
DDX3X/MAVS alleviates doxorubicin‑induced cardiotoxicity by regulating stress granules
- Authors:
- Kaixiang Zhao
- Shaochen Wang
- Dandan Feng
- Dongwei Wang
- Guang Yang
- Fangfang Lang
-
Affiliations: Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, Shandong 250014, P.R China, Department of Cardiology, Shandong First Medical University, Jinan, Shandong 250017, P.R. China, Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Shandong Province, Jinan, Shandong 250013, P.R. China - Published online on: June 24, 2025 https://doi.org/10.3892/mmr.2025.13602
- Article Number: 237
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Momparler RL, Karon M, Siegel SE and Avila F: Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res. 36:2891–2895. PubMed/NCBI | |
Fornari FA, Randolph JK, Yalowich JC, Ritke MK and Gewirtz DA: Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol. 45:649–656. 1994. View Article : Google Scholar : PubMed/NCBI | |
Pommier Y, Capranico G, Orr A and Kohn KW: Local base sequence preferences for DNA cleavage by mammalian topoisomerase II in the presence of amsacrine or teniposide. Nucleic Acids Res. 19:5973–5980. 1991. View Article : Google Scholar : PubMed/NCBI | |
Tewey KM, Rowe TC, Yang L, Halligan BD and Liu LF: Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science. 226:466–468. 1984. View Article : Google Scholar : PubMed/NCBI | |
Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, et al: 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 37:2768–2801. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Huang J, Zhan Y, Qiu N, Jin H, Li J, Huang H and Li H: Association between the genetic polymorphisms of the pharmacokinetics of anthracycline drug and myelosuppression in a patient with breast cancer with Anthracycline-based chemotherapy. Life Sci. 276:1193922021. View Article : Google Scholar : PubMed/NCBI | |
Ramalingayya GV, Cheruku SP, Nayak PG, Kishore A, Shenoy R, Rao CM and Krishnadas N: Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats. Drug Des Devel Ther. 11:1011–1026. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dean JC, Salmon SE and Griffith KS: Prevention of doxorubicin-induced hair loss with scalp hypothermia. N Engl J Med. 301:1427–1429. 1979. View Article : Google Scholar : PubMed/NCBI | |
Swain SM, Whaley FS and Ewer MS: Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer. 97:2869–2879. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fornaro A, Olivotto I, Rigacci L, Ciaccheri M, Tomberli B, Ferrantini C, Coppini R, Girolami F, Mazzarotto F and Chiostri M: Comparison of long-term outcome in anthracycline-related versus idiopathic dilated cardiomyopathy: A single centre experience. Eur J Heart Fail. 20:898–906. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, et al: Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 131:1981–1988. 2015. View Article : Google Scholar : PubMed/NCBI | |
Berthiaume JM and Wallace KB: Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology Toxicol. 23:15–25. 2006. View Article : Google Scholar | |
Goormaghtigh E, Huart P, Praet M, Brasseur R and Ruysschaert JM: Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophys Chem. 35:247–257. 1990. View Article : Google Scholar : PubMed/NCBI | |
Hoye AT, Davoren JE, Wipf P, Fink MP and Kagan VE: Targeting mitochondria. Acc Chem Res. 41:87–97. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Jungsuwadee P, Vore M, Butterfield DA and St Clair DK: Collateral damage in cancer chemotherapy: Oxidative stress in nontargeted tissues. Mol Interv. 7:147–156. 2007. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Kruger A, Kleschyov AL, Kalinowski L, Daiber A and Wojnowski L: Gp91phox-containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH. Free Radic Biol Med. 42:466–473. 2007. View Article : Google Scholar : PubMed/NCBI | |
Doroshow JH, Esworthy RS and Chu FF: Control of doxorubicin-induced, reactive oxygen-related apoptosis by glutathione peroxidase 1 in cardiac fibroblasts. Biochem Biophys Rep. 21:1007092020.PubMed/NCBI | |
Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T, Yan L and Tang QZ: Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: Oxidative stress and cell death. Int J Biol Sci. 18:760–770. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Liu X, Lee CP, Chua BHL and Ho YS: Attenuation of doxorubicin-induced contractile and mitochondrial dysfunction in mouse heart by cellular glutathione peroxidase. Free Radic Biol Med. 41:46–55. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sharma D and Jankowsky E: The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Crit Rev Biochem Mol Biol. 49:343–360. 2014. View Article : Google Scholar : PubMed/NCBI | |
Högbom M, Collins R, van den Berg S, Jenvert RM, Karlberg T, Kotenyova T, Flores A, Karlsson Hedestam GB and Schiavone LH: Crystal structure of conserved domains 1 and 2 of the human DEAD-box helicase DDX3X in complex with the mononucleotide AMP. J Mol Biol. 372:150–159. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tantravedi S, Vesuna F, Winnard PT Jr, Van Voss MRH, Van Diest PJ and Raman V: Role of DDX3 in the pathogenesis of inflammatory bowel disease. Oncotarget. 8:115280–115289. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schröder M: Viruses and the human DEAD-box helicase DDX3: Inhibition or exploitation? Biochem Soc Trans. 39:679–683. 2011. View Article : Google Scholar : PubMed/NCBI | |
Linder P and Jankowsky E: From unwinding to clamping-the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 12:505–516. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL and Reed R: Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 36:4708–4718. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kellaris G, Khan K, Baig SM, Tsai IC, Zamora FM, Ruggieri P, Natowicz MR and Katsanis N: A hypomorphic inherited pathogenic variant in DDX3X causes male intellectual disability with additional neurodevelopmental and neurodegenerative features. Hum Genomics. 12:112018. View Article : Google Scholar : PubMed/NCBI | |
Jankowsky A, Guenther UP and Jankowsky E: The RNA helicase database. Nucleic Acids Res. 39:D338–D341. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lai MC, Lee YH and Tarn WY: The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell. 19:3847–3858. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brennan R, Haap-Hoff A, Gu L, Gautier V, Long A and Schröder M: Investigating nucleo-cytoplasmic shuttling of the human DEAD-box helicase DDX3. Eur J Cell Biol. 97:501–511. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen HH, Yu HI, Cho WC and Tarn WY: DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene. 34:2790–2800. 2015. View Article : Google Scholar : PubMed/NCBI | |
Valentin-Vega YA, Wang YD, Parker M, Patmore DM, Kanagaraj A, Moore J, Rusch M, Finkelstein D, Ellison DW, Gilbertson RJ, et al: Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Sci Rep. 6:259962016. View Article : Google Scholar : PubMed/NCBI | |
Soulat D, Bürckstümmer T, Westermayer S, Goncalves A, Bauch A, Stefanovic A, Hantschel O, Bennett KL, Decker T and Superti-Furga G: The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27:2135–2146. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kienes I, Bauer S, Gottschild C, Mirza N, Pfannstiel J, Schröder M and Kufer TA: DDX3X links NLRP11 to the regulation of type I interferon responses and NLRP3 inflammasome activation. Front Immunol. 12:6538832021. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Fullam A, Brennan R and Schröder M: Human DEAD box helicase 3 couples IκB kinase ε to interferon regulatory factor 3 activation. Mol Cell Biol. 33:2004–2015. 2013. View Article : Google Scholar : PubMed/NCBI | |
Samir P, Kesavardhana S, Patmore DM, Gingras S, Malireddi RKS, Karki R, Guy CS, Briard B, Place DE, Bhattacharya A, et al: DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature. 573:590–594. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oshiumi H, Sakai K, Matsumoto M and Seya T: DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential. Eur J Immunol. 40:940–948. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Li Y, Xia J, He J, Pu J, Xie J, Wu S, Feng L, Huang X and Zhang P: IPS-1 plays an essential role in dsRNA-induced stress granule formation by interacting with PKR and promoting its activation. J Cell Sci. 127:2471–2482. 2014.PubMed/NCBI | |
Aoyama-Ishiwatari S, Okazaki T, Iemura SI, Natsume T, Okada Y and Gotoh Y: NUDT21 links mitochondrial IPS-1 to RLR-containing stress granules and activates host antiviral defense. J Immunol. 206:154–163. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin HB, Naito K, Oh Y, Farber G, Kanaan G, Valaperti A, Dawood F, Zhang L, Li GH, Smyth D, et al: Innate Immune Nod1/RIP2 signaling is essential for cardiac hypertrophy but requires mitochondrial antiviral signaling protein for signal transductions and energy balance. Circulation. 142:2240–2258. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li WY, Yang F, Li X, Wang LW and Wang Y: Stress granules inhibit endoplasmic reticulum stress-mediated apoptosis during hypoxia-induced injury in acute liver failure. World J Gastroenterol. 29:1315–1329. 2023. View Article : Google Scholar : PubMed/NCBI | |
Anderson P and Kedersha N: RNA granules: Post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol. 10:430–436. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE and Anderson P: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol. 169:871–884. 2005. View Article : Google Scholar : PubMed/NCBI | |
Protter DSW and Parker R: Principles and properties of stress granules. Trends Cell Biol. 26:668–679. 2016. View Article : Google Scholar : PubMed/NCBI | |
Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T and Taylor JP: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 163:123–133. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M, Weinert BT, Choudhary C and Matthias P: Acetylation of intrinsically disordered regions regulates phase separation. Nat Chem Biol. 15:51–61. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wheeler JR, Matheny T, Jain S, Abrisch R and Parker R: Distinct stages in stress granule assembly and disassembly. Elife. 5:e184132016. View Article : Google Scholar : PubMed/NCBI | |
Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A and Parker R: ATPase-modulated stress granules contain a diverse proteome and substructure. Cell. 164:487–498. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Fu X, Chen H, Min L, Sun J, Yin J, Guo J, Li H, Tang Z, Ruan Y, et al: G3BP1 interacts with YWHAZ to regulate chemoresistance and predict adjuvant chemotherapy benefit in gastric cancer. Br J Cancer. 124:425–436. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Chen T, Li C, Li W, Zhou X, Li Y, Luo D, Zhang N, Chen B, Wang L, et al: CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J Hematol Oncol. 15:1222022. View Article : Google Scholar : PubMed/NCBI | |
Oh SW, Onomoto K, Wakimoto M, Onoguchi K, Ishidate F, Fujiwara T, Yoneyama M, Kato H and Fujita T: Leader-containing uncapped viral transcript activates RIG-I in antiviral stress granules. PLoS Pathog. 12:e10054442016. View Article : Google Scholar : PubMed/NCBI | |
Li YR, King OD, Shorter J and Gitler AD: Stress granules as crucibles of ALS pathogenesis. J Cell Biol. 201:361–372. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moraes KC, Monteiro CJ and Pacheco-Soares C: A novel function for CUGBP2 in controlling the pro-inflammatory stimulus in H9c2 cells: Subcellular trafficking of messenger molecules. Cell Biol Int. 37:1129–1138. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alikunju S, Niranjan N, Mohsin M, Sayed N and Sayed D: G3bp1-microRNA-1 axis regulates cardiomyocyte hypertrophy. Cell Signal. 91:1102452022. View Article : Google Scholar : PubMed/NCBI | |
Dong G, Liang F, Sun B, Wang C, Liu Y, Guan X, Yang B, Xiu C, Yang N, Liu F, et al: Presence and function of stress granules in atrial fibrillation. PLoS One. 14:e02137692019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu R, Wu K, Yang G, Wang Y, Wang H and Rui T: Stress granule activation attenuates lipopolysaccharide-induced cardiomyocyte dysfunction. BMC Cardiovasc Disord. 23:2772023. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Hinchman MM, Lewandrowski M, Cross ST, Sutherland DM, Welsh OL, Dermody TS and Parker JSL: The multi-functional reovirus σ3 protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathog. 17:e10094942021. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using Real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Liu Y, Xiao W, Zhang D, Liu X, Xiao H, You S and Yuan L: Xinmailong Attenuates Doxorubicin-induced lysosomal dysfunction and oxidative stress in H9c2 cells via HO-1. Oxid Med Cell Longev. 2021:58969312021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Pan J, Huang S, Chen X, Chang ACY, Wang C, Zhang J and Zhang H: Hydrogen sulfide protects cardiomyocytes from doxorubicin-induced ferroptosis through the SLC7A11/GSH/GPx4 pathway by Keap1 S-sulfhydration and Nrf2 activation. Redox Biology. 70:1030662024. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Zhang X, Song P, Yuan YP, Kong C-Y, Wu HM, Xu SC, Ma ZG and Tang QZ: Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biology. 37:1017472020. View Article : Google Scholar : PubMed/NCBI | |
Feng D, Li J, Guo L, Liu J, Wang S, Ma X, Song Y, Liu J and Hao E: DDX3X alleviates doxorubicin-induced cardiotoxicity by regulating Wnt/β-catenin signaling pathway in an in vitro model. J Biochem Mol Toxicol. 36:e230772022. View Article : Google Scholar : PubMed/NCBI | |
Rawat PS, Jaiswal A, Khurana A, Bhatti JS and Navik U: Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 139:1117082021. View Article : Google Scholar : PubMed/NCBI | |
Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R and Sawyer DB: Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem. 279:8290–8299. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ahmadiasl N, Rostami A, Mohammadi NM and Rajabi F: Effects of noradrenaline and KCl on peripheral vessels in doxorubicin induced model of heart failure. Pathophysiology. 8:259–262. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lin RW, Ho CJ, Chen HW, Pao YH, Chen LE, Yang MC, Huang SB, Wang S, Chen CH and Wang C: P53 enhances apoptosis induced by doxorubicin only under conditions of severe DNA damage. Cell Cycle. 17:2175–2186. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui N, Wu F, Lu WJ, Bai R, Ke B, Liu T, Li L, Lan F and Cui M: Doxorubicin-induced cardiotoxicity is maturation dependent due to the shift from topoisomerase IIα to IIβ in human stem cell derived cardiomyocytes. J Cell Mol Med. 23:4627–4639. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang F, Hu Y, Chen R, Meng D, Guo L, Lv H, Guan J and Jia Y: In vivo stress granule misprocessing evidenced in a FUS knock-in ALS mouse model. Brain. 143:1350–1367. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wolozin B and Ivanov P: Stress granules and neurodegeneration. Nat Rev Neurosci. 20:649–666. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cui Q, Bi H, Lv Z, Wu Q, Hua J, Gu B, Huo C, Tang M, Chen Y, Chen C, et al: Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell. 186:803–820.e25. 2023. View Article : Google Scholar : PubMed/NCBI | |
Asadi MR, Sadat Moslehian M, Sabaie H, Jalaiei A, Ghafouri-Fard S, Taheri M and Rezazadeh M: Stress granules and neurodegenerative disorders: A scoping review. Front Aging Neurosci. 13:6507402021. View Article : Google Scholar : PubMed/NCBI | |
Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H and Takekawa M: Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol. 10:1324–1332. 2008. View Article : Google Scholar : PubMed/NCBI | |
Si W, Ye S, Ren Z, Liu X, Wu Z, Li Y, Zhou J, Zhang S, Li Y, Deng R and Chen D: miR-335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke. Int J Mol Med. 43:1452–1466. 2019.PubMed/NCBI | |
Kedersha N, Ivanov P and Anderson P: Stress granules and cell signaling: More than just a passing phase? Trends Biochem Sci. 38:494–506. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Kläsener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, et al: Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell. 154:859–874. 2013. View Article : Google Scholar : PubMed/NCBI | |
Doroshow JH, Locker GY and Myers CE: Enzymatic defenses of the mouse heart against reactive oxygen metabolites: Alterations produced by doxorubicin. J Clin Invest. 65:128–1235. 1980. View Article : Google Scholar : PubMed/NCBI | |
do Nascimento TC, Cazarin CBB, Maróstica MR Jr, Mercadante AZ, Jacob-Lopes E and Zepka LQ: Microalgae carotenoids intake: Influence on cholesterol levels, lipid peroxidation and antioxidant enzymes. Food Res Int. 128:1087702020. View Article : Google Scholar : PubMed/NCBI | |
Mihm MJ, Yu F, Weinstein DM, Reiser PJ and Bauer JA: Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: Evidence for selective impairment of myofibrillar creatine kinase. Br J Pharmacol. 135:581–588. 2002. View Article : Google Scholar : PubMed/NCBI | |
Deavall DG, Martin EA, Horner JM and Roberts R: Drug-induced oxidative stress and toxicity. J Toxicol. 2012:6454602012. View Article : Google Scholar : PubMed/NCBI | |
Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M and Fujii M: Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol. 33:815–829. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim YS, Lee SG, Park SH and Song K: Gene structure of the human DDX3 and chromosome mapping of its related sequences. Mol Cells. 12:209–214. 2001. View Article : Google Scholar : PubMed/NCBI | |
Perfetto M, Xu X, Lu C, Shi Y, Yousaf N, Li J, Yien YY and Wei S: The RNA helicase DDX3 induces neural crest by promoting AKT activity. Development. 148:dev1843412021.PubMed/NCBI | |
Snijders Blok L, Madsen E, Juusola J, Gilissen C, Baralle D, Reijnders MR, Venselaar H, Helsmoortel C, Cho MT, Hoischen A, et al: Mutations in DDX3X Are a common cause of unexplained intellectual disability with Gender-specific effects on wnt signaling. Am J Hum Genet. 97:343–352. 2015. View Article : Google Scholar : PubMed/NCBI | |
Molina-Navarro MM, Triviño JC, Martínez-Dolz L, Lago F, González-Juanatey JR, Portolés M and Rivera M: Functional networks of nucleocytoplasmic transport-related genes differentiate ischemic and dilated cardiomyopathies. A new therapeutic opportunity. PLoS One. 9:e1047092014. View Article : Google Scholar : PubMed/NCBI | |
Vesuna F, Akhrymuk I, Smith A, Winnard PT Jr, Lin SC, Panny L, Scharpf R, Kehn-Hall K and Raman V: RK-33, a small molecule inhibitor of host RNA helicase DDX3, suppresses multiple variants of SARS-CoV-2. Front Microbiol. 13:9595772022. View Article : Google Scholar : PubMed/NCBI | |
Pène V, Li Q, Sodroski C, Hsu CS and Liang TJ: Dynamic interaction of stress granules, DDX3X, and IKK-α mediates multiple functions in Hepatitis C virus infection. J Virol. 89:5462–5477. 2015. View Article : Google Scholar : PubMed/NCBI | |
He S, Gou H, Zhou Y, Wu C, Ren X, Wu X, Guan G, Jin B, Huang J, Jin Z and Zhao T: The SARS-CoV-2 nucleocapsid protein suppresses innate immunity by remodeling stress granules to atypical foci. FASEB J. 37:e232692023. View Article : Google Scholar : PubMed/NCBI | |
Ciccosanti F, Di Rienzo M, Romagnoli A, Colavita F, Refolo G, Castilletti C, Agrati C, Brai A, Manetti F, Botta L, et al: Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res. 190:1050642021. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Zhou L, Zhao T, Zhu H, Luo T, Jiang K, Shi X, Chen C, Zhang H, Zhao S, et al: Protective and adverse roles of DDX3X in different cell types in nonalcoholic steatohepatitis progression. Research (Wash D C). 6:02752023.PubMed/NCBI | |
Chen H, Li B, Zhao X, Yang C, Zhou S and Ma W: Cell-free analysis reveals the role of RG/RGG motifs in DDX3X phase separation and their potential link to cancer pathogenesis. Int J Biol Macromol. 279:1352512024. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Fullam A, McCormack N, Höhn Y and Schröder M: DDX3 directly regulates TRAF3 ubiquitination and acts as a scaffold to co-ordinate assembly of signalling complexes downstream from MAVS. Biochem J. 474:571–587. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ventura-Clapier R, Garnier A and Veksler V: Energy metabolism in heart failure. J Physiol. 555:1–13. 2004. View Article : Google Scholar : PubMed/NCBI | |
Oliveira PJ and Wallace KB: Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats-relevance for mitochondrial dysfunction. Toxicology. 220:160–168. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Sun Z, Cao S, Lin X, Wu M, Li Y, Yin J, Zhou W, Huang S, Zhang A, et al: Reduced immunity regulator MAVS contributes to Non-hypertrophic cardiac dysfunction by disturbing energy metabolism and mitochondrial homeostasis. Front Immunol. 13:9190382022. View Article : Google Scholar : PubMed/NCBI | |
Carvalho RA, Sousa RP, Cadete VJ, Lopaschuk GD, Palmeira CM, Bjork JA and Wallace KB: Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology. 270:92–98. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Hu F, Ma T, Zhao WJ, Tian H, Zhang Y, Hu M, Zhou J, Zhang Y, Jian C, et al: A conventional immune regulator mitochondrial antiviral signaling protein blocks hepatic steatosis by maintaining mitochondrial homeostasis. Hepatology. 75:403–418. 2022. View Article : Google Scholar : PubMed/NCBI |