1
|
Maude SL, Laetsch TW, Buechner J, Rives S,
Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers
GD, et al: Tisagenlecleucel in children and young adults with
B-Cell lymphoblastic leukemia. N Engl J Med. 378:439–448. 2018.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Neelapu SS, Locke FL, Bartlett NL, Lekakis
LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T,
Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in
refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544.
2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rodriguez-Otero P, Ailawadhi S, Arnulf B,
Patel K, Cavo M, Nooka AK, Manier S, Callander N, Costa LJ, Vij R,
et al: Ide-cel or standard regimens in relapsed and refractory
multiple myeloma. N Engl J Med. 388:1002–1014. 2023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xu X, Sun Q, Liang X, Chen Z, Zhang X,
Zhou X, Li M, Tu H, Liu Y, Tu S, et al: Mechanisms of relapse after
CD19 CAR T-Cell therapy for acute lymphoblastic leukemia and its
prevention and treatment strategies. Front Immunol. 10:26642019.
View Article : Google Scholar
|
5
|
Samur MK, Fulciniti M, Aktas Samur A,
Bazarbachi AH, Tai YT, Prabhala R, Alonso A, Sperling AS, Campbell
T, Petrocca F, et al: Biallelic loss of BCMA as a resistance
mechanism to CAR T cell therapy in a patient with multiple myeloma.
Nat Commun. 12:8682021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Haneen S, Ira LK, Hao W, Constance M,
Bonnie Y, Cindy D, Julie DZ, Roger G, Maryalice S, Elaine SJ, et
al: Sequential loss of tumor surface antigens following chimeric
antigen receptor T-cell therapies in diffuse large B-cell lymphoma.
Haematologica. 103:e2152018. View Article : Google Scholar
|
7
|
O'Rourke DM, Nasrallah MP, Desai A,
Melenhorst JJ, Mansfield K, Morrissette JJD, Martinez-Lage M, Brem
S, Maloney E, Shen A, et al: A single dose of peripherally infused
EGFRvIII-directed CAR T cells mediates antigen loss and induces
adaptive resistance in patients with recurrent glioblastoma. Sci
Transl Med. 9:eaaa09842017. View Article : Google Scholar
|
8
|
Secondino S, Canino C, Alaimo D, Muzzana
M, Galli G, Borgetto S, Basso S, Bagnarino J, Pulvirenti C, Comoli
P, et al: Clinical trials of cellular therapies in solid tumors.
Cancers (Basel). 15:36672023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Keir ME, Butte MJ, Freeman GJ and Sharpe
AH: PD-1 and its ligands in tolerance and immunity. Annu Rev
Immunol. 26:677–704. 2008. View Article : Google Scholar
|
10
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Afreen S and Dermime S: The
immunoinhibitory B7-H1 molecule as a potential target in cancer:
Killing many birds with one stone. Hematol Oncol Stem Cell Ther.
7:1–17. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Brahmer J, Reckamp KL, Baas P, Crinò L,
Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE,
Holgado E, et al: Nivolumab versus docetaxel in advanced
squamous-cell non-small-cell lung cancer. N Engl J Med.
373:123–135. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Robert C, Schachter J, Long GV, Arance A,
Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, et al:
Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med.
372:2521–2532. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
John LB, Devaud C, Duong CP, Yong CS,
Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH and Darcy PK:
Anti-PD-1 antibody therapy potently enhances the eradication of
established tumors by gene-modified T cells. Clin Cancer Res.
19:5636–5646. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li S, Siriwon N, Zhang X, Yang S, Jin T,
He F, Kim YJ, Mac J, Lu Z, Wang S, et al: Enhanced cancer
immunotherapy by chimeric antigen Receptor-modified T cells
engineered to secrete checkpoint inhibitors. Clin Cancer Res.
23:6982–6992. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Davies JS, Karimipour F, Zhang L,
Nagarsheth N, Norberg S, Serna C, Strauss J, Chiou S, Gulley JL and
Hinrichs CS: Non-synergy of PD-1 blockade with T-cell therapy in
solid tumors. J Immunother Cancer. 10:e0049062022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Adusumilli PS, Zauderer MG, Rivière I,
Solomon SB, Rusch VW, O'Cearbhaill RE, Zhu A, Cheema W, Chintala
NK, Halton E, et al: A phase I trial of regional
mesothelin-targeted CAR T-cell therapy in patients with malignant
pleural disease, in combination with the anti-PD-1 agent
pembrolizumab. Cancer Discov. 11:2748–2763. 2021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chong EA, Alanio C, Svoboda J, Nasta SD,
Landsburg DJ, Lacey SF, Ruella M, Bhattacharyya S, Wherry EJ and
Schuster SJ: Pembrolizumab for B-cell lymphomas relapsing after or
refractory to CD19-directed CAR T-cell therapy. Blood.
139:1026–1038. 2022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Aoki T, Hino M, Koh K, Kyushiki M,
Kishimoto H, Arakawa Y, Hanada R, Kawashima H, Kurihara J, Shimojo
N, et al: Low frequency of programmed death ligand 1 expression in
pediatric cancers. Pediatr Blood Cancer. 63:1461–1464. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Davis KL, Fox E, Merchant MS, Reid JM,
Kudgus RA, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ and Mackall
CL: Nivolumab in children and young adults with relapsed or
refractory solid tumours or lymphoma (ADVL1412): A multicentre,
open-label, single-arm, phase 1–2 trial. Lancet Oncol. 21:541–550.
2020. View Article : Google Scholar
|
21
|
Geoerger B, Kang HJ, Yalon-Oren M,
Marshall LV, Vezina C, Pappo A, Laetsch TW, Petrilli AS, Ebinger M,
Toporski J, et al: Pembrolizumab in paediatric patients with
advanced melanoma or a PD-L1-positive, advanced, relapsed, or
refractory solid tumour or lymphoma (KEYNOTE-051): Interim analysis
of an open-label, single-arm, phase 1–2 trial. Lancet Oncol.
21:121–133. 2020. View Article : Google Scholar
|
22
|
Cherkassky L, Morello A, Villena-Vargas J,
Feng Y, Dimitrov DS, Jones DR, Sadelain M and Adusumilli PS: Human
CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist
tumor-mediated inhibition. J Clin Invest. 126:3130–3144. 2016.
View Article : Google Scholar
|
23
|
Lynch A, Hawk W, Nylen E, Ober S, Autin P
and Barber A: Adoptive transfer of murine T cells expressing a
chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma.
Immunology. 152:472–483. 472–483. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li D, English H, Hong J, Liang T, Merlino
G, Day CP and Ho M: A novel PD-L1-targeted shark VNAR
single-domain-based CAR-T cell strategy for treating breast cancer
and liver cancer. Mol Ther Oncolytics. 24:849–863. 2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Imai C, Mihara K, Andreansky M, Nicholson
IC, Pui CH, Geiger TL and Campana D: Chimeric receptors with 4-1BB
signaling capacity provoke potent cytotoxicity against acute
lymphoblastic leukemia. Leukemia. 18:676–684. 2004. View Article : Google Scholar
|
26
|
Mihara K, Yanagihara K, Takigahira M,
Kitanaka A, Imai C, Bhattacharyya J, Kubo T, Takei Y, Yasunaga S,
Takihara Y, et al: Synergistic and persistent effect of T-cell
immunotherapy with anti-CD19 or anti-CD38 chimeric receptor in
conjunction with rituximab on B-cell non-Hodgkin lymphoma. Br J
Haematol. 151:37–46. 2010. View Article : Google Scholar
|
27
|
Kanda Y: Investigation of the freely
available easy-to-use software ‘EZR’ for medical statistics. Bone
Marrow Transplant. 48:452–458. 2013. View Article : Google Scholar
|
28
|
Sugiura D, Maruhashi T, Okazaki IM,
Shimizu K, Maeda TK, Takemoto T and Okazaki T: Restriction of PD-1
function by cis-PD-L1/CD80 interactions is required for optimal T
cell responses. Science. 364:558–566. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shen JK, Cote GM, Choy E, Yang P, Harmon
D, Schwab J, Nielsen GP, Chebib I, Ferrone S, Wang X, et al:
Programmed cell death ligand 1 expression in osteosarcoma. Cancer
Immunol Res. 2:690–698. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Alessandra D, Fabio P, Mariella DC, Maria
VC, Fabio M, Vito P, Daniel O, Francesca B, Franco L, Aurora C, et
al: PD-L1 expression in metastatic neuroblastoma as an additional
mechanism for limiting immune surveillance. Oncoimmunology.
5:e1064578302020.
|
31
|
Spiegel JY, Patel S, Muffly L, Hossain NM,
Oak J, Baird JH, Frank MJ, Shiraz P, Sahaf B, Craig J, et al: CAR T
cells with dual targeting of CD19 and CD22 in adult patients with
recurrent or refractory B cell malignancies: A phase 1 trial. Nat
Med. 27:1419–1431. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li W, Ding L, Shi W, Wan X, Yang X, Yang
J, Wang T, Song L, Wang X, Ma Y, et al: Safety and efficacy of
co-administration of CD19 and CD22 CAR-T cells in children with
B-ALL relapse after CD19 CAR-T therapy. J Transl Med. 21:2132023.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang T, Tang Y, Cai J, Wan X, Hu S, Lu X,
Xie Z, Qiao X, Jiang H, Shao J, et al: Coadministration of CD19-
and CD22-directed chimeric antigen receptor T-Cell therapy in
childhood B-cell acute lymphoblastic leukemia: A Single-arm,
multicenter, phase II trial. J Clin Oncol. 41:1670–1683. 2023.
View Article : Google Scholar
|
34
|
Rafiq S, Yeku OO, Jackson HJ, Purdon TJ,
van Leeuwen DG, Drakes DJ, Song M, Miele MM, Li Z, Wang P, et al:
Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances
anti-tumor efficacy in vivo. Nat Biotechnol. 36:847–856. 2018.
View Article : Google Scholar
|
35
|
Liu X, Ranganathan R, Jiang S, Fang C, Sun
J, Kim S, Newick K, Lo A, June CH, Zhao Y, et al: A chimeric
Switch-receptor targeting PD1 augments the efficacy of
Second-generation CAR T cells in advanced solid tumors. Cancer Res.
76:1578–1590. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lu C, Guo C, Chen H, Zhang H, Zhi L, Lv T,
Li M, Niu Z, Lu P and Zhu W: A novel chimeric PD1-NKG2D-41BB
receptor enhances antitumor activity of NK92 cells against human
lung cancer H1299 cells by triggering pyroptosis. Mol Immunol.
122:200–206. 2020. View Article : Google Scholar
|
37
|
Fabian KP, Padget MR, Donahue RN,
Solocinski K, Robbins Y, Allen CT, Lee JH, Rabizadeh S, Soon-Shiong
P, Schlom J and Hodge JW: PD-L1 targeting high-affinity NK (t-haNK)
cells induce direct antitumor effects and target suppressive MDSC
populations. J Immunother Cancer. 8:e0004502020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu WN, So WY, Harden SL, Fong SY, Wong
MXY, Tan WWS, Tan SY, Ong JKL, Rajarethinam R, Liu M, et al:
Successful targeting of PD-1/PD-L1 with chimeric antigen
receptor-natural killer cells and nivolumab in a humanized mouse
cancer model. Sci Adv. 8:eadd11872022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yan L, Martha EG, Yaqing Q, Andrea OL,
Jesus ES, Mieu MB, Maria J, Tanya H, Shuhua L, Hong Q, et al: Solid
cancer-directed CAR T cell therapy that attacks both tumor and
immunosuppressive cells via targeting PD-L1. Mol Ther Oncol.
32:2008912024. View Article : Google Scholar
|