
miR‑145 and miR‑23b co‑transfection decreases proliferation, migration, invasion and protein levels of c‑MYC, ZEB1 and ABCB1 in epithelial ovarian cancer cell lines
- Authors:
- Allison Fredes‑Garrido
- Álvaro Armijo Cruz
- Gloria M. Calaf
- Maritza P. Garrido
- Carmen Romero
-
Affiliations: Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile, Institute of Advanced Research, University of Tarapacá, Arica 1000000, Chile - Published online on: July 8, 2025 https://doi.org/10.3892/mmr.2025.13611
- Article Number: 246
-
Copyright: © Fredes‑Garrido et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL: Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
World Ovarian Cancer Coalition, . The World Ovarian Cancer Coalition Atlas, Global Trends in Incidence, Mortality and Survival. 2023. | |
World Ovarian Cancer Coalition, . The World Ovarian Cancer Coalition Atlas, Global Trends in Incidence, Mortality and Survival. 2020. | |
Jessmon P, Boulanger T, Zhou W and Patwardhan P: Epidemiology and treatment patterns of epithelial ovarian cancer. Expert Rev Anticancer Ther. 17:427–437. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rojas V, Hirshfield KM, Ganesan S and Rodriguez-Rodriguez L: Molecular characterization of epithelial ovarian cancer: Implications for diagnosis and treatment. Int J Mol Sci. 17:21132016. View Article : Google Scholar | |
Ledermann JA: First-line treatment of ovarian cancer: Questions and controversies to address. Ther Adv Med Oncol. 10:17588359187682322018. View Article : Google Scholar | |
Beesley VL, Ross TL, King MT, Campbell R, Nagle CM, Obermair A, Grant P, DeFazio A, Webb PM and Friedlander ML; OPAL Study Group, : Evaluating patient-reported symptoms and late adverse effects following completion of first-line chemotherapy for ovarian cancer using the MOST (Measure of Ovarian Symptoms and Treatment concerns). Gynecol Oncol. 164:437–445. 2022. View Article : Google Scholar | |
Garrido MP, Fredes AN, Lobos-González L, Valenzuela-Valderrama M, Vera DB and Romero C: Current treatments and new possible complementary therapies for epithelial ovarian cancer. Biomedicines. 10:772022. View Article : Google Scholar | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar | |
Garrido MP, Torres I, Avila A, Chnaiderman J, Valenzuela-Valderrama M, Aramburo J, Oróstica L, Durán-Jara E, Lobos-Gonzalez L and Romero C: NGF/TRKA Decrease miR-145-5p levels in epithelial ovarian cancer cells. Int J Mol Sci. 21:76572020. View Article : Google Scholar | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar | |
Vera C, Retamales-Ortega R, Garrido M, Vega M and Romero C: Signaling pathways related to nerve growth factor and miRNAs in epithelial ovarian cancer. Ovarian Cancer: From Pathogenesis to Treatment. pp392018. View Article : Google Scholar | |
Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009. View Article : Google Scholar | |
Julio-Pieper M, Lozada P, Tapia V, Vega M, Miranda C, Vantman D, Ojeda SR and Romero C: Nerve growth factor induces vascular endothelial growth factor expression in granulosa cells via a trkA Receptor/Mitogen-Activated protein Kinase-extracellularly regulated kinase 2-Dependent pathway. J Clin Endocrinol Metab. 94:3065–3071. 2009. View Article : Google Scholar : PubMed/NCBI | |
Garrido MP, Hurtado I, Valenzuela-Valderrama M, Salvatierra R, Hernández A, Vega M, Selman A, Quest AFG and Romero C: NGF-Enhanced vasculogenic properties of epithelial ovarian cancer cells is reduced by inhibition of the COX-2/PGE2 signaling axis. Cancers. 11:19702019. View Article : Google Scholar : PubMed/NCBI | |
Tapia V, Gabler F, Muñoz M, Yazigi R, Paredes A, Selman A, Vega M and Romero C: Tyrosine kinase A receptor (trkA): A potential marker in epithelial ovarian cancer. Gynecol Oncol. 121:13–23. 2011. View Article : Google Scholar | |
Urzua U, Tapia V, Geraldo MP, Selman A, Vega M and Romero C: Nerve growth factor stimulates cellular proliferation of human epithelial ovarian cancer. Horm Metab Res. 44:656–661. 2012. View Article : Google Scholar : PubMed/NCBI | |
Campos X, Muñoz Y, Selman A, Yazigi R, Moyano L, Weinstein-Oppenheimer C, Lara HE and Romero C: Nerve growth factor and its high-affinity receptor trkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer. Gynecol Oncol. 104:168–175. 2007. View Article : Google Scholar | |
Smolarz B, Durczyński A, Romanowicz H, Szyłło K and Hogendorf P: miRNAs in Cancer (Review of Literature). Int J Mol Sci. 23:28052022. View Article : Google Scholar | |
Adams BD, Kasinski AL and Slack FJ: Aberrant regulation and function of microRNAs in cancer. Current Biology. 24:R762–R776. 2014. View Article : Google Scholar : PubMed/NCBI | |
Svoronos AA, Engelman DM and Slack FJ: OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer. Cancer Res. 76:3666–3670. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tian S, Zhang M, Chen X, Liu Y and Lou G: MicroRNA-595 sensitizes ovarian cancer cells to cisplatin by targeting ABCB1. Oncotarget. 7:87091–87099. 2016. View Article : Google Scholar | |
An X, Sarmiento C, Tan T and Zhu H: Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B. 7:38–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Wang Q, Yu M, Wu N and Wang H: MicroRNA-145 function as a cell growth repressor by directly targeting c-Myc in human ovarian cancer. Technol Cancer Res Treat. 13:161–168. 2014. View Article : Google Scholar | |
Romero-Pérez L, López-García MÁ, Díaz-Martín J, Biscuola M, Castilla MÁ, Tafe LJ, Garg K, Oliva E, Matias-Guiu X, Soslow RA and Palacios J: ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma. Mod Pathol. 26:1514–1524. 2013. View Article : Google Scholar | |
Retamales-Ortega R, Oróstica L, Vera C, Cuevas P, Hernández A, Hurtado I, Vega M and Romero C: Role of nerve growth factor (NGF) and miRNAs in epithelial ovarian cancer. Int J Mol Sci. 18:5072017. View Article : Google Scholar | |
Romero-López MJ, Jiménez-Wences H, Cruz-De la Rosa MI, Román-Fernández IV and Fernández-Tilapa G: miR-23b-3p, miR-124-3p and miR-218-5p synergistic or additive effects on cellular processes that modulate cervical cancer progression? A molecular balance that needs attention. Int J Mol Sci. 23:135512022. View Article : Google Scholar | |
Grossi I, Arici B, Portolani N, Petro GD and Salvi A: Clinical and biological significance of miR-23b and miR-193a in human hepatocellular carcinoma. Oncotarget. 8:6955–6969. 2016. View Article : Google Scholar | |
Pimenta RC, Viana NI, Amaral GQ, Park R, Morais DR, Pontes J Jr, Guimaraes VR, Camargo JA, Leite KR, Nahas WC, et al: MicroRNA-23b and microRNA-27b plus flutamide treatment enhances apoptosis rate and decreases CCNG1 expression in a castration-resistant prostate cancer cell line. Tumour Biol. 40:10104283188030112018. View Article : Google Scholar | |
Qiu T, Zhou X, Wang J, Du Y, Xu J, Huang Z, Zhu W, Shu Y and Liu P: MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer. FEBS Lett. 588:1168–1177. 2014. View Article : Google Scholar | |
Fulciniti M, Amodio N, Bandi RL, Cagnetta A, Samur MK, Acharya C, Prabhala R, D'Aquila P, Bellizzi D, Passarino G, et al: miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer J. 6:e3802016. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, Fang Y, Lin X, Xu Y, Xu W, et al: miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer. 135:1286–1296. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Engle K and Kumar G: Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem. 239:1145422022. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Hua Y, Deng F, Wang D, Wu Y, Zhang W and Tang J: MiR-145 in cancer therapy resistance and sensitivity: A comprehensive review. Cancer Sci. 111:3122–3131. 2020. View Article : Google Scholar | |
Sheng Q, Zhang Y, Wang Z, Ding J, Song Y and Zhao W: Cisplatin-mediated down-regulation of miR-145 contributes to up-regulation of PD-L1 via the c-Myc transcription factor in cisplatin-resistant ovarian carcinoma cells. Clin Exp Immunol. 200:45–52. 2020. View Article : Google Scholar | |
Majid S, Dar AA, Saini S, Deng G, Chang I, Greene K, Tanaka Y, Dahiya R and Yamamura S: MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS One. 8:e676862013. View Article : Google Scholar : PubMed/NCBI | |
Yao D, Dai C and Peng S: Mechanism of the Mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res. 9:1608–1620. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Atiya HI, Wang Y, Pisanic TR, Wang TH, Shih IM, Foy KK, Frisbie L, Buckanovich RJ, Chomiak AA, et al: Epigenomic reprogramming toward Mesenchymal-epithelial transition in ovarian-Cancer-associated mesenchymal stem cells drives metastasis. Cell Rep. 33:1084732020. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Qin L, Tian D, Wang T, Fan L, Zhang P and Wang Z: ZEB1 promotes chemoresistance to cisplatin in ovarian cancer cells by suppressing SLC3A2. Chemotherapy. 63:262–271. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garrido MP, Salvatierra R, Valenzuela-Valderrama M, Vallejos C, Bruneau N, Hernández A, Vega M, Selman A, Quest AFG and Romero C: Metformin reduces NGF-induced tumour promoter effects in epithelial ovarian cancer cells. Pharmaceuticals (Basel). 13:3152020. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Behrens BC, Hamilton TC, Masuda H, Grotzinger KR, Whang-Peng J, Louie KG, Knutsen T, McKoy WM, Young RC and Ozols RF: Characterization of a cis-diamminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res. 47:414–418. 1987.PubMed/NCBI | |
Tudrej P, Olbryt M, Zembala-Nożyńska E, Kujawa KA, Cortez AJ, Fiszer-Kierzkowska A, Pigłowski W, Nikiel B, Głowala-Kosińska M, Bartkowska-Chrobok A, et al: Establishment and characterization of the novel High-grade serous ovarian cancer cell line OVPA8. Int J Mol Sci. 19:20802018. View Article : Google Scholar | |
Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA, Rusin S, East-Seletsky A, Ali LD, Gerath WF, Pantel SE, et al: Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci Data. 1:1400352014. View Article : Google Scholar | |
Llorens MC, Lorenzatti G, Cavallo NL, Vaglienti MV, Perrone AP, Carenbauer AL, Darling DS and Cabanillas AM: Phosphorylation regulates functions of ZEB1 transcription factor. J Cell Physiol. 231:2205–2217. 2016. View Article : Google Scholar | |
Perez-Oquendo M, Manshouri R, Tian Y, Fradette JJ, Rodriguez BL, Kundu ST and Gibbons DL: ZEB1 is regulated by K811 acetylation to promote stability, NuRD complex interactions, EMT, and NSCLC metastasis. Mol Cancer Res. 21:779–794. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Du C, Xu D, Lu J, Zhou L, Wu C, Wu B and Huang J: Knockdown of ubiquitin-specific protease 51 attenuates cisplatin resistance in lung cancer through ubiquitination of zinc-finger E-box binding homeobox 1. Mol Med Rep. 22:1382–1390. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Tang H, Tu W and Peng F: Regulatory role of non-coding RNAs in 5-Fluorouracil resistance in gastrointestinal cancers. Cancer Drug Resist. 8:42025. View Article : Google Scholar | |
Yi J, Li B, Yin X, Liu L, Song C, Zhao Y, Cai M, Tang H, Chen D and Lyu N: CircMYBL2 facilitates hepatocellular carcinoma progression by regulating E2F1 expression. Oncol Res. 32:1129–1139. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Lu J, Zhu H, Wu F, Mo Y, Xie L, Song C, Liu L, Xie X, Li Y, et al: A novel axis of circKIF4A-miR-637-STAT3 promotes brain metastasis in triple-negative breast cancer. Cancer Lett. 581:2165082024. View Article : Google Scholar | |
Pei X, Chen SW, Long X, Zhu SQ, Qiu BQ, Lin K, Lu F, Xu JJ, Zhang PF and Wu YB: circMET promotes NSCLC cell proliferation, metastasis, and immune evasion by regulating the miR-145-5p/CXCL3 axis. Aging (Albany NY). 12:13038–13058. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Wu Q, Zhang M, Tong J, Zhong B and Yuan K: Hsa_circ_0016760 exacerbates the malignant development of Non-small cell lung cancer by sponging miR-145-5p/FGF5. Oncol Rep. 45:501–512. 2021. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Saxena S, Sharma H, Paudel KR, Chakraborty A, MacLoughlin R, Oliver BG, Gupta G, Negi P, Singh SK and Dua K: Emerging role of tumor suppressing microRNAs as therapeutics in managing non-small cell lung cancer. Pathol Res Pract. 256:1552222024. View Article : Google Scholar | |
Yan J, Jiang J, Meng XN, Xiu YL and Zong ZH: MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. J Exp Clin Cancer Res. 35:312016. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang X, Li W and Chen Y: MicroRNA-145-5p regulates the proliferation of epithelial ovarian cancer cells via targeting SMAD4. J Ovarian Res. 13:542020. View Article : Google Scholar : PubMed/NCBI | |
Kubickova A, De Sanctis JB and Hajduch M: Isoform-directed control of c-Myc Functions: Understanding the balance from proliferation to growth arrest. Int J Mol Sci. 24:175242023. View Article : Google Scholar | |
Perez-Oquendo M and Gibbons DL: Regulation of ZEB1 function and molecular associations in tumor progression and metastasis. Cancers (Basel). 14:18642022. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Qu Y, Dang S, Yao B and Ji M: MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int. 13:512013. View Article : Google Scholar | |
Xu WX, Liu Z, Deng F, Wang DD, Li XW, Tian T, Zhang J and Tang JH: MiR-145: A potential biomarker of cancer migration and invasion. Am J Transl Res. 11:6739–6753. 2019.PubMed/NCBI | |
Seyfried TN and Huysentruyt LC: On the origin of cancer metastasis. Crit Rev Oncog. 18:43–73. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bravo-Cordero JJ, Hodgson L and Condeelis J: Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 24:277–283. 2012. View Article : Google Scholar | |
Cai W and Zhang Q: The transcription factor ZEB1 mediates the progression of epithelial ovarian cancer by promoting the transcription of CircANKRD17. J Biochem Mol Toxicol. 36:e230862022. View Article : Google Scholar | |
Hashiguchi M, Ueno S, Sakoda M, Iino S, Hiwatashi K, Minami K, Ando K, Mataki Y, Maemura K, Shinchi H, et al: Clinical implication of ZEB-1 and E-cadherin expression in hepatocellular carcinoma (HCC). BMC Cancer. 13:5722013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Lu C, Zhang J, Kang J, Cao C and Li M: Involvement of ZEB1 and E-cadherin in the invasion of lung squamous cell carcinoma. Mol Biol Rep. 40:949–956. 2013. View Article : Google Scholar : PubMed/NCBI | |
Campos-Viguri GE, Jiménez-Wences H, Peralta-Zaragoza O, Torres-Altamirano G, Soto-Flores DG, Hernández-Sotelo D, Alarcón-Romero Ldel C, Jiménez-López MA, Illades-Aguiar B and Fernández-Tilapa G: miR-23b as a potential tumor suppressor and its regulation by DNA methylation in cervical cancer. Infect Agents Cancer. 10:422015. View Article : Google Scholar | |
Xue M, Pang H, Li X, Li H, Pan J and Chen W: Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway. Cancer Sci. 107:18–27. 2016. View Article : Google Scholar | |
Lei H, Gao Y and Xu X: LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim Biophys Sin (Shanghai). 49:588–597. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rice MA, Ishteiwy RA, Magani F, Udayakumar T, Reiner T, Yates TJ, Miller P, Perez-Stable C, Rai P, Verdun R, et al: The microRNA-23b/-27b cluster suppresses prostate cancer metastasis via Huntingtin-interacting protein 1-related. Oncogene. 35:4752–4761. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeinali T, Mansoori B, Mohammadi A and Baradaran B: Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother. 109:195–207. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Zhou L, Ye X, Tao M and Wu J: miR-145-5p suppresses proliferation, metastasis and EMT of colorectal cancer by targeting CDCA3. Pathol Res Pract. 216:1528722020. View Article : Google Scholar | |
Lin H, Xu X, Chen K, Fu Z, Wang S, Chen Y, Zhang H, Niu Y, Chen H, Yu H, et al: LncRNA CASC15, MiR-23b cluster and SMAD3 form a novel positive feedback loop to promote Epithelial-Mesenchymal transition and metastasis in ovarian cancer. Int J Biol Sci. 18:1989–2002. 2022. View Article : Google Scholar | |
Gao M, Miao L, Liu M, Li C, Yu C, Yan H, Yin Y, Wang Y, Qi X and Ren J: miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget. 7:59714–59726. 2016. View Article : Google Scholar | |
Gao R, Fang C, Xu J, Tan H, Li P and Ma L: LncRNA CACS15 contributes to oxaliplatin resistance in colorectal cancer by positively regulating ABCC1 through sponging miR-145. Arch Biochem Biophys. 663:183–191. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tu MJ and Yu AM: Efflux ABC transporters in drug disposition and their posttranscriptional gene regulation by microRNAs. Front Pharmacol. 15:14234162024. View Article : Google Scholar | |
Wang Y, Wang Y, Qin Z, Cai S, Yu L, Hu H and Zeng S: The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol. 17:291–306. 2021. View Article : Google Scholar | |
An Y, Zhang Z, Shang Y, Jiang X, Dong J, Yu P, Nie Y and Zhao Q: miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis. 6:e17662015. View Article : Google Scholar : PubMed/NCBI | |
Norouzi-Barough L, Sarookhani M, Salehi R, Sharifi M and Moghbelinejad S: CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line. Iran J Basic Med Sci. 21:181–187. 2018. | |
Lei ZN, Teng QX, Wu ZX, Ping FF, Song P, Wurpel JND and Chen ZS: Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/Cas9 system in SW620/Ad300 colorectal cancer cells. MedComm (2020). 2:765–777. 2021. View Article : Google Scholar : PubMed/NCBI |