1
|
Rudd KE, Johnson SC, Agesa KM, Shackelford
KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer
S, et al: Global, regional, and national sepsis incidence and
mortality, 1990–2017: Analysis for the global burden of disease
study. Lancet. 395:200–211. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kamath S, Hammad Altaq H and Abdo T:
Management of sepsis and septic shock: What have we learned in the
last two decades? Microorganisms. 11:22312023. View Article : Google Scholar : PubMed/NCBI
|
3
|
Póvoa P, Coelho L, Dal-Pizzol F, Ferrer R,
Huttner A, Conway Morris A, Nobre V, Ramirez P, Rouze A, Salluh J,
et al: How to use biomarkers of infection or sepsis at the bedside:
Guide to clinicians. Intensive Care Med. 49:142–153. 2023.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Pierrakos C, Velissaris D, Bisdorff M,
Marshall JC and Vincent JL: Biomarkers of sepsis: Time for a
reappraisal. Crit Care. 24:2872020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liang D, Minikes AM and Jiang X:
Ferroptosis at the intersection of lipid metabolism and cellular
signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen Y, Fang ZM, Yi X, Wei X and Jiang DS:
The interaction between ferroptosis and inflammatory signaling
pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y,
Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of
ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Huo L, Liu C, Yuan Y, Liu X and Cao Q:
Pharmacological inhibition of ferroptosis as a therapeutic target
for sepsis-associated organ damage. Eur J Med Chem. 257:1154382023.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang H, Liu J, Zhou Y, Qu M, Wang Y, Guo
K, Shen R, Sun Z, Cata JP, Yang S, et al: Neutrophil extracellular
traps mediate m6A modification and regulates
sepsis-associated acute lung injury by activating ferroptosis in
alveolar epithelial cells. Int J Biol Sci. 18:3337–3357. 2022.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Xiao Z, Zhang J, Qiu Z, Liu H, Ding H, Li
H, Liu Y, Zou X and Long J: Ferroptosis and inflammation are
modulated by the NFIL3-ACSL4 axis in sepsis associated-acute kidney
injury. Cell Death Discov. 10:3492024. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen J, Feng M, Zhang T, Zhong M, Wang Y,
Zhang Q and Sun Y: Integrative bioinformatics analysis reveals CGAS
as a ferroptosis-related signature gene in sepsis and screens the
potential natural inhibitors of CGAS. Int J Biol Macromol.
297:1397782025. View Article : Google Scholar : PubMed/NCBI
|
12
|
Leek JT, Scharpf RB, Bravo HC, Simcha D,
Langmead B, Johnson WE, Geman D, Baggerly K and Irizarry RA:
Tackling the widespread and critical impact of batch effects in
high-throughput data. Nat Rev Genet. 11:733–739. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hoyle DC, Rattray M, Jupp R and Brass A:
Making sense of microarray data distributions. Bioinformatics.
18:576–584. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Newman AM, Liu CL, Green MR, Gentles AJ,
Feng W, Xu Y, Hoang CD, Diehn M and Alizadeh AA: Robust enumeration
of cell subsets from tissue expression profiles. Nat Methods.
12:453–457. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bradford JR, Hey Y, Yates T, Li Y, Pepper
SD and Miller CJ: A comparison of massively parallel nucleotide
sequencing with oligonucleotide microarrays for global
transcription profiling. BMC Genomics. 11:2822010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen Z, Wei S, Yuan Z, Chang R, Chen X, Fu
Y and Wu W: Machine learning reveals ferroptosis features and a
novel ferroptosis classifier in patients with sepsis. Immun Inflamm
Dis. 12:e12792024. View Article : Google Scholar : PubMed/NCBI
|
17
|
Baghela A, Pena OM, Lee AH, Baquir B,
Falsafi R, An A, Farmer SW, Hurlburt A, Mondragon-Cardona A, Rivera
JD, et al: Predicting sepsis severity at first clinical
presentation: The role of endotypes and mechanistic signatures.
EBioMedicine. 75:1037762022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao S, Ye Z and Stanton R: Misuse of RPKM
or TPM normalization when comparing across samples and sequencing
protocols. RNA. 26:903–909. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tabone O, Mommert M, Jourdan C, Cerrato E,
Legrand M, Lepape A, Allaouchiche B, Rimmelé T, Pachot A, Monneret
G, et al: Endogenous retroviruses transcriptional modulation after
severe infection, trauma and burn. Front Immunol. 9:30912019.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Martínez-Paz P, Aragón-Camino M,
Gómez-Sánchez E, Lorenzo-López M, Gómez-Pesquera E,
Fadrique-Fuentes A, Liu P, Tamayo-Velasco Á, Ortega-Loubon C,
Martín-Fernández M, et al: Distinguishing septic shock from
non-septic shock in postsurgical patients using gene expression. J
Infect. 83:147–155. 2021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Venet F, Schilling J, Cazalis MA, Demaret
J, Poujol F, Girardot T, Rouget C, Pachot A, Lepape A, Friggeri A,
et al: Modulation of LILRB2 protein and mRNA expressions in septic
shock patients and after ex vivo lipopolysaccharide stimulation.
Hum Immunol. 78:441–450. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z,
Feng T, Zhou L, Tang W, Zhan L, et al: clusterProfiler 4.0: A
universal enrichment tool for interpreting omics data. Innovation
(Camb). 2:1001412021.PubMed/NCBI
|
24
|
Hänzelmann S, Castelo R and Guinney J:
GSVA: Gene set variation analysis for microarray and RNA-seq data.
BMC Bioinformatics. 14:72013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu G, Wang LG, Yan GR and He QY: DOSE: An
R/Bioconductor package for disease ontology semantic and enrichment
analysis. Bioinformatics. 31:608–609. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhou N, Yuan X, Du Q, Zhang Z, Shi X, Bao
J, Ning Y and Peng L: FerrDb V2: Update of the manually curated
database of ferroptosis regulators and ferroptosis-disease
associations. Nucleic Acids Res. 51:D571–D582. 2023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Stelzer G, Rosen N, Plaschkes I, Zimmerman
S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et
al: The genecards suite: From gene data mining to disease genome
sequence analyses. Curr Protoc Bioinformatics. 54:1.30.31–31.30.33.
2016. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Farooq QUA, Shaukat Z, Aiman S and Li CH:
Protein-protein interactions: Methods, databases, and applications
in virus-host study. World J Virol. 10:288–300. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Szklarczyk D, Kirsch R, Koutrouli M,
Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT,
Pyysalo S, et al: The STRING database in 2023: Protein-protein
association networks and functional enrichment analyses for any
sequenced genome of interest. Nucleic Acids Res. 51:D638–D646.
2023. View Article : Google Scholar : PubMed/NCBI
|
30
|
Doncheva NT, Morris JH, Gorodkin J and
Jensen LJ: Cytoscape stringApp: Network analysis and visualization
of proteomics data. J Proteome Res. 18:623–632. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and
Lin CY: cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst Biol 8 Suppl. 4 (Suppl 4):S112014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Bühlmann P and Geer S: Statistics for
high-dimensional data: Method Theory and Applications. Springer;
Berlin, Heidelberg: 2011, View Article : Google Scholar
|
33
|
Friedman J, Hastie T and Tibshirani R:
Regularization paths for generalized linear models via coordinate
descent. J Stat Softw. 33:1–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Breiman L: Random forests. Machine
Learning. 45:5–32. 2001. View Article : Google Scholar
|
35
|
Sanz H, Valim C, Vegas E, Oller JM and
Reverter F: SVM-RFE: Selection and visualization of the most
relevant features through non-linear kernels. BMC Bioinformatics.
19:4322018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Warde-Farley D, Donaldson SL, Comes O,
Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT,
et al: The GeneMANIA prediction server: Biological network
integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38:W214–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen B, Khodadoust MS, Liu CL, Newman AM
and Alizadeh AA: Profiling tumor infiltrating immune cells with
CIBERSORT. Methods Mol Biol. 1711:243–259. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Charoentong P, Finotello F, Angelova M,
Mayer C, Efremova M, Rieder D, Hackl H and Trajanoski Z: Pan-cancer
immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade.
Cell Rep. 18:248–262. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu G, Wang M, Lv X, Guan Y, Li J and Xie
J: Identification of mitochondria-related gene biomarkers
associated with immune infiltration in acute myocardial infarction.
iScience. 27:1102752024. View Article : Google Scholar : PubMed/NCBI
|
40
|
Xue H, Xiao Z, Zhao X, Li S, Wang Z, Zhao
J and Zhu F: A comprehensive analysis of immune features and
construction of an immune gene diagnostic model for sepsis. BMC
Genomics. 24:7942023. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang Y, Ma X, Liu C, Bie Z, Liu G, Liu P
and Yang Z: Identification of HSPD1 as a novel invasive biomarker
associated with mitophagy in pituitary adenomas. Transl Oncol.
41:1018862024. View Article : Google Scholar : PubMed/NCBI
|
42
|
Baxter EW, Graham AE, Re NA, Carr IM,
Robinson JI, Mackie SL and Morgan AW: Standardized protocols for
differentiation of THP-1 cells to macrophages with distinct
M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes. J Immunol Methods.
478:1127212020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu W, Wu Y, Wang S, Hu S, Wang Y, Zhou W,
Chen Y, Li Q, Zhu L, Yang H and Lv X: Melatonin alleviates septic
ARDS by inhibiting NCOA4-mediated ferritinophagy in alveolar
macrophages. Cell Death Discov. 10:2532024. View Article : Google Scholar : PubMed/NCBI
|
44
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Llabani E, Hicklin RW, Lee HY, Motika SE,
Crawford LA, Weerapana E and Hergenrother PJ: Diverse compounds
from pleuromutilin lead to a thioredoxin inhibitor and inducer of
ferroptosis. Nat Chem. 11:521–532. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bai L, Yan F, Deng R, Gu R, Zhang X and
Bai J: Thioredoxin-1 rescues MPP(+)/MPTP-induced ferroptosis by
increasing glutathione peroxidase 4. Mol Neurobiol. 58:3187–3197.
2021. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cao D, Wang C and Zhou L: Identification
and comprehensive analysis of ferroptosis-related genes as
potential biomarkers for the diagnosis and treatment of
proliferative diabetic retinopathy by bioinformatics methods. Exp
Eye Res. 232:1095132023. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bian Y, Shan G, Liang J, Hu Z, Sui Q, Shi
H, Wang Q, Bi G and Zhan C: Retinoic acid receptor alpha inhibits
ferroptosis by promoting thioredoxin and protein phosphatase 1F in
lung adenocarcinoma. Commun Biol. 7:7512024. View Article : Google Scholar : PubMed/NCBI
|
49
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The third international consensus
definitions for sepsis and septic shock (sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Giamarellos-Bourboulis EJ, Aschenbrenner
AC, Bauer M, Bock C, Calandra T, Gat-Viks I, Kyriazopoulou E, Lupse
M, Monneret G, Pickkers P, et al: The pathophysiology of sepsis and
precision-medicine-based immunotherapy. Nat Immunol. 25:19–28.
2024. View Article : Google Scholar : PubMed/NCBI
|
51
|
Saxena J, Das S, Kumar A, Sharma A, Sharma
L, Kaushik S, Kumar Srivastava V, Jamal Siddiqui A and Jyoti A:
Biomarkers in sepsis. Clin Chim Acta. 562:1198912024. View Article : Google Scholar : PubMed/NCBI
|
52
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin
H, Wang K and Yang SM: Ferroptosis, a therapeutic target for
cardiovascular diseases, neurodegenerative diseases and cancer. J
Transl Med. 22:11372024. View Article : Google Scholar : PubMed/NCBI
|
53
|
Xl L, Gy Z, R G and N C: Ferroptosis in
sepsis: The mechanism, the role and the therapeutic potential.
Front Immunol. 13:9563612022. View Article : Google Scholar : PubMed/NCBI
|
54
|
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C,
Wu H, Deng W, Shen D and Tang Q: Ferritinophagy-mediated
ferroptosis is involved in sepsis-induced cardiac injury. Free
Radic Biol Med. 160:303–318. 2020. View Article : Google Scholar : PubMed/NCBI
|
55
|
Liu P, Feng Y, Li H, Chen X, Wang G, Xu S,
Li Y and Zhao L: Ferrostatin-1 alleviates
lipopolysaccharide-induced acute lung injury via inhibiting
ferroptosis. Cell Mol Biol Lett. 25:102020. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zheng Q, Xing J, Li X, Tang X and Zhang D:
PRDM16 suppresses ferroptosis to protect against sepsis-associated
acute kidney injury by targeting the NRF2/GPX4 axis. Redox Biol.
78:1034172024. View Article : Google Scholar : PubMed/NCBI
|
57
|
Wei XB, Jiang WQ, Zeng JH, Huang LQ, Ding
HG, Jing YW, Han YL, Li YC and Chen SL: Exosome-Derived lncRNA
NEAT1 exacerbates sepsis-associated encephalopathy by promoting
ferroptosis through regulating miR-9-5p/TFRC and GOT1 axis. Mol
Neurobiol. 59:1954–1969. 2022. View Article : Google Scholar : PubMed/NCBI
|
58
|
Huff LA, Yan S and Clemens MG: Mechanisms
of Ataxia Telangiectasia Mutated (ATM) control in the DNA damage
response to oxidative stress, epigenetic regulation, and persistent
innate immune suppression following sepsis. Antioxidants (Basel).
10:11462021. View Article : Google Scholar : PubMed/NCBI
|
59
|
Chen PH, Tseng WH and Chi JT: The
intersection of DNA damage response and ferroptosis-a rationale for
combination therapeutics. Biology (Basel). 9:1872020.PubMed/NCBI
|
60
|
Chen PH, Wu J, Ding CC, Lin CC, Pan S,
Bossa N, Xu Y, Yang WH, Mathey-Prevot B and Chi JT: Kinome screen
of ferroptosis reveals a novel role of ATM in regulating iron
metabolism. Cell Death Differ. 27:1008–1022. 2020. View Article : Google Scholar : PubMed/NCBI
|
61
|
Wu H, Liu Q, Shan X, Gao W and Chen Q: ATM
orchestrates ferritinophagy and ferroptosis by phosphorylating
NCOA4. Autophagy. 19:2062–2077. 2023. View Article : Google Scholar : PubMed/NCBI
|
62
|
Jiang J, Ruan Y, Liu X, Ma J and Chen H:
Ferritinophagy is critical for deoxynivalenol-induced liver injury
in mice. J Agric Food Chem. 72:6660–6671. 2024. View Article : Google Scholar : PubMed/NCBI
|
63
|
Shackelford RE, Fu Y, Manuszak RP, Brooks
TC, Sequeira AP, Wang S, Lowery-Nordberg M and Chen A: Iron
chelators reduce chromosomal breaks in ataxia-telangiectasia cells.
DNA Repair (Amst). 5:1327–1336. 2006. View Article : Google Scholar : PubMed/NCBI
|
64
|
Shackelford RE, Manuszak RP, Johnson CD,
Hellrung DJ, Link CJ and Wang S: Iron chelators increase the
resistance of Ataxia telangeictasia cells to oxidative stress. DNA
Repair (Amst). 3:1263–1272. 2004. View Article : Google Scholar : PubMed/NCBI
|
65
|
McDonald CJ, Ostini L, Wallace DF, John
AN, Watters DJ and Subramaniam VN: Iron loading and oxidative
stress in the Atm-/- mouse liver. Am J Physiol Gastrointest Liver
Physiol. 300:G554–560. 2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Wang H, Huang J, Yi W, Li J, He N, Kang L,
He Z and Chen C: Identification of immune-related key genes as
potential diagnostic biomarkers of sepsis in children. J Inflamm
Res. 15:2441–2459. 2022. View Article : Google Scholar : PubMed/NCBI
|
67
|
da Silva Neto Trajano LA, da Silva Sergio
LP, de Oliveira DSL, Trajano ETL, Dos Santos Silva MA, de Paoli F,
Mencalha AL and da Fonseca AS: Low-power infrared laser modulates
mRNA levels from genes of base excision repair and genomic
stabilization in heart tissue from an experimental model of acute
lung injury. Photochem Photobiol Sci. 21:1299–1308. 2022.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Gao T, Gao S, Wang H, Wang S, Li L, Hu J,
Yan S, Zhang R, Zhou Y and Dong H: Garlic ameliorates
atherosclerosis by regulating ferroptosis pathway: An integrated
strategy of network pharmacology, bioinformatic and experimental
verification. Front Pharmacol. 15:13885402024. View Article : Google Scholar : PubMed/NCBI
|
69
|
Zhu F, Zou D, Shi P, Tang L, Wu D, Hu X,
Yin F and Liu J: Dipeptidyl peptidase 4: A predictor of ferroptosis
in ulcerative colitis. J Gene Med. 26:e37422024. View Article : Google Scholar : PubMed/NCBI
|
70
|
Liu R, Li F, Hao S, Hou D, Zeng X, Huang
H, Sethi G, Guo J and Duan C: Low-dose olaparib improves septic
cardiac function by reducing ferroptosis via accelerated mitophagy
flux. Pharmacol Res. 200:1070562024. View Article : Google Scholar : PubMed/NCBI
|
71
|
Ng PY, Ng AK, Ip A, Wu MZ, Guo R and Yiu
KH: Risk of ICU admission and related mortality in patients with
sodium-glucose cotransporter 2 inhibitors and dipeptidyl
peptidase-4 inhibitors: A territory-wide retrospective cohort
study. Crit Care Med. 51:1074–1085. 2023. View Article : Google Scholar : PubMed/NCBI
|
72
|
Wu MZ, Chandramouli C, Wong PF, Chan YH,
Li HL, Yu SY, Tse YK, Ren QW, Yu SY, Tse HF, et al: Risk of sepsis
and pneumonia in patients initiated on SGLT2 inhibitors and DPP-4
inhibitors. Diabetes Metab. 48:1013672022. View Article : Google Scholar : PubMed/NCBI
|
73
|
Zhou Y, Chen Y, Li J, Fu Z, Chen Q, Zhang
W, Luo H and Xie M: The development of endoplasmic
reticulum-related gene signatures and the immune infiltration
analysis of sepsis. Front Immunol. 14:11837692023. View Article : Google Scholar : PubMed/NCBI
|
74
|
Xu J, Zhu M, Luo P and Gong Y: Machine
learning screening and validation of panoptosis-related gene
signatures in sepsis. J Inflamm Res. 17:4765–4780. 2024. View Article : Google Scholar : PubMed/NCBI
|
75
|
Wu XL and Guo YN: Role of cellular
senescence genes and immune infiltration in sepsis and
sepsis-induced ARDS based on bioinformatics analysis. J Inflamm
Res. 17:9119–9133. 2024. View Article : Google Scholar : PubMed/NCBI
|
76
|
Luo S, Lyu Z, Ge L, Li Y, Liu Y, Yuan Y,
Zhao R, Huang L, Zhao J, Huang H and Luo Y: Ataxia telangiectasia
mutated protects against lipopolysaccaride-induced blood-brain
barrier disruption by regulating ATK/DRP1-mediated mitochondrial
homeostasis. Shock. 60:100–109. 2023. View Article : Google Scholar : PubMed/NCBI
|
77
|
Figueiredo N, Chora A, Raquel H, Pejanovic
N, Pereira P, Hartleben B, Neves-Costa A, Moita C, Pedroso D, Pinto
A, et al: Anthracyclines induce DNA damage response-mediated
protection against severe sepsis. Immunity. 39:874–884. 2013.
View Article : Google Scholar : PubMed/NCBI
|
78
|
Vliegen G, Kehoe K, Bracke A, De Hert E,
Verkerk R, Fransen E, Jongers B'Peters E, Lambeir AM, Kumar-Singh
S, et al: Dysregulated activities of proline-specific enzymes in
septic shock patients (sepsis-2). PLoS One. 15:e02315552020.
View Article : Google Scholar : PubMed/NCBI
|
79
|
Chen G, Zhang W, Wang C, Hu Y and Li S:
Screening therapeutic core genes in sepsis using network
pharmacology and single-cell RNA sequencing. Biochem Genet. March
20–2025.(Epub ahead of print). View Article : Google Scholar
|
80
|
Rim J, Gallini J, Jasien C, Cui X,
Phillips L, Trammell A and Sadikot RT: Use of oral anti-diabetic
drugs and risk of hospital and intensive care unit admissions for
infections. Am J Med Sci. 364:53–58. 2022. View Article : Google Scholar : PubMed/NCBI
|
81
|
Brabenec L, Müller M, Hellenthal KEM,
Karsten OS, Pryvalov H, Otto M, Holthenrich A, Matos ALL, Weiss R,
Kintrup S, et al: Targeting procalcitonin protects vascular barrier
integrity. Am J Respir Crit Care Med. 206:488–500. 2022. View Article : Google Scholar : PubMed/NCBI
|
82
|
Wang SC, Wang XY, Liu CT, Chou RH, Chen
ZB, Huang PH and Lin SJ: The dipeptidyl peptidase-4 inhibitor
linagliptin ameliorates endothelial inflammation and microvascular
thrombosis in a sepsis mouse model. Int J Mol Sci. 23:30652022.
View Article : Google Scholar : PubMed/NCBI
|
83
|
Kröller-Schön S, Knorr M, Hausding M,
Oelze M, Schuff A, Schell R, Sudowe S, Scholz A, Daub S, Karbach S,
et al: Glucose-independent improvement of vascular dysfunction in
experimental sepsis by dipeptidyl-peptidase 4 inhibition.
Cardiovasc Res. 96:140–149. 2012. View Article : Google Scholar : PubMed/NCBI
|
84
|
Steven S, Hausding M, Kröller-Schön S,
Mader M, Mikhed Y, Stamm P, Zinßius E, Pfeffer A, Welschof P,
Agdauletova S, et al: Gliptin and GLP-1 analog treatment improves
survival and vascular inflammation/dysfunction in animals with
lipopolysaccharide-induced endotoxemia. Basic Res Cardiol.
110:62015. View Article : Google Scholar : PubMed/NCBI
|
85
|
Zhang N, Tang S, Zhang J, Pei B, Pang T
and Sun G: The dipeptidyl peptidase-4 inhibitor linagliptin
ameliorates LPS-induced acute lung injury by maintenance of
pulmonary microvascular barrier via activating the Epac1/AKT
pathway. Biomed Pharmacother. 155:1137042022. View Article : Google Scholar : PubMed/NCBI
|
86
|
Delic D, Klein T, Wohnhaas CT, Feng H, Lin
X, Zhang JR and Wu D: Dipeptidyl peptidase-4 inhibitor linagliptin
reduces inflammatory response, ameliorates tissue edema formation,
and improves survival in severe sepsis. Biomed Pharmacother.
182:1177782025. View Article : Google Scholar : PubMed/NCBI
|
87
|
Steven S, Jurk K, Kopp M, Kröller-Schön S,
Mikhed Y, Schwierczek K, Roohani S, Kashani F, Oelze M, Klein T, et
al: Glucagon-like peptide-1 receptor signalling reduces
microvascular thrombosis, nitro-oxidative stress and platelet
activation in endotoxaemic mice. Br J Pharmacol. 174:1620–1632.
2017. View Article : Google Scholar : PubMed/NCBI
|
88
|
Dai W, Zheng P, Luo D, Xie Q, Liu F, Shao
Q, Zhao N and Qian K: LPIN1 is a regulatory factor associated with
immune response and inflammation in sepsis. Front Immunol.
13:8201642022. View Article : Google Scholar : PubMed/NCBI
|
89
|
He S, He Y, Deng L, Guo Y, Wang X, Wang Q,
Luo L and Liu Q: Identification of RRM2 as a key
ferroptosis-related gene in sepsis. Inflamm Res. 73:459–473. 2024.
View Article : Google Scholar : PubMed/NCBI
|
90
|
Liu CY, Yang YS, Pei MQ, Zhang Y, Chen WC,
Liang JW and He HF: Systematic analysis based on bioinformatics and
experimental validation identifies Alox5 as a novel therapeutic
target of quercetin for sepsis. Ann Med. 56:24110152024. View Article : Google Scholar : PubMed/NCBI
|
91
|
Pei S, Liu J, Wang Z, Fan Y, Meng S, Huang
X, Cui Y and Xie K: Genetic analysis of diagnostic and therapeutic
potential for ferroptosis in postoperative sepsis. Int
Immunopharmacol. 147:1140422025. View Article : Google Scholar : PubMed/NCBI
|
92
|
Martin MD, Badovinac VP and Griffith TS:
CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State.
Front Immunol. 11:13642020. View Article : Google Scholar : PubMed/NCBI
|
93
|
Heidarian M, Griffith TS and Badovinac VP:
Sepsis-induced changes in differentiation, maintenance, and
function of memory CD8 T Cell subsets. Front Immunol.
14:11300092023. View Article : Google Scholar : PubMed/NCBI
|
94
|
Kong Z, Cai S, Xie W, Chen J, Xie J, Yang
F, Li Z, Bai X and Liu T: CD4 + T Cells ferroptosis is associated
with the development of sepsis in severe polytrauma patients. Int
Immunopharmacol. 127:1113772024. View Article : Google Scholar : PubMed/NCBI
|
95
|
Qu G, Liu H, Li J, Huang S, Zhao N, Zeng L
and Deng J: GPX4 is a key ferroptosis biomarker and correlated with
immune cell populations and immune checkpoints in childhood sepsis.
Sci Rep. 13:113582023. View Article : Google Scholar : PubMed/NCBI
|
96
|
Wu J, Liu Q, Zhang X, Tan M, Li X, Liu P,
Wu L, Jiao F, Lin Z and Wu X: The interaction between STING and
NCOA4 exacerbates lethal sepsis by orchestrating ferroptosis and
inflammatory responses in macrophages. Cell Death Dis. 13:6532022.
View Article : Google Scholar : PubMed/NCBI
|