
Progress in targeting the NLRP3 signaling pathway for inflammatory bowel disease (Review)
- Authors:
- Yubo Gong
- Zhenqi Han
- Siyi Wang
- Xuefeng Li
- Xinhua Chen
- Bo Yang
-
Affiliations: College of Acupuncture Massage, Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130117, P.R. China, Endoscopy Department, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130021, P.R. China - Published online on: July 3, 2025 https://doi.org/10.3892/mmr.2025.13606
- Article Number: 241
-
Copyright: © Gong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Park J, Jeong GH, Song M, Yon DK, Lee SW, Koyanagi A, Jacob L, Kostev K, Dragioti E, Radua J, et al: The global, regional, and national burden of inflammatory bowel diseases, 1990–2019: A systematic analysis for the global burden of disease study 2019. Dig Liver Dis. 55:1352–1359. 2023. View Article : Google Scholar : PubMed/NCBI | |
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ, et al: Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 4:293–305. 2019. View Article : Google Scholar | |
Jeong DY, Kim S, Son MJ, Son CY, Kim JY, Kronbichler A, Lee KH and Shin JI: Induction and maintenance treatment of inflammatory bowel disease: A comprehensive review. Autoimmun Rev. 18:439–454. 2019. View Article : Google Scholar : PubMed/NCBI | |
Na SY and Moon W: Perspectives on current and novel treatments for inflammatory bowel disease. Gut Liver. 13:604–616. 2019. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Kelley N and He Y: Role of the NLRP3 inflammasome in neurodegenerative diseases and therapeutic implications. Neural Regen Res. 15:1249–1250. 2020. View Article : Google Scholar : PubMed/NCBI | |
Broz P and Dixit VM: Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. 2016. View Article : Google Scholar | |
Paik S, Kim JK, Silwal P, Sasakawa C and Jo EK: An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 18:1141–1160. 2021. View Article : Google Scholar | |
Kodi T, Sankhe R, Gopinathan A, Nandakumar K and Kishore A: New Insights on NLRP3 Inflammasome: Mechanisms of activation, inhibition, and epigenetic regulation. J Neuroimmune Pharmacol. 19:72024. View Article : Google Scholar | |
Abo-Ouf H, Hooper AW, White EJ, Janse van Rensburg HJ, Trigatti BL and Igdoura SA: Deletion of tumor necrosis factor-α ameliorates neurodegeneration in Sandhoff disease mice. Hum Mol Genet. 22:3960–3975. 2013. View Article : Google Scholar | |
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu S, Ruan J, Zhou Y and Jin T: NLRP inflammasomes in health and disease. Mol Biomed. 5:142024. View Article : Google Scholar : PubMed/NCBI | |
Hong H, Kim BS and Im HI: Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J. 20 (Suppl 1):S2–S7. 2016. View Article : Google Scholar : PubMed/NCBI | |
Herman FJ and Pasinetti GM: Principles of inflammasome priming and inhibition: Implications for psychiatric disorders. Brain Behav Immun. 73:66–84. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiang H, Zhu F, Xu Z and Xiong J: Role of inflammasomes in kidney diseases via both canonical and Non-canonical pathways. Front Cell Dev Biol. 8:1062020. View Article : Google Scholar | |
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, et al: Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 183:787–791. 2009. View Article : Google Scholar | |
Franchi L, Eigenbrod T and Núñez G: Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 183:792–796. 2009. View Article : Google Scholar | |
Xing Y, Yao X, Li H, Xue G, Guo Q, Yang G, An L, Zhang Y and Meng G: Cutting Edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. J Immunol. 199:1561–1566. 2017. View Article : Google Scholar | |
Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD and Latz E: Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 17:588–606. 2018. View Article : Google Scholar : PubMed/NCBI | |
Franchi L, Eigenbrod T, Muñoz-Planillo R and Nuñez G: The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 10:241–247. 2009. View Article : Google Scholar | |
Swanson KV, Deng M and Ting JP: The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar | |
Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Jia Z and Gong W: Circulating mitochondrial DNA stimulates innate immune signaling pathways to mediate acute kidney injury. Front Immunol. 12:6806482021. View Article : Google Scholar | |
Pellegrini C, Fornai M, Antonioli L, Blandizzi C and Calderone V: Phytochemicals as novel therapeutic strategies for NLRP3 inflammasome-related neurological, metabolic, and inflammatory diseases. Int J Mol Sci. 20:28762019. View Article : Google Scholar | |
Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM and Núñez G: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38:1142–1153. 2013. View Article : Google Scholar | |
Rossol M, Pierer M, Raulien N, Quandt D, Meusch U, Rothe K, Schubert K, Schöneberg T, Schaefer M, Krügel U, et al: Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun. 3:13292012. View Article : Google Scholar : PubMed/NCBI | |
Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL and Chae JJ: The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 492:123–127. 2012. View Article : Google Scholar : PubMed/NCBI | |
Werner LE and Wagner U: Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation. Front Physiol. 13:10785692023. View Article : Google Scholar | |
Tang T, Lang X, Xu C, Wang X, Gong T, Yang Y, Cui J, Bai L, Wang J, Jiang W and Zhou R: CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun. 8:2022017. View Article : Google Scholar : PubMed/NCBI | |
Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA and Latz E: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 9:847–856. 2008. View Article : Google Scholar | |
Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA and Sutterwala FS: The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA. 105:9035–9040. 2008. View Article : Google Scholar : PubMed/NCBI | |
Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ and Golenbock DT: The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 9:857–865. 2008. View Article : Google Scholar | |
Kelley N, Jeltema D, Duan Y and He YY: The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar | |
Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I, et al: Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood. 113:2324–2335. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang ZK, Yang YS, Chen Y, Yuan J, Sun G and Peng LH: Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol. 20:14805–14820. 2014. View Article : Google Scholar | |
Yang F, He Z, Pan X, Xie S, Liang X, Geng L, Xu W and Gong S: Enhancing intestinal epithelial microtubule stability could alleviate IBD symptoms. Cell Commun Signal. 23:2632025. View Article : Google Scholar | |
Hugot JP, Laurent-Puig P, Gower-Rousseau C, Olson JM, Lee JC, Beaugerie L, Naom I, Dupas JL, Van Gossum A, Orholm M, et al: Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature. 379:821–823. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, et al: A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature. 411:603–606. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nayar S, Morrison JK, Giri M, Gettler K, Chuang LS, Walker LA, Ko HM, Kenigsberg E, Kugathasan S, Merad M, et al: A myeloid-stromal niche and gp130 rescue in NOD2-driven Crohn's disease. Nature. 593:275–281. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, et al: Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 47:979–986. 2015. View Article : Google Scholar | |
Chen GB, Lee SH, Brion MJ, Montgomery GW, Wray NR, Radford-Smith GL and Visscher PM; International IBD Genetics Consortium, : Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Hum Mol Genet. 23:4710–4720. 2014. View Article : Google Scholar | |
Cao G, Luo Q, Wu Y and Chen G: Inflammatory bowel disease and rheumatoid arthritis share a common genetic structure. Front Immunol. 15:13598572024. View Article : Google Scholar | |
Wang X, Li T and Chen Q: Causal relationship between ulcerative colitis and male infertility: A two-sample Mendelian randomization study. PLoS One. 19:e03038272024. View Article : Google Scholar : PubMed/NCBI | |
Jia K and Shen J: Transcriptome-wide association studies associated with Crohn's disease: Challenges and perspectives. Cell Biosci. 14:292024. View Article : Google Scholar | |
Juillerat P, Pittet V, Bulliard JL, Guessous I, Antonino AT, Mottet C, Felley C, Vader JP and Michetti P: Prevalence of inflammatory bowel disease in the canton of vaud (Switzerland): A population-based cohort study. J Crohns Colitis. 2:131–141. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ng SC, Bernstein CN, Vatn MH, Lakatos PL, Loftus EV Jr, Tysk C, O'Morain C, Moum B and Colombel JF; Epidemiology Natural History Task Force of the International Organization of Inflammatory Bowel Disease (IOIBD), : Geographical variability and environmental risk factors in inflammatory bowel disease. Gut. 62:630–649. 2013. View Article : Google Scholar | |
Braegger CP, Ballabeni P, Rogler D, Vavricka SR, Friedt M and Pittet V; Swiss IBD Cohort Study Group, : Epidemiology of inflammatory bowel disease: Is there a shift toward onset at a younger age? J Pediatr Gastroenterol Nutr. 53:141–144. 2011. View Article : Google Scholar : PubMed/NCBI | |
Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW and Kaplan GG: Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 142:e46–e30. 2012. View Article : Google Scholar | |
Wild CP: Complementing the genome with an ‘exposome’: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 14:1847–1850. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rogler G and Vavricka SL: Exposome in IBD: Recent insights in environmental factors that influence the onset and course of IBD. Inflamm Bowel Dis. 21:400–408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ananthakrishnan AN, McGinley EL, Binion DG and Saeian K: Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: An ecologic analysis. Inflamm Bowel Dis. 17:1138–1145. 2011. View Article : Google Scholar : PubMed/NCBI | |
Andersen V, Olsen A, Carbonnel F, Tjønneland A and Vogel U: Diet and risk of inflammatory bowel disease. Dig Liver Dis. 44:185–194. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sandu O, Song K, Cai W, Zheng F, Uribarri J and Vlassara H: Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes. 54:2314–2319. 2005. View Article : Google Scholar : PubMed/NCBI | |
Martini GA and Brandes JW: Increased consumption of refined carbohydrates in patients with Crohn's disease. Klin Wochenschr. 54:367–371. 1976. View Article : Google Scholar : PubMed/NCBI | |
D'Souza S, Levy E, Mack D, Israel D, Lambrette P, Ghadirian P, Deslandres C, Morgan K, Seidman EG and Amre DK: Dietary patterns and risk for Crohn's disease in children. Inflamm Bowel Dis. 14:367–373. 2008. View Article : Google Scholar | |
Danese S, Sans M and Fiocchi C: Inflammatory bowel disease: The role of environmental factors. Autoimmun Rev. 3:394–400. 2004. View Article : Google Scholar : PubMed/NCBI | |
Alperen CC, Soydas B, Serin E, Erbayrak M, Savas NA, Unler GK, Meral CE, Toprak U, Boyacioglu AS and Dagli U: Role of environmental risk factors in the etiology of inflammatory bowel diseases: A Multicenter Study. Dig Dis Sci. 69:2927–2936. 2024. View Article : Google Scholar | |
Kronman MP, Zaoutis TE, Haynes K, Feng R and Coffin SE: Antibiotic exposure and IBD development among children: A population-based cohort study. Pediatrics. 130:e794–e803. 2012. View Article : Google Scholar : PubMed/NCBI | |
Narula N, Wong ECL, Pray C, Marshall JK, Rangarajan S, Islam S, Bahonar A, Alhabib KF, Kontsevaya A, Ariffin F, et al: Associations of antibiotics, hormonal therapies, oral contraceptives, and Long-term NSAIDS with inflammatory bowel disease: Results from the prospective urban rural epidemiology (PURE) Study. Clin Gastroenterol Hepatol. 21:2649–2659.e16. 2023. View Article : Google Scholar | |
Cornish JA, Tan E, Simillis C, Clark SK, Teare J and Tekkis PP: The risk of oral contraceptives in the etiology of inflammatory bowel disease: A meta-analysis. Am J Gastroenterol. 103:2394–2400. 2008. View Article : Google Scholar | |
Cosnes J, Carbonnel F, Beaugerie L, Le Quintrec Y and Gendre JP: Effects of cigarette smoking on the long-term course of Crohn's disease. Gastroenterology. 110:424–431. 1996. View Article : Google Scholar : PubMed/NCBI | |
Thomas GA, Rhodes J and Green JT: Inflammatory bowel disease and smoking-a review. Am J Gastroenterol. 93:144–149. 1998. View Article : Google Scholar | |
Birrenbach T and Böcker U: Inflammatory bowel disease and smoking: A review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis. 10:848–859. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mentella MC, Scaldaferri F, Pizzoferrato M, Gasbarrini A and Miggiano GAD: Nutrition, IBD and Gut Microbiota: A review. Nutrients. 12:9442020. View Article : Google Scholar : PubMed/NCBI | |
de Mattos BR, Garcia MP, Nogueira JB, Paiatto LN, Albuquerque CG, Souza CL, Fernandes LG, Tamashiro WM and Simioni PU: Inflammatory bowel disease: An overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015:4930122015. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Cui W, Li X and Yang H: Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease. Front Immunol. 12:7619812021. View Article : Google Scholar | |
Flint HJ, Scott KP, Louis P and Duncan SH: The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 9:577–589. 2012. View Article : Google Scholar | |
Shreiner AB, Kao JY and Young VB: The gut microbiome in health and in disease. Curr Opin Gastroenterol. 31:69–75. 2015. View Article : Google Scholar | |
Li T and Chiang JYL: Bile acid signaling in metabolic and inflammatory diseases and drug development. Pharmacol Rev. 76:1221–1253. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li S, Chen J, Zheng Y and Zhang Y: Weissella paramesenteroides NRIC1542 inhibits dextran sodium sulfate-induced colitis in mice through regulating gut microbiota and SIRT1/NF-κB signaling pathway. FASEB J. 38:e237912024. View Article : Google Scholar : PubMed/NCBI | |
Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernández-Sueiro JL, Balish E and Hammer RE: The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 180:2359–2364. 1994. View Article : Google Scholar : PubMed/NCBI | |
Veltkamp C, Tonkonogy SL, De Jong YP, Albright C, Grenther WB, Balish E, Terhorst C and Sartor RB: Continuous stimulation by normal luminal bacteria is essential for the development and perpetuation of colitis in Tg(epsilon26) mice. Gastroenterology. 120:900–913. 2001. View Article : Google Scholar : PubMed/NCBI | |
Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, Cai J, Bretin ACA, Cheng X, Liu Q, et al: Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibers on intestinal inflammation. Gut. 68:1801–1812. 2019. View Article : Google Scholar | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ardizzone A, Capra AP, Repici A, Lanza M, Bova V, Palermo N, Paterniti I and Esposito E: Rebalancing NOX2/Nrf2 to limit inflammation and oxidative stress across gut-brain axis in migraine. Free Radic Biol Med. 213:65–78. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Liu T, Huang B, Luo M, Chen Z, Zhao Z, Wang J, Leung D, Yang X, Chan KW, et al: Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. J Allergy Clin Immunol. 147:267–279. 2021. View Article : Google Scholar | |
Guan Y, Cheng H, Zhang N, Cai Y, Zhang Q, Jiang X, Wang A, Zeng H and Jia B: The role of the esophageal and intestinal microbiome in gastroesophageal reflux disease: Past, present, and future. Front Immunol. 16:15584142025. View Article : Google Scholar | |
Yuan S, Liu BH, Cheng WW, Meng H, Hou XT, Xue JC, Zhang HM and Zhang QG: Polyphyllin VI modulates macrophage polarization through autophagy-NLRP3 inflammasome to alleviate inflammatory bowel disease. Phytomedicine. 143:1566402025. View Article : Google Scholar : PubMed/NCBI | |
Keane S, Herring M, Rolny P, Wettergren Y and Ejeskär K: Inflammation suppresses DLG2 expression decreasing inflammasome formation. J Cancer Res Clin Oncol. 148:2295–2311. 2022. View Article : Google Scholar | |
Lin X, Xu M, Lan R, Hu D, Zhang S, Zhang S, Lu Y, Sun H, Yang J, Liu L and Xu J: Gut commensal Alistipes shahii improves experimental colitis in mice with reduced intestinal epithelial damage and cytokine secretion. mSystems. 10:e0160724205 View Article : Google Scholar | |
Li H, Fan C, Lu H, Feng C, He P, Yang X, Xiang C, Zuo J and Tang W: Protective role of berberine on ulcerative colitis through modulating enteric glial cells-intestinal epithelial cells-immune cells interactions. Acta Pharm Sin B. 10:447–461. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Hu LL, Gonzalez-Navajas J, Seo GS, Shen C, Brick J, Herdman S, Varki N, Corr M, Lee J and Raz E: ERK activation drives intestinal tumorigenesis in Apc min/+ mice. Nat Med. 16:665–670. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang SL, Zhang MM, Zhou H, Su GQ, Ding Y, Xu GH, Wang X, Li CF, Huang WF and Yi LT: Inhibition of NLRP3 attenuates sodium dextran sulfate-induced inflammatory bowel disease through gut microbiota regulation. Biomed J. 46:1005802023. View Article : Google Scholar : PubMed/NCBI | |
Tan G, Huang C, Chen J, Chen B and Zhi F: Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn's disease by promoting intestinal inflammation. Cell Rep. 35:1092652021. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Dong X, Zhang JL, Sun X, Zhou L, Zhao K, Deng H and Sun Z: Natural compounds target programmed cell death (PCD) signaling mechanism to treat ulcerative colitis: A review. Front Pharmacol. 15:13336572024. View Article : Google Scholar | |
Wang M, Xu B, Liu L and Wang D: Oridonin attenuates dextran sulfate sodium-induced ulcerative colitis in mice via the Sirt1/NF-κB/p53 pathway. Mol Med Rep. 26:3122022. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Sun W, Zhang J, Mei Y, Bao J, Hou S, Zhou X and Mao L: Inflammasome-targeting natural compounds in inflammatory bowel disease: Mechanisms and therapeutic potential. Front Immunol. 13:9632912022. View Article : Google Scholar | |
Zhou ZJ, Dong JY, Qiu Y, Zhang GL, Wei K, He LH, Sun YN, Jiang HZ, Zhang SS, Guo XR, et al: Sulforaphane decreases oxidative stress and inhibits NLRP3 inflammasome activation in a mouse model of ulcerative colitis. Biomed Pharmacother. 175:1167062024. View Article : Google Scholar : PubMed/NCBI | |
Salem MB, El-Lakkany NM, Hammam OA and Seif El-Din SH: Bacillus clausii spores maintain gut homeostasis in murine ulcerative colitis via modulating microbiota, apoptosis, and the TXNIP/NLRP3 inflammasome cascade. Toxicol Rep. 14:1018582024. View Article : Google Scholar : PubMed/NCBI | |
Dharmapuri G, Kotha AK, Kalangi SK and Reddanna P: Mangiferin, a naturally occurring glucosylxanthone, induces apoptosis in Caco-2 cells in vitro and exerts protective effects on acetic Acid-induced ulcerative colitis in mice through the regulation of NLRP3. ACS Pharmacol Transl Sci. 7:1270–1277. 2024. View Article : Google Scholar | |
Chen Y, Niu Y, Hao W, Zhang W, Lu J, Zhou J, Du L and Xie W: Pineapple leaf phenols attenuate DSS-induced colitis in mice and inhibit inflammatory damage by targeting the NF-κB pathway. Molecules. 26:76562021. View Article : Google Scholar : PubMed/NCBI | |
Marinho S, Illanes M, Ávila-Román J, Motilva V and Talero E: Anti-inflammatory effects of rosmarinic Acid-loaded nanovesicles in acute colitis through modulation of NLRP3 inflammasome. Biomolecules. 11:1622021. View Article : Google Scholar : PubMed/NCBI | |
Zhang HX, Li YY, Liu ZJ and Wang JF: Quercetin effectively improves LPS-induced intestinal inflammation, pyroptosis, and disruption of the barrier function through the TLR4/NF-κB/NLRP3 signaling pathway in vivo and in vitro. Food Nutr Res. Dec 30–2022.(Epub ahead of print). doi: 10.29219/fnr.v66.8948. View Article : Google Scholar | |
Tian HM, Wang SP, Wang HY and Lu XM: Protective effect of naringin on NLRP3 inflammasome in newborn mice with necrotizing enterocolitis. Chin J Immunol. 1196–1200. 2021. | |
Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y and Xie J: Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB axis. Front Immunol. 12:6798972021. View Article : Google Scholar | |
Liu Q, Zuo R, Wang K, Nong FF, Fu YJ, Huang SW, Pan ZF, Zhang Y, Luo X, Deng XL, et al: Oroxindin inhibits macrophage NLRP3 inflammasome activation in DSS-induced ulcerative colitis in mice via suppressing TXNIP-dependent NF-κB pathway. Acta Pharmacol Sin. 41:771–781. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sergent T, Piront N, Meurice J, Toussaint O and Schneider YJ: Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem Biol Interact. 188:659–667. 2010. View Article : Google Scholar | |
Kim DH, Hossain MA, Kang YJ, Jang JY, Lee YJ, Im E, Yoon JH, Kim HS, Chung HY and Kim ND: Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced colon cancer in mice. Int J Oncol. 43:1652–1658. 2013. View Article : Google Scholar | |
Dong J, Liang W, Wang T, Sui J, Wang J, Deng Z and Chen D: Saponins regulate intestinal inflammation in colon cancer and IBD. Pharmacol Re. 144:66–72. 2019. View Article : Google Scholar | |
Rhule A, Navarro S, Smith JR and Shepherd DM: Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J Ethnopharmacol. 106:121–128. 2006. View Article : Google Scholar | |
Joh EH, Lee IA, Jung IH and Kim DH: Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation-the key step of inflammation. Biochem Pharmacol. 82:278–286. 2011. View Article : Google Scholar | |
Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R and Li X: Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. Int Immunopharmacol. 7:313–320. 2007. View Article : Google Scholar | |
Lee IA, Hyam SR, Jang SE, Han MJ and Kim DH: Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem. 60:9595–9602. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xue JC, Yuan S, Hou XT, Meng H, Liu BH, Cheng WW, Zhao M, Li HB, Guo XF, Di C, et al: Natural products modulate NLRP3 in ulcerative colitis. Front Pharmacol. 14:12658252023. View Article : Google Scholar | |
Lee SM: Anti-inflammatory effects of ginsenosides Rg5, Rz1, and Rk1: Inhibition of TNF-α-induced NF-κB, COX-2, and iNOS transcriptional expression. Phytother Res. 28:1893–1896. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wang J, Yang Y, Liu X, Zhu Y, Zou J, Peng S, Le TH, Chen Y, Zhao S, et al: Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol. 155:366–379. 2018. View Article : Google Scholar | |
Christianson DW: Structural and chemical biology of terpenoid cyclases. Chem Rev. 117:11570–11648. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tian Z, Liu Y, Yang B, Zhang J, He H, Ge H, Wu Y and Shen Z: Astagalus polysaccharide attenuates murine colitis through inhibiton of the NLRP3 inflammasome. Planta Med. 83:70–77. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dai J, Wang W, He F, Wang Y and Zou D: Alleviation of DSS-induced colitis by Meconopsis polysaccharides correlated with reduced PI3K/AKT signaling and gut microbiome diversity. Front Pharmacol. 16:14596682025. View Article : Google Scholar | |
Zhou YX, Gong XH, Zhang H and Peng C: A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed Pharmacother. 130:1105052020. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Guan X, Hou Y, Liu Y, Wei W, Cai X, Zhang Y, Wang G, Zheng X and Hao H: Paeoniflorin modulates gut microbial production of indole-3-lactate and epithelial autophagy to alleviate colitis in mice. Phytomedicine. 79:1533452020. View Article : Google Scholar : PubMed/NCBI | |
Selvakumar D, Evans D, Coyte KZ, McLaughlin J, Brass A, Hancock L and Cruickshank S: Understanding the development and function of the gut microbiota in health and inflammation. Frontline Gastroenterol. 13:e13–e21. 2022. View Article : Google Scholar | |
Dupont HL, Jiang ZD, Dupont AW and Utay NS: The intestinal microbiome in human health and disease. Trans Am Clin Climatol Assoc. 131:178–197. 2020. | |
Martel J, Chang SH, Ko YF, Hwang TL, Young JD and Ojcius DM: Gut barrier disruption and chronic disease. Trends Endocrinol Metabolism. 33:247–265. 2022. View Article : Google Scholar | |
Luo Y, Huang X, Hu H, Wang Y, Feng X, Chen S and Luo H: Intestinal microflora promotes Th2-mediated immunity through NLRP3 in damp and heat environments. Front Immunol. 15:13670532024. View Article : Google Scholar | |
Yuan Z, Yang L, Zhang X, Ji P, Hua Y and Wei Y: Huang-lian-jie-du decoction ameliorates acute ulcerative colitis in mice by regulating NF-κB and Nrf2 signaling pathways and enhancing intestinal barrier function. Front Pharmacol. 10:4729662019. View Article : Google Scholar | |
Tang X, Zeng T, Deng W, Zhao W, Liu Y, Huang Q, Deng Y, Xie W and Huang W: Gut microbe-derived betulinic acid alleviates sepsis-induced acute liver injury by inhibiting macrophage NLRP3 inflammasome in mice. mBio. 16:e03020242025. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lin D, Hu X, Shi X, Huang W, Ouyang Y, Chen X, Xiong Y, Wu X, Hong D and Chen H: Akkermansia muciniphila modulates central nervous system autoimmune response and cognitive impairment by inhibiting hippocampal NLRP3-mediated Neuroinflammation. CNS Neurosci Ther. 31:e703202025. View Article : Google Scholar : PubMed/NCBI | |
Shen XH, Guan J, Lu DP, Hong SC, Yu L and Chen X: Peptostreptococcus anaerobius enhances dextran sulfate sodium-induced colitis by promoting nf-κB-NLRP3-dependent macrophage pyroptosis. Virulence. 15:24353912024. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Leng X, Li G, Wang R, Chi L and Sun D: Advances in research on the effectiveness and mechanism of Traditional Chinese Medicine formulas for colitis-associated colorectal cancer. Front Pharmacol. 14:11206722023. View Article : Google Scholar | |
Chen Y, Cai M, Shen B, Fan C and Zhou X: Electroacupuncture at Zusanli regulates the pathological phenotype of inflammatory bowel disease by modulating the NLRP3 inflammasome pathway. Immun Inflamm Dis. 12:e13662024. View Article : Google Scholar : PubMed/NCBI |