1
|
Iacono D, Vitale MG, Basile D, Pelizzari
G, Cinausero M, Poletto E, Pascoletti G and Minisini AM:
Immunotherapy for older patients with melanoma: From darkness to
light? Pigment Cell Melanoma Res. 34:550–563. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tímár J and Ladányi A: Molecular pathology
of skin melanoma: Epidemiology, differential diagnostics, prognosis
and therapy prediction. Int J Mol Sci. 23:53842022. View Article : Google Scholar
|
3
|
Mallardo D, Basile D and Vitale MG:
Advances in melanoma and skin cancers. Int J Mol Sci. 26:18492025.
View Article : Google Scholar
|
4
|
Sinikumpu SP, Jokelainen J,
Keinänen-Kiukaanniemi S and Huilaja L: Skin cancers and their risk
factors in older persons: A population-based study. BMC Geriatr.
22:2692022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Keung EZ and Gershenwald JE: The eighth
edition American Joint Committee on Cancer (AJCC) melanoma staging
system: Implications for melanoma treatment and care. Expert Rev
Anticancer Ther. 18:775–784. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wild CP, Weiderpass E and Stewart BW:
World Cancer Report: Cancer Research for Cancer Prevention. IARC
Publications; Lyon: 2020
|
7
|
Wang Y, Gu T, Tian X, Li W, Zhao R, Yang
W, Gao Q, Li T, Shim JH, Zhang C, et al: A small molecule
antagonist of PD-1/PD-L1 interactions acts as an immune checkpoint
inhibitor for NSCLC and melanoma immunotherapy. Front Immunol.
12:6544632021. View Article : Google Scholar
|
8
|
Long GV, Swetter SM, Menzies AM,
Gershenwald JE and Scolyer RA: Cutaneous melanoma. Lancet.
402:485–502. 2023. View Article : Google Scholar
|
9
|
Andrews LP, Butler SC, Cui J, Cillo AR,
Cardello C, Liu C, Brunazzi EA, Baessler A, Xie B, Kunning SR, et
al: LAG-3 and PD-1 synergize on CD8+ T cells to drive T cell
exhaustion and hinder autocrine IFN-γ-dependent anti-tumor
immunity. Cell. 187:4355–4372.e22. 2024. View Article : Google Scholar
|
10
|
Geels SN, Moshensky A, Sousa RS, Murat C,
Bustos MA, Walker BL, Singh R, Harbour SN, Gutierrez G, Hwang M, et
al: Interruption of the intratumor CD8+ T cell: Treg crosstalk
improves the efficacy of PD-1 immunotherapy. Cancer Cell.
42:1051–1066.e7. 2024. View Article : Google Scholar
|
11
|
Yang X, Wang W and Ji T: Metabolic
remodeling by the PD-L1 inhibitor BMS-202 significantly inhibits
cell malignancy in human glioblastoma. Cell Death Dis. 15:1862024.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Xie XQ, Yang Y, Wang Q, Liu HF, Fang XY,
Li CL, Jiang YZ, Wang S, Zhao HY, Miao JY, et al: Targeting
ATAD3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance
by redirecting PD-L1 to mitochondria. Cell Res. 33:215–228. 2023.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Du F, Yang L, Liu J, Wang J, Fan L,
Duangmano S, Liu H, Liu M, Wang J, Zhong X, et al: The role of
mitochondria in the resistance of melanoma to PD-1 inhibitors. J
Transl Med. 21:3452023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang AC and Zappasodi R: A decade of
checkpoint blockade immunotherapy in melanoma: Understanding the
molecular basis for immune sensitivity and resistance. Nat Immunol.
23:660–670. 2022. View Article : Google Scholar
|
15
|
Jenkins RW, Barbie DA and Flaherty KT:
Mechanisms of resistance to immune checkpoint inhibitors. Br J
Cancer. 118:9–16. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y,
Wu W, Han L and Wang S: The role of PD-1/PD-L1 and application of
immune-checkpoint inhibitors in human cancers. Front Immunol.
13:9644422022. View Article : Google Scholar
|
17
|
Zak KM, Grudnik P, Magiera K, Dömling A,
Dubin G and Holak TA: Structural biology of the immune checkpoint
receptor PD-1 and its ligands PD-L1/PD-L2. Structure. 25:1163–1174.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zong WX, Rabinowitz JD and White E:
Mitochondria and cancer. Mol Cell. 61:667–676. 2016. View Article : Google Scholar
|
19
|
Kuntz EM, Baquero P, Michie AM, Dunn K,
Tardito S, Holyoake TL, Helgason GV and Gottlieb E: Targeting
mitochondrial oxidative phosphorylation eradicates
therapy-resistant chronic myeloid leukemia stem cells. Nat Med.
23:1234–1240. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yamashita K, Kinoshita M, Miyamoto K,
Namba A, Shimizu M, Koda T, Sugimoto T, Mori Y, Yoshioka Y,
Nakatsuji Y, et al: Cerebrospinal fluid mitochondrial DNA in
neuromyelitis optica spectrum disorder. J Neuroinflammation.
15:1252018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cheng AN, Cheng LC, Kuo CL, Lo YK, Chou
HY, Chen CH, Wang YH, Chuang TH, Cheng SJ and Lee AY: Mitochondrial
Lon-induced mtDNA leakage contributes to PD-L1-mediated
immunoescape via STING-IFN signaling and extracellular vesicles. J
Immunother Cancer. 8:e0013722020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gerasimov ES, Gasparyan AA, Kaurov I,
Tichý B, Logacheva MD, Kolesnikov AA, Lukeš J, Yurchenko V, Zimmer
SL and Flegontov P: Trypanosomatid mitochondrial RNA editing:
Dramatically complex transcript repertoires revealed with a
dedicated mapping tool. Nucleic Acids Res. 46:765–781. 2018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Knapek KJ, Georges HM, van Campen H,
Bishop JV, Bielefeldt-Ohmann H, Smirnova NP and Hansen TR: Fetal
lymphoid organ immune responses to transient and persistent
infection with bovine viral diarrhea virus. Viruses. 12:8162020.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Miao Z, Tian W, Ye Y, Gu W, Bao Z, Xu L,
Sun G, Li C, Tu Y, Chao H, et al: Hsp90 induces Acsl4-dependent
glioma ferroptosis via dephosphorylating Ser637 at Drp1. Cell Death
Dis. 13:5482022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rinwa P, Eriksson M, Cotgreave I and
Bäckberg M: 3R-Refinement principles: Elevating rodent well-being
and research quality. Lab Anim Res. 40:112024. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guan S, Zhao L and Peng R: Mitochondrial
respiratory chain supercomplexes: From structure to function. Int J
Mol Sci. 23:138802022. View Article : Google Scholar
|
27
|
Newton K, Strasser A, Kayagaki N and Dixit
VM: Cell death. Cell. 187:235–256. 2024. View Article : Google Scholar
|
28
|
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu
K: Combination strategies with PD-1/PD-L1 blockade: Current
advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li X, Liu Y, Gui J, Gan L and Xue J: Cell
identity and spatial distribution of PD-1/PD-L1 blockade
responders. Adv Sci (Weinh). 11:e24007022024. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yu Y, Peng XD, Qian XJ, Zhang KM, Huang X,
Chen YH, Li YT, Feng GK, Zhang HL, Xu XL, et al: Fis1
phosphorylation by Met promotes mitochondrial fission and
hepatocellular carcinoma metastasis. Signal Transduct Target Ther.
6:4012021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wong YC, Ysselstein D and Krainc D:
Mitochondria-lysosome contacts regulate mitochondrial fission via
RAB7 GTP hydrolysis. Nature. 554:382–386. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Opstad IS, Godtliebsen G, Ahluwalia BS,
Myrmel T, Agarwal K and Birgisdottir ÅB: Mitochondrial dynamics and
quantification of mitochondria-derived vesicles in cardiomyoblasts
using structured illumination microscopy. J Biophotonics.
15:e2021003052022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Harel M, Ortenberg R, Varanasi SK,
Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V,
Arama-Chayoth M, Greenberg E, et al: Proteomics of melanoma
response to immunotherapy reveals mitochondrial dependence. Cell.
179:236–250.e18. 2019. View Article : Google Scholar
|
34
|
Klein K, He K, Younes AI, Barsoumian HB,
Chen D, Ozgen T, Mosaffa S, Patel RR, Gu M, Novaes J, et al: Role
of mitochondria in cancer immune evasion and potential therapeutic
approaches. Front Immunol. 11:5733262020. View Article : Google Scholar
|
35
|
Porporato PE, Filigheddu N, Pedro JMB,
Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell
Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ye L, Wen X, Qin J, Zhang X, Wang Y, Wang
Z, Zhou T, Di Y and He W: Metabolism-regulated ferroptosis in
cancer progression and therapy. Cell Death Dis. 15:1962024.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Halma MTJ, Tuszynski JA and Marik PE:
Cancer metabolism as a therapeutic target and review of
interventions. Nutrients. 15:42452023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Vander Heiden MG, Lunt SY, Dayton TL,
Fiske BP, Israelsen WJ, Mattaini KR, Vokes NI, Stephanopoulos G,
Cantley LC, Metallo CM and Locasale JW: Metabolic pathway
alterations that support cell proliferation. Cold Spring Harb Symp
Quant Biol. 76:325–334. 2011. View Article : Google Scholar
|
39
|
Chatterjee R and Chatterjee J: ROS and
oncogenesis with special reference to EMT and stemness. Eur J Cell
Biol. 99:1510732020. View Article : Google Scholar
|
40
|
Moloney JN and Cotter TG: ROS signalling
in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018.
View Article : Google Scholar
|
41
|
Yang Y, Karakhanova S, Hartwig W, D'Haese
JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and
mitochondrial ROS in cancer: Novel targets for anticancer therapy.
J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar
|
42
|
DeBerardinis RJ and Chandel NS:
Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Missiroli S, Perrone M, Genovese I, Pinton
P and Giorgi C: Cancer metabolism and mitochondria: Finding novel
mechanisms to fight tumours. EBioMedicine. 59:1029432020.
View Article : Google Scholar : PubMed/NCBI
|