
Centrosome‑, mitotic spindle‑ and cytokinetic bridge‑specific compartmentalization of AGO2 protein in human liver cells undergoing mitosis: Non‑canonical, RNAi‑dependent, control of local homeostasis
- Authors:
- Eleni I. Theotoki
- Panos Kakoulidis
- Konstantinos-Stylianos Nikolakopoulos
- Eleni N. Vlachou
- Ourania E. Tsitsilonis
- Gerassimos E. Voutsinas
- Ema Anastasiadou
- Dimitrios J. Stravopodis
-
Affiliations: Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens 15701, Greece, Department of Cancer Genetics, Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece, Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens 15701, Greece, Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research ‘Demokritos’, Athens 15310, Greece - Published online on: July 7, 2025 https://doi.org/10.3892/mmr.2025.13609
- Article Number: 244
-
Copyright: © Theotoki et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Oliveto S, Mancino M, Manfrini N and Biffo S: Role of microRNAs in translation regulation and cancer. World J Biol Chem. 8:45–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009. View Article : Google Scholar | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar | |
Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI | |
Beermann J, Piccoli MT, Viereck J and Thum T: Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Clark BS and Blackshaw S: Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet. 5:1642014. View Article : Google Scholar | |
Sayed D and Abdellatif M: MicroRNAs in development and disease. Physiol Rev. 91:827–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Quévillon Huberdeau M, Zeitler DM, Hauptmann J, Bruckmann A, Fressigné L, Danner J, Piquet S, Strieder N, Engelmann JC, Jannot G, et al: Phosphorylation of argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J. 36:2088–2106. 2017. View Article : Google Scholar | |
Hutvagner G and Simard MJ: Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol. 9:22–32. 2008. View Article : Google Scholar | |
Meister G: Argonaute proteins: Functional insights and emerging roles. Nat Rev Genet. 14:447–459. 2013. View Article : Google Scholar | |
Nowak I and Sarshad AA: Argonaute proteins take center stage in cancers. Cancers (Basel). 13:7882021. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: Metazoan MicroRNAs. Cell. 173:20–51. 2018. View Article : Google Scholar | |
Hutvágner G and Zamore PD: A microRNA in a multiple-turnover RNAi enzyme complex. Science. 297:2056–2060. 2002. View Article : Google Scholar | |
Zeng Y and Cullen BR: Sequence requirements for micro RNA processing and function in human cells. RNA. 9:112–123. 2003. View Article : Google Scholar : PubMed/NCBI | |
Doench JG, Petersen CP and Sharp PA: siRNAs can function as miRNAs. Genes Dev. 17:438–442. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pantazopoulou VI, Delis AD, Georgiou S, Pagakis SN, Filippa V, Dragona E, Kloukina I, Chatzitheodoridis E, Trebicka J, Velentzas AD, et al: AGO2 localizes to cytokinetic protrusions in a p38-dependent manner and is needed for accurate cell division. Commun Biol. 4:7262021. View Article : Google Scholar | |
Li X, Wang X, Cheng Z and Zhu Q: AGO2 and its partners: A silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol. 55:33–53. 2020. View Article : Google Scholar | |
Carmell MA, Xuan Z, Zhang MQ and Hannon GJ: The argonaute family: Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16:2733–2742. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi K: Anatomy of four human argonaute proteins. Nucleic Acids Res. 50:6618–6638. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song JJ, Smith SK, Hannon GJ and Joshua-Tor L: Crystal structure of argonaute and its implications for RISC slicer activity. Science. 305:1434–1437. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T and Patel DJ: Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell. 19:405–419. 2005. View Article : Google Scholar | |
Ma JB, Ye K and Patel DJ: Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature. 429:318–322. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T and Patel DJ: Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature. 434:666–670. 2005. View Article : Google Scholar : PubMed/NCBI | |
Höck J and Meister G: The argonaute protein family. Genome Biol. 9:2102008. View Article : Google Scholar | |
Chu Y, Yokota S, Liu J, Kilikevicius A, Johnson KC and Corey DR: Argonaute binding within human nuclear RNA and its impact on alternative splicing. RNA. 27:991–1003. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park MS, Sim G, Kehling AC and Nakanishi K: Human argonaute2 and argonaute3 are catalytically activated by different lengths of guide RNA. Proc Natl Acad Sci USA. 117:28576–28578. 2020. View Article : Google Scholar : PubMed/NCBI | |
Robb GB, Brown KM, Khurana J and Rana TM: Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol. 12:133–137. 2005. View Article : Google Scholar | |
Rüdel S, Flatley A, Weinmann L, Kremmer E and Meister G: A multifunctional human argonaute2-specific monoclonal antibody. RNA. 14:1244–1253. 2008. View Article : Google Scholar | |
Wu J, Yang J, Cho WC and Zheng Y: Argonaute proteins: Structural features, functions and emerging roles. J Adv Res. 24:317–324. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L, Young R, Morozova N, Fenouil R, Descostes N, Andrau JC, et al: Argonaute proteins couple chromatin silencing to alternative splicing. Nat Struct Mol Biol. 19:998–1004. 2012. View Article : Google Scholar | |
Perron MP and Provost P: Protein components of the microRNA pathway and human diseases. Methods Mol Biol. 487:369–385. 2009. | |
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L and Hannon GJ: Argonaute2 is the catalytic engine of mammalian RNAi. Science. 305:1437–1441. 2004. View Article : Google Scholar : PubMed/NCBI | |
Morita S, Horii T, Kimura M, Goto Y, Ochiya T and Hatada I: One argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics. 89:687–696. 2007. View Article : Google Scholar : PubMed/NCBI | |
O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ, Miska EA and Tarakhovsky A: A slicer-independent role for argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21:1999–2004. 2007. View Article : Google Scholar | |
Schirle NT, Sheu-Gruttadauria J, Chandradoss SD, Joo C and MacRae IJ: Water-mediated recognition of t1-adenosine anchors argonaute2 to microRNA targets. Elife. 4:e076462015. View Article : Google Scholar : PubMed/NCBI | |
de Vries I, Kwakman T, Lu XJ, Hekkelman ML, Deshpande M, Velankar S, Perrakis A and Joosten RP: New restraints and validation approaches for nucleic acid structures in PDB-REDO. Acta Crystallogr D Struct Biol. 77:1127–1141. 2021. View Article : Google Scholar | |
Sastry GM, Adzhigirey M, Day T, Annabhimoju R and Sherman W: Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 27:221–234. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jones G, Jindal A, Ghani U, Kotelnikov S, Egbert M, Hashemi N, Vajda S, Padhorny D and Kozakov D: Elucidation of protein function using computational docking and hotspot analysis by ClusPro and FTMap. Acta Crystallogr D Struct Biol. 78:690–697. 2022. View Article : Google Scholar | |
Gowravaram M, Bonneau F, Kanaan J, Maciej VD, Fiorini F, Raj S, Croquette V, Le Hir H and Chakrabarti S: A conserved structural element in the RNA helicase UPF1 regulates its catalytic activity in an isoform-specific manner. Nucleic Acids Res. 46:2648–2659. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Li CL, Chen X, Cui Y, Golebiowski FM, Wang H, Hanaoka F, Sugasawa K and Yang W: Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature. 617:170–175. 2023. View Article : Google Scholar : PubMed/NCBI | |
Theotoki EI, Kakoulidis P, Velentzas AD, Nikolakopoulos KS, Angelis NV, Tsitsilonis OE, Anastasiadou E and Stravopodis DJ: TRBP2, a major component of the RNAi machinery, is subjected to cell cycle-dependent regulation in human cancer cells of diverse tissue origin. Cancers (Basel). 16:37012024. View Article : Google Scholar : PubMed/NCBI | |
Li F, Li Y, Ye X, Gao H, Shi Z, Luo X, Rice LM and Yu H: Cryo-EM structure of VASH1-SVBP bound to microtubules. Elife. 9:e581572020. View Article : Google Scholar : PubMed/NCBI | |
Wieczorek M, Urnavicius L, Ti SC, Molloy KR, Chait BT and Kapoor TM: Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell. 180:165–175.e16. 2020. View Article : Google Scholar | |
Rice LM, Montabana EA and Agard DA: The lattice as allosteric effector: Structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule assembly. Proc Natl Acad Sci USA. 105:5378–5383. 2008. View Article : Google Scholar : PubMed/NCBI | |
Burley SK, Bhatt R, Bhikadiya C, Bi C, Biester A, Biswas P, Bittrich S, Blaumann S, Brown R, Chao H, et al: Updated resources for exploring experimentally-determined PDB structures and computed structure models at the RCSB protein data bank. Nucleic Acids Res. 53(D1): D564–D574. 2025. View Article : Google Scholar : PubMed/NCBI | |
Eastman P, Galvelis R, Peláez RP, Abreu CRA, Farr SE, Gallicchio E, Gorenko A, Henry MM, Hu F, Huang J, et al: OpenMM 8: Molecular dynamics simulation with machine learning potentials. J Phys Chem B. 128:109–116. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K, et al: Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27:112–128. 2018. View Article : Google Scholar | |
Lee YY, Lee H, Kim H, Kim VN and Roh SH: Structure of the human DICER-pre-miRNA complex in a dicing state. Nature. 615:331–338. 2023. View Article : Google Scholar : PubMed/NCBI | |
Arab SS and Dantism A: EasyModel: A user-friendly web-based interface based on MODELLER. Sci Rep. 13:171852023. View Article : Google Scholar : PubMed/NCBI | |
Webb B and Sali A: Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics. 54:5.6.1–5.6.37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deshmukh P, Markande S, Fandade V, Ramtirtha Y, Madhusudhan MS and Joseph J: The miRISC component AGO2 has multiple binding sites for Nup358 SUMO-interacting motif. Biochem Biophys Res Commun. 556:45–52. 2021. View Article : Google Scholar : PubMed/NCBI | |
Laskowski RA and Thornton JM: PDBsum extras: SARS-CoV-2 and AlphaFold models. Protein Sci. 31:283–289. 2022. View Article : Google Scholar | |
Honorato RV, Koukos PI, Jiménez-García B, Tsaregorodtsev A, Verlato M, Giachetti A, Rosato A and Bonvin AMJJ: Structural biology in the clouds: The WeNMR-EOSC ecosystem. Front Mol Biosci. 8:7295132021. View Article : Google Scholar | |
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al: Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 630:493–500. 2024. View Article : Google Scholar : PubMed/NCBI | |
UniProt Consortium: UniProt: The universal protein knowledgebase in 2025. Nucleic Acids Res. 53(D1): D609–D617. 2025. View Article : Google Scholar : PubMed/NCBI | |
Yamashita K, Wojdyr M, Long F, Nicholls RA and Murshudov GN: GEMMI and Servalcat restrain REFMAC5. Acta Crystallogr D Struct Biol. 79:368–373. 2023. View Article : Google Scholar | |
Humphrey W, Dalke A and Schulten K: VMD: Visual molecular dynamics. J Mol Graph. 14:33–38. 27–28. 1996. View Article : Google Scholar : PubMed/NCBI | |
Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH and Ferrin TE: UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 32:e47922023. View Article : Google Scholar | |
Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, et al: The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42((Database Issue)): D358–D363. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Valencia-Sanchez MA, Hannon GJ and Parker R: MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 7:719–723. 2005. View Article : Google Scholar | |
Salisbury JL, Suino KM, Busby R and Springett M: Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol. 12:1287–1292. 2002. View Article : Google Scholar | |
Bettencourt-Dias M and Glover DM: Centrosome biogenesis and function: Centrosomics brings new understanding. Nat Rev Mol Cell Biol. 8:451–463. 2007. View Article : Google Scholar | |
Buhler M and Stolz A: Estrogens-origin of centrosome defects in human cancer? Cells. 11:4322022. View Article : Google Scholar : PubMed/NCBI | |
Moritz M, Braunfeld MB, Sedat JW, Alberts B and Agard DA: Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature. 378:638–640. 1995. View Article : Google Scholar : PubMed/NCBI | |
Pihan GA: Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol. 3:2772013. View Article : Google Scholar | |
Dammermann A and Merdes A: Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol. 159:255–266. 2002. View Article : Google Scholar | |
Hames RS, Crookes RE, Straatman KR, Merdes A, Hayes MJ, Faragher AJ and Fry AM: Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol Biol Cell. 16:1711–1724. 2005. View Article : Google Scholar | |
Staszewski J, Lazarewicz N, Konczak J, Migdal I and Maciaszczyk-Dziubinska E: UPF1-From mRNA degradation to human disorders. Cells. 12:4192023. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Suh MR, Han J, Yeom KH, Lee Y, Heo I, Ha M, Hyun S and Kim VN: Human UPF1 participates in small RNA-induced mRNA downregulation. Mol Cell Biol. 29:5789–5799. 2009. View Article : Google Scholar | |
Welte T, Goulois A, Stadler MB, Hess D, Soneson C, Neagu A, Azzi C, Wisser MJ, Seebacher J, Schmidt I, et al: Convergence of multiple RNA-silencing pathways on GW182/TNRC6. Mol Cell. 83:2478–2492.e8. 2023. View Article : Google Scholar | |
Fiorini F, Bagchi D, Le Hir H and Croquette V: Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities. Nat Commun. 6:75812015. View Article : Google Scholar : PubMed/NCBI | |
Cerulo L, Pezzella N, Caruso FP, Parente P, Remo A, Giordano G, Forte N, Busselez J, Boschi F, Galiè M, et al: Single-cell proteo-genomic reveals a comprehensive map of centrosome-associated spliceosome components. iScience. 26:1066022023. View Article : Google Scholar | |
Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar | |
Völler D, Linck L, Bruckmann A, Hauptmann J, Deutzmann R, Meister G and Bosserhoff AK: Argonaute family protein expression in normal tissue and cancer entities. PLoS One. 11:e01611652016. View Article : Google Scholar | |
Shen EZ, Chen H, Ozturk AR, Tu S, Shirayama M, Tang W, Ding YH, Dai SY, Weng Z and Mello CC: Identification of piRNA binding sites reveals the argonaute regulatory landscape of the C. elegans germline. Cell. 172:937–951.e18. 2018. View Article : Google Scholar | |
Sasaki T, Kuwata R, Hoshino K, Isawa H, Sawabe K and Kobayashi M: Argonaute 2 suppresses japanese encephalitis virus infection in aedes aegypti. Jpn J Infect Dis. 70:38–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, et al: Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell. 169:1090–1104.e13. 2017. View Article : Google Scholar | |
Lessel D, Zeitler DM, Reijnders MRF, Kazantsev A, Hassani Nia F, Bartholomäus A, Martens V, Bruckmann A, Graus V, McConkie-Rosell A, et al: Germline AGO2 mutations impair RNA interference and human neurological development. Nat Commun. 11:57972020. View Article : Google Scholar : PubMed/NCBI | |
Detzer A, Engel C, Wünsche W and Sczakiel G: Cell stress is related to re-localization of argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Res. 39:2727–2741. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leung AKL and Sharp PA: Quantifying Argonaute proteins in and out of GW/P-bodies: Implications in microRNA activities. Adv Exp Med Biol. 768:165–182. 2013. View Article : Google Scholar | |
Patel PH, Barbee SA and Blankenship JT: GW-bodies and P-bodies constitute two separate pools of sequestered non-translating RNAs. PLoS One. 11:e01502912016. View Article : Google Scholar : PubMed/NCBI | |
Karlikow M, Goic B, Mongelli V, Salles A, Schmitt C, Bonne I, Zurzolo C and Saleh MC: Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci Rep. 6:270852016. View Article : Google Scholar : PubMed/NCBI | |
Antoniou A, Baptista M, Carney N and Hanley JG: PICK1 links argonaute 2 to endosomes in neuronal dendrites and regulates miRNA activity. EMBO Rep. 15:548–556. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang B, Chen X, Li W and Dong P: AGO2 involves the malignant phenotypes and FAK/PI3K/AKT signaling pathway in hypopharyngeal-derived FaDu cells. Oncotarget. 8:54735–54746. 2017. View Article : Google Scholar | |
Zhang K, Pomyen Y, Barry AE, Martin SP, Khatib S, Knight L, Forgues M, Dominguez DA, Parhar R, Shah AP, et al: AGO2 mediates MYC mRNA stability in hepatocellular carcinoma. Mol Cancer Res. 18:612–622. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Jin H and Qian Q: Argonaute 2: A novel rising star in cancer research. J Cancer. 6:877–882. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li L, Yu C, Gao H and Li Y: Argonaute proteins: Potential biomarkers for human colon cancer. BMC Cancer. 10:382010. View Article : Google Scholar : PubMed/NCBI | |
Vaksman O, Hetland TE, Trope CG, Reich R and Davidson B: Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma. Hum Pathol. 43:2062–2069. 2012. View Article : Google Scholar | |
Gao CL, Sun R, Li DH and Gong F: PIWI-like protein 1 upregulation promotes gastric cancer invasion and metastasis. Onco Targets Ther. 11:8783–8789. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng B, Hu P, Lu SJ, Chen JB and Ge RL: Increased argonaute 2 expression in gliomas and its association with tumor progression and poor prognosis. Asian Pac J Cancer Prev. 15:4079–4083. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shankar S, Pitchiaya S, Malik R, Kothari V, Hosono Y, Yocum AK, Gundlapalli H, White Y, Firestone A, Cao X, et al: KRAS engages AGO2 to enhance cellular transformation. Cell Rep. 14:1448–1461. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Graves P and Zeng Y: Overexpression of human argonaute2 inhibits cell and tumor growth. Biochim Biophys Acta. 1830:2553–2561. 2013. View Article : Google Scholar | |
Casey MC, Prakash A, Holian E, McGuire A, Kalinina O, Shalaby A, Curran C, Webber M, Callagy G, Bourke E, et al: Quantifying argonaute 2 (Ago2) expression to stratify breast cancer. BMC Cancer. 19:7122019. View Article : Google Scholar : PubMed/NCBI | |
Baldarelli RM, Smith CL, Ringwald M, Richardson JE and Bult CJ; Mouse Genome Informatics Group, : Mouse genome informatics: An integrated knowledgebase system for the laboratory mouse. Genetics. 227:iyae0312024. View Article : Google Scholar : PubMed/NCBI | |
Baldarelli RM, Smith CM, Finger JH, Hayamizu TF, McCright IJ, Xu J, Shaw DR, Beal JS, Blodgett O, Campbell J, et al: The mouse gene expression database (GXD): 2021 Update. Nucleic Acids Res. 49(D1): D924–D931. 2021. View Article : Google Scholar : PubMed/NCBI | |
Krupke DM, Begley DA, Sundberg JP, Richardson JE, Neuhauser SB and Bult CJ: The mouse tumor biology database: A comprehensive resource for mouse models of human cancer. Cancer Res. 77:e67–e70. 2017. View Article : Google Scholar : PubMed/NCBI | |
Aizer A, Brody Y, Ler LW, Sonenberg N, Singer RH and Shav-Tal Y: The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell. 19:4154–4166. 2008. View Article : Google Scholar | |
Moser JJ, Fritzler MJ and Rattner JB: Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes. BMC Cell Biol. 12:372011. View Article : Google Scholar | |
Alliegro MC, Alliegro MA and Palazzo RE: Centrosome-associated RNA in surf clam oocytes. Proc Natl Acad Sci USA. 103:9034–9038. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chichinadze K, Lazarashvili A and Tkemaladze J: RNA in centrosomes: Structure and possible functions. Protoplasma. 250:397–405. 2013. View Article : Google Scholar | |
Alliegro MC and Alliegro MA: Centrosomal RNA correlates with intron-poor nuclear genes in Spisula oocytes. Proc Natl Acad Sci USA. 105:6993–6997. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alliegro MC: The implications of centrosomal RNA. RNA Biol. 5:198–200. 2008. View Article : Google Scholar | |
Safieddine A, Coleno E, Salloum S, Imbert A, Traboulsi AM, Kwon OS, Lionneton F, Georget V, Robert MC, Gostan T, et al: A choreography of centrosomal mRNAs reveals a conserved localization mechanism involving active polysome transport. Nat Commun. 12:13522021. View Article : Google Scholar : PubMed/NCBI | |
Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I and Joo C: TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun. 7:136942016. View Article : Google Scholar : PubMed/NCBI | |
Griffin KN, Walters BW, Li H, Wang H, Biancon G, Tebaldi T, Kaya CB, Kanyo J, Lam TT, Cox AL, et al: Widespread association of the argonaute protein AGO2 with meiotic chromatin suggests a distinct nuclear function in mammalian male reproduction. Genome Res. 32:1655–1668. 2022. View Article : Google Scholar : PubMed/NCBI | |
Atwood BL, Woolnough JL, Lefevre GM, Saint Just Ribeiro M, Felsenfeld G and Giles KE: Human ARGONAUTE 2 IS TETHERED TO RIBOSOmal RNA through MicroRNA interactions. J Biol Chem. 291:17919–17928. 2016. View Article : Google Scholar : PubMed/NCBI | |
Woolnough JL, Atwood BL and Giles KE: Argonaute 2 binds directly to tRNA genes and promotes gene repression in cis. Mol Cell Biol. 35:2278–2294. 2015. View Article : Google Scholar | |
Nazer E, Gómez Acuña L and Kornblihtt AR: Seeking the truth behind the myth: Argonaute tales from ‘nuclearland’. Mol Cell. 82:503–513. 2022. View Article : Google Scholar | |
Li J, Kim T, Nutiu R, Ray D, Hughes TR and Zhang Z: Identifying mRNA sequence elements for target recognition by human argonaute proteins. Genome Res. 24:775–785. 2014. View Article : Google Scholar : PubMed/NCBI | |
Remo A, Li X, Schiebel E and Pancione M: The centrosome linker and its role in cancer and genetic disorders. Trends Mol Med. 26:380–393. 2020. View Article : Google Scholar : PubMed/NCBI |