1
|
Pei Q, Yi Q and Tang L: liver fibrosis
resolution: From molecular mechanisms to therapeutic opportunities.
Int J Mol Sci. 24:96712023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kaps L and Schuppan D: Targeting cancer
associated fibroblasts in liver fibrosis and liver cancer using
nanocarriers. Cells. 9:20272020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yuan S, Wei C, Liu G, Zhang L, Li J, Li L,
Cai S and Fang L: Sorafenib attenuates liver fibrosis by triggering
hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell
Prolif. 55:e131582022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hammerich L and Tacke F: Hepatic
inflammatory responses in liver fibrosis. Nat Rev Gastroenterol
Hepatol. 20:633–646. 2023. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fu Y, Zhou X, Wang L, Fan W, Gao S, Zhang
D, Ling Z, Zhang Y, Ma L, Bai F, et al: Salvianolic acid B
attenuates liver fibrosis by targeting Ecm1 and inhibiting
hepatocyte ferroptosis. Redox Biol. 69:1030292024. View Article : Google Scholar : PubMed/NCBI
|
6
|
Crouchet E, Dachraoui M, Juhling F,
Roehlen N, Oudot MA, Durand SC, Ponsolles C, Gadenne C,
Meiss-Heydmann L, Moehlin J, et al: Targeting the liver clock
improves fibrosis by restoring TGF-β signaling. J Hepatol.
82:120–133. 2025. View Article : Google Scholar : PubMed/NCBI
|
7
|
Song Y, Wei J, Li R, Fu R, Han P, Wang H,
Zhang G, Li S, Chen S, Liu Z, et al: Tyrosine kinase receptor B
attenuates liver fibrosis by inhibiting TGF-β/SMAD signaling.
Hepatology. 78:1433–1447. 2023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang Y, Sun M, Li W, Liu C, Jiang Z, Gu P,
Li J, Wang W, You R, Ba Q, et al: Rebalancing TGF-β/Smad7 signaling
via Compound kushen injection in hepatic stellate cells protects
against liver fibrosis and hepatocarcinogenesis. Clin Transl Med.
11:e4102021. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang L, Liu C, Yin L, Huang C and Fan S:
Mangiferin relieves CCl4-induced liver fibrosis in mice. Sci Rep.
13:41722023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cheng Q, Li C, Yang CF, Zhong YJ, Wu D,
Shi L, Chen L, Li YW and Li L: Methyl ferulic acid attenuates liver
fibrosis and hepatic stellate cell activation through the
TGF-β1/Smad and NOX4/ROS pathways. Chem Biol Interact. 299:131–139.
2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liao YJ, Lee CY, Twu YC, Suk FM, Lai TC,
Chang YC, Lai YC, Yuan JW, Jhuang HM, Jian HR, et al: Isolation and
biological evaluation of Alfa-mangostin as potential therapeutic
agents against liver fibrosis. Bioengineering (Basel). 10:10752023.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Hernandez-Aquino E, Zarco N,
Casas-Grajales S, Ramos-Tovar E, Flores-Beltran RE, Arauz J,
Shibayama M, Favari L, Tsutsumi V, Segovia J and Muriel P:
Naringenin prevents experimental liver fibrosis by blocking
TGFβ-Smad3 and JNK-Smad3 pathways. World J Gastroenterol.
23:4354–4368. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu H, Yue L, Li Y, Zheng T, Zhang W, Li
C, Zhuang W and Fan L: Combination of Polygonatum Rhizoma and
Scutellaria baicalensis triggers apoptosis through downregulation
of PON(3)-induced mitochondrial damage and endoplasmic reticulum
stress in A549 cells. Environ Toxicol. 39:3172–3187. 2024.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen X, Tong YL, Ren ZM, Chen SS, Mei XY,
Zhou QY and Dai GH: Hypoglycemic mechanisms of Polygonatum
sibiricum polysaccharide in db/db mice via regulation of
glycolysis/gluconeogenesis pathway and alteration of gut
microbiota. Heliyon. 9:e154842023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen W, Shen Z, Dong W, Huang G, Yu D,
Chen W, Yan X and Yu Z: Polygonatum sibiricum polysaccharide
ameliorates skeletal muscle aging via mitochondria-associated
membrane-mediated calcium homeostasis regulation. Phytomedicine.
129:1555672024. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang T, Li YQ, Yu LP, Zi L, Yang YQ, Zhang
M, Hao JJ, Gu W, Zhang F, Yu J and Yang XX: Compatibility of
Polygonati Rhizoma and Angelicae Sinensis Radix enhance the
alleviation of metabolic dysfunction-associated fatty liver disease
by promoting fatty acid beta-oxidation. Biomed Pharmacother.
162:1145842023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mu JK, Zi L, Li YQ, Yu LP, Cui ZG, Shi TT,
Zhang F, Gu W, Hao JJ, Yu J and Yang XX: Jiuzhuan Huangjing Pills
relieve mitochondrial dysfunction and attenuate high-fat
diet-induced metabolic dysfunction-associated fatty liver disease.
Biomed Pharmacother. 142:1120922021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu J, Zhang H, Ji B, Cai S, Wang R, Zhou
F, Yang J and Liu H: A diet formula of Puerariae radix, Lycium
barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates
insulin resistance and hepatic steatosis in CD-1 mice and HepG2
cells. Food Funct. 5:1038–1049. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gong H, Gan X, Qin B, Chen J, Zhao Y, Qiu
B, Chen W, Yu Y, Shi S, Li T, et al: Structural characteristics of
steamed Polygonatum cyrtonema polysaccharide and its bioactivity on
colitis via improving the intestinal barrier and modifying the gut
microbiota. Carbohydr Polym. 327:1216692024. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhong R, Shen L, Fan Y, Luo Q, Hong R, Sun
X, Zhou X and Wan J: Anti-aging mechanism and effect of treatment
with raw and wine-steamed Polygonatum sibiricum on
D-galactose-induced aging in mice by inhibiting oxidative stress
and modulating gut microbiota. Front Pharmacol. 15:13357862024.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Li H: Advances in anti hepatic fibrotic
therapy with Traditional Chinese Medicine herbal formula. J
Ethnopharmacol. 251:1124422020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ji D, Chen Y, Bi J, Shang Q, Liu H, Wang
JB, Tan L, Wang J, Chen Y, Li Q, et al: Entecavir plus
Biejia-Ruangan compound reduces the risk of hepatocellular
carcinoma in Chinese patients with chronic hepatitis B. J Hepatol.
77:1515–1524. 2022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shen B, Deng L, Liu Y, Li R, Shen C, Liu
X, Li Y and Yuan H: Effects of novel Fufang Biejia Ruangan Tablets
with sheep placenta as substitute for Hominis Placenta on
CCl4-induced liver fibrosis. Chin Herb Med. 14:104–110.
2022.PubMed/NCBI
|
24
|
Chinese Pharmacopoeia Commission, .
Pharmacopoeia of the People's Republic of China (2015 Edition).
Beijing China Medical Science Press. 1:306–307. 2015.
|
25
|
Staub F, Tournoux-Facon C, Roumy J,
Chaigneau C, Morichaut-Beauchant M, Levillain P, Prevost C, Aube C,
Lebigot J, Oberti F, et al: Liver fibrosis staging with
contrast-enhanced ultrasonography: Prospective multicenter study
compared with METAVIR scoring. Eur Radiol. 19:1991–1997. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Guan Y, Enejder A, Wang M, Fang Z, Cui L,
Chen SY, Wang J, Tan Y, Wu M, Chen X, et al: A human multi-lineage
hepatic organoid model for liver fibrosis. Nat Commun. 12:61382021.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Xia Y, Yu B, Ma C, Tu Y, Zhai L, Yang Y,
Liu D, Liu Y, Wu H, Dan H and You P: Yu Gan Long reduces rat liver
fibrosis by blocking TGF-β1/Smad pathway and modulating the
immunity. Biomed Pharmacother. 106:1332–1338. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mak KM and Mei R: Basement membrane type
IV collagen and laminin: An overview of their biology and value as
fibrosis biomarkers of liver disease. Anat Rec (Hoboken).
300:1371–1390. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Meng X, Kuang H, Wang Q, Zhang H, Wang D
and Kang T: A polysaccharide from Codonopsis pilosula roots
attenuates carbon tetrachloride-induced liver fibrosis via
modulation of TLR4/NF-κB and TGF-β1/Smad3 signaling pathway. Int
Immunopharmacol. 119:1101802023. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tong G, Chen X, Lee J, Fan J, Li S, Zhu K,
Hu Z, Mei L, Sui Y, Dong Y, et al: Fibroblast growth factor 18
attenuates liver fibrosis and HSCs activation via the SMO-LATS1-YAP
pathway. Pharmacol Res. 178:1061392022. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen C, Chen J, Wang Y, Fang L, Guo C,
Sang T, Peng H, Zhao Q, Chen S, Lin X and Wang X: Ganoderma lucidum
polysaccharide inhibits HSC activation and liver fibrosis via
targeting inflammation, apoptosis, cell cycle, and ECM-receptor
interaction mediated by TGF-β/Smad signaling. Phytomedicine.
110:1546262023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bai J, Qian B, Cai T, Chen Y, Li T, Cheng
Y, Wu Z, Liu C, Ye M, Du Y and Fu W: Aloin attenuates oxidative
stress, inflammation, and CCl4-induced liver fibrosis in
mice: Possible role of TGF-β/Smad signaling. J Agric Food Chem.
71:19475–19487. 2023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jiang Y, Zeng X, Dai H, Luo S and Zhang X:
Polygonatum sibiricum polysaccharide regulation of gut
microbiota: A viable approach to alleviate cognitive impairment.
Int J Biol Macromol. 277:1344942024. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jiang Q, Lv Y, Dai W, Miao X and Zhong D:
Extraction and bioactivity of polygonatum polysaccharides. Int J
Biol Macromol. 54:131–135. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bi J, Zhao C, Jin W, Chen Q, Fan B and
Qian C: Study on pharmacokinetics and tissue distribution of
Polygonatum sibiricum polysaccharide in rats by fluorescence
labeling. Int J Biol Macromol. 215:541–549. 2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu R, Zhang X, Cai Y, Xu S, Xu Q, Ling C,
Li X, Li W, Liu P and Liu W: Research progress on medicinal
components and pharmacological activities of Polygonatum
sibiricum. J Ethnopharmacol. 328:1180242024. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xue X and Li Y, Zhang S, Yao Y, Peng C and
Li Y: Hydroxysafflor yellow A exerts anti-fibrotic and
anti-angiogenic effects through miR-29a-3p/PDGFRB axis in liver
fibrosis. Phytomedicine. 132:1558302024. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Q, Shang MM, Ling QF, Wu XP and Liu
CY: Hepatoprotective effects of loach (Misgurnus anguillicaudatus)
lyophilized powder on dimethylnitrosamine-induced liver fibrosis in
rats. Arch Pharm Res. 44:1–12. 2021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Leroy V, Monier F, Bottari S, Trocme C,
Sturm N, Hilleret MN, Morel F and Zarski JP: Circulating matrix
metalloproteinases 1, 2, 9 and their inhibitors TIMP-1 and TIMP-2
as serum markers of liver fibrosis in patients with chronic
hepatitis C: Comparison with PIIINP and hyaluronic acid. Am J
Gastroenterol. 99:271–279. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li G, Lin J, Peng Y, Qin K, Wen L, Zhao T
and Feng Q: Curcumol may reverse early and advanced liver
fibrogenesis through downregulating the uPA/uPAR pathway. Phytother
Res. 34:1421–1435. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang Y, Liu Y, Liu Y, Zhong J, Wang J, Sun
L, Yu L, Wang Y, Li Q, Jin W and Yan Z: Remodeling liver
microenvironment by L-arginine loaded hollow polydopamine
nanoparticles for liver cirrhosis treatment. Biomaterials.
295:1220282023. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li H: Intercellular crosstalk of liver
sinusoidal endothelial cells in liver fibrosis, cirrhosis and
hepatocellular carcinoma. Dig Liver Dis. 54:598–613. 2022.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Parola M and Pinzani M: Liver fibrosis:
Pathophysiology, pathogenetic targets and clinical issues. Mol
Aspects Med. 65:37–55. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Parola M and Pinzani M: Liver fibrosis in
NAFLD/NASH: From pathophysiology towards diagnostic and therapeutic
strategies. Mol Aspects Med. 95:1012312024. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bataller R and Brenner DA: Liver fibrosis.
J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kamm DR and McCommis KS: Hepatic stellate
cells in physiology and pathology. J Physiol. 600:1825–1837. 2022.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang L, Shi J, Shen Q, Fu Y, Qi S, Wu J,
Chen J, Zhang H, Mu Y, Chen G, et al: Astragalus saponins protect
against extrahepatic and intrahepatic cholestatic liver fibrosis
models by activation of farnesoid X receptor. J Ethnopharmacol.
318:1168332024. View Article : Google Scholar : PubMed/NCBI
|
49
|
Naim A, Pan Q and Baig MS: Matrix
Metalloproteinases (MMPs) in liver diseases. J Clin Exp Hepatol.
7:367–372. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Pastore M, Caligiuri A, Raggi C, Navari N,
Piombanti B, Di Maira G, Rovida E, Piccinni MP, Lombardelli L,
Logiodice F, et al: Macrophage MerTK promotes profibrogenic
cross-talk with hepatic stellate cells via soluble mediators. JHEP
Rep. 4:1004442022. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wu P, Luo X and Sun M, Sun B and Sun M:
Synergetic regulation of kupffer cells, extracellular matrix and
hepatic stellate cells with versatile CXCR4-inhibiting nanocomplex
for magnified therapy in liver fibrosis. Biomaterials.
284:1214922022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Takemura S, Azuma H, Osada-Oka M, Kubo S,
Shibata T and Minamiyama Y: S-allyl-glutathione improves
experimental liver fibrosis by regulating Kupffer cell activation
in rats. Am J Physiol Gastrointest Liver Physiol. 314:G150–G163.
2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang Z, Yuan Y, Hu L, Tang J, Meng Z, Dai
L, Gao Y, Ma S, Wang X, Yuan Y, et al: ANGPTL8 accelerates liver
fibrosis mediated by HFD-induced inflammatory activity via
LILRB2/ERK signaling pathways. J Adv Res. 47:41–56. 2023.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Cogliati B, Yashaswini CN, Wang S, Sia D
and Friedman SL: Friend or foe? The elusive role of hepatic
stellate cells in liver cancer. Nat Rev Gastroenterol Hepatol.
20:647–661. 2023. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhu Y, Kang A, Kuai Y, Guo Y, Miao X, Zhu
L, Kong M and Li N: The chromatin remodeling protein BRG1 regulates
HSC-myofibroblast differentiation and liver fibrosis. Cell Death
Dis. 14:8262023. View Article : Google Scholar : PubMed/NCBI
|
56
|
Pydyn N, Ferenc A, Trzos K, Pospiech E,
Wilamowski M, Mucha O, Major P, Kadluczka J, Rodrigues PM, Banales
JM, et al: MCPIP1 inhibits hepatic stellate cell activation in
autocrine and paracrine manners, preventing liver fibrosis. Cell
Mol Gastroenterol Hepatol. 17:887–906. 2024. View Article : Google Scholar : PubMed/NCBI
|
57
|
Dewidar B, Meyer C, Dooley S and
Meindl-Beinker AN: TGF-β in hepatic stellate cell activation and
liver fibrogenesis-updated 2019. Cells. 8:14192019. View Article : Google Scholar : PubMed/NCBI
|
58
|
Sun L, Wang Y, Wang X, Navarro-Corcuera A,
Ilyas S, Jalan-Sakrikar N, Gan C, Tu X, Shi Y, Tu K, et al: PD-L1
promotes myofibroblastic activation of hepatic stellate cells by
distinct mechanisms selective for TGF-β receptor I versus II. Cell
Rep. 38:1103492022. View Article : Google Scholar : PubMed/NCBI
|
59
|
Pan Q, Gao M, Kim D, Ai W, Yang W, Jiang
W, Brashear W, Dai Y, Li S, Sun Y, et al: Hepatocyte FoxO1
deficiency protects from liver fibrosis via reducing inflammation
and TGF-β1-mediated HSC activation. Cell Mol Gastroenterol Hepatol.
17:41–58. 2024. View Article : Google Scholar : PubMed/NCBI
|
60
|
Shu G, Yusuf A, Dai C, Sun H and Deng X:
Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and
alleviates mouse liver fibrosis provoked by CCl4: Roles
in the activation of the Nrf2 cascade and subsequent suppression of
the TGF-β1/Smad axis. Food Funct. 12:11686–11703. 2021. View Article : Google Scholar : PubMed/NCBI
|
61
|
Song K, Kong X, Xian Y, Yu Z, He M, Xiao
D, Liang D, Zhang Z, Liu T, Huang Z, et al: Roux-en-Y gastric
bypass improves liver and glucose homeostasis in Zucker diabetic
fatty rats by upregulating hepatic trefoil factor family 3 and
activating the phosphatidylinositol 3-kinase/protein kinase B
pathway. Surg Obes Relat Dis. Jan 10–2025.doi:
10.1016/j.soard.2024.12.024 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|