guo HM and Liu ZP: Up-regulation of
circRNA_0068481 promotes right ventricular hypertrophy in PAH
patients via regulating miR-646/miR-570/miR-885. J Cell Mol Med.
25:3735–3743. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang W, Wang L, Yang M, Wu C, Lan R, Wang
W and Li Y: Circ-SIRT1 inhibits cardiac hypertrophy via activating
SIRT1 to promote autophagy. Cell Death Dis. 12:10692021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pan J, Xu Z, Guo G, Xu C, Song Z, Li K,
Zhong K and Wang D: Circ_nuclear factor I X (circNfix) attenuates
pressure overload-induced cardiac hypertrophy via regulating
miR-145-5p/ATF3 axis. Bioengineered. 12:5373–5385. 2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vidal M, Wieland T, Lohse MJ and Lorenz K:
β-Adrenergic receptor stimulation causes cardiac hypertrophy via a
Gβγ/Erk-dependent pathway. Cardiovasc Res. 96:255–264. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Li Y, Chen X, Li P, Xiao Q, Hou D and Kong
X: CD47 antibody suppresses isoproterenol-induced cardiac
hypertrophy through activation of autophagy. Am J Transl Res.
12:5908–5923. 2020.PubMed/NCBI
|
19
|
Shang L, Pin L, Zhu S, Zhong X, Zhang Y,
Shun M, Liu Y and Hou M: Plantamajoside attenuates
isoproterenol-induced cardiac hypertrophy associated with the HDAC2
and AKT/GSK-3β signaling pathway. Chem Biol Interact. 307:21–28.
2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Feng H, Wu J, Chen P, Wang J, Deng Y, Zhu
G, Xian J, Huang L and Ouyang W: MicroRNA-375-3p inhibitor
suppresses angiotensin II-induced cardiomyocyte hypertrophy by
promoting lactate dehydrogenase B expression. J Cell Physiol.
234:14198–14209. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang K, Long B, Liu F, Wang JX, Liu CY,
Zhao B, Zhou LY, Sun T, Wang M, Yu T, et al: A circular RNA
protects the heart from pathological hypertrophy and heart failure
by targeting miR-223. Eur Heart J. 37:2602–2611. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pelikan A, Herzel H, Kramer A and
Ananthasubramaniam B: Venn diagram analysis overestimates the
extent of circadian rhythm reprogramming. FEBS J. 289:6605–6621.
2022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li S and Yang P: Relationship between
HSPA1A-regulated gene expression and alternative splicing in mouse
cardiomyocytes and cardiac hypertrophy. J Thorac Dis. 13:5517–5533.
2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen YH, Zhong LF, Hong X, Zhu QL, Wang
SJ, Han JB, Huang WJ and Ye BZ: Integrated analysis of
circRNA-miRNA-mRNA ceRNA network in cardiac hypertrophy. Front
Genet. 13:7816762022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen K, Jian D, Zhao L, Zang X, Song W, Ma
J, Jia Z, Wang X and Gao C: Protective effect of histone
methyltransferase NSD3 on ISO-induced cardiac hypertrophy. FEBS
Lett. 593:2556–2565. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hong MH, Na SW, Jang YJ, Yoon JJ, Lee YJ,
Lee HS, Kim HY and Kang DG: Betulinic acid improves cardiac-renal
dysfunction caused by hypertrophy through Calcineurin-NFATc3
signaling. Nutrients. 13:34842021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ba L, Gao J, Chen Y, Qi H, Dong C, Pan H,
Zhang Q, Shi P, Song C, Guan X, et al: Allicin attenuates
pathological cardiac hypertrophy by inhibiting autophagy via
activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways.
Phytomedicine. 58:1527652019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liang ZZ, Guo C, Zou MM, Meng P and Zhang
TT: circRNA-miRNA-mRNA regulatory network in human lung cancer: An
update. Cancer Cell Int. 20:1732020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Alkan AH and Akgül B: Endogenous miRNA
Sponges. Methods Mol Biol. 2257:91–104. 2022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Brahma PK, Zhang H, Murray BS, Shu FJ,
Sidell N, Seli E and Kallen CB: The mRNA-binding protein Zfp36 is
upregulated by β-adrenergic stimulation and represses IL-6
production in 3T3-L1 adipocytes. Obesity (Silver Spring). 20:40–47.
2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Potter LR, Yoder AR, Flora DR, Antos LK
and Dickey DM: Natriuretic peptides: Their structures, receptors,
physiologic functions and therapeutic applications. Handb Exp
Pharmacol. 191:341–366. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Samad M, Malempati S and Restini CBA:
Natriuretic peptides as biomarkers: Narrative review and
considerations in cardiovascular and respiratory dysfunctions. Yale
J Biol Med. 96:137–149. 2023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wei J, Li M, Xue C, Chen S, Zheng L, Deng
H, Tang F, Li G, Xiong W, Zeng Z and Zhou M: Understanding the
roles and regulation patterns of circRNA on its host gene in
tumorigenesis and tumor progression. J Exp Clin Cancer Res.
42:862023. View Article : Google Scholar : PubMed/NCBI
|