1
|
Longhi A, Errani C, De Paolis M, Mercuri M
and Bacci G: Primary bone osteosarcoma in the pediatric age: State
of the art. Cancer Treat Rev. 32:423–436. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wittig JC, Bickels J, Priebat D, Jelinek
J, Kellar-Graney K, Shmookler B and Malawer MM: Osteosarcoma: A
multidisciplinary approach to diagnosis and treatment. Am Fam
Physician. 65:1123–1132. 2002.PubMed/NCBI
|
3
|
Kansara M and Thomas DM: Molecular
pathogenesis of osteosarcoma. DNA Cell Biol. 26:1–18. 2007.
View Article : Google Scholar
|
4
|
Mohseny AB, Szuhai K, Romeo S, Buddingh
EP, Briaire-de Bruijn I, de Jong D, van Pel M, Cleton-Jansen AM and
Hogendoorn PC: Osteosarcoma originates from mesenchymal stem cells
in consequence of aneuploidization and genomic loss of Cdkn2. J
Pathol. 219:294–305. 2009. View Article : Google Scholar
|
5
|
Tang N, Song WX, Luo J, Haydon RC and He
TC: Osteosarcoma development and stem cell differentiation. Clin
Orthop Relat Res. 466:2114–2130. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hogendoorn PC, Bove J, Karperien M and
Cleton-Jansen AM: Skeletogenesis: Genetics. London: Nature
Publishing Group; 2003
|
7
|
Adhikari AS, Agarwal N, Wood BM, Porretta
C, Ruiz B, Pochampally RR and Iwakuma T: CD117 and Stro-1 identify
osteosarcoma tumor-initiating cells associated with metastasis and
drug resistance. Cancer Res. 70:4602–1462. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Georgievska B, Sandin J, Doherty J,
Mörtberg A, Neelissen J, Andersson A, Gruber S, Nilsson Y, Schött
P, Arvidsson PI, et al: AZD1080, a novel GSK3 inhibitor, rescues
synaptic plasticity deficits in rodent brain and exhibits
peripheral target engagement in humans. J Neurochem. 125:446–456.
2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen S, Sun KX, Feng MX, Sang XB, Liu BL
and Zhao Y: Role of glycogen synthase kinase-3β inhibitor AZD1080
in ovarian cancer. Drug Des Devel Ther. 10:1225–1232. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Chandra P, Sachan N and Pal D: Glycogen
synthase kinase-3 (GSK-3) inhibitors as a new lead for treating
breast and ovarian cancer. Current Drug Targets. 22:1548–1554.
2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang X and Wang X, Hou L, Xu Z, Liu Y and
Wang X: Nanoparticles overcome adaptive immune resistance and
enhance immunotherapy via targeting tumor microenvironment in lung
cancer. Front Pharmacol. 14:11309372023. View Article : Google Scholar
|
12
|
Watanabe M, Abe N, Oshikiri Y, Stanbridge
EJ and Kitagawa T: Selective growth inhibition by glycogen synthase
kinase-3 inhibitors in tumorigenic HeLa hybrid cells is mediated
through NF-κB-dependent GLUT3 expression. Oncogenesis. 1:e212012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou W, Wang L, Gou SM, Wang TL, Zhang M,
Liu T and Wang CY: ShRNA silencing glycogen synthase kinase-3 beta
inhibits tumor growth and angiogenesis in pancreatic cancer. Cancer
Lett. 316:178–186. 2012. View Article : Google Scholar
|
14
|
Augello G, Emma MR, Cusimano A, Azzolina
A, Montalto G, McCubrey JA and Cervello M: The role of GSK-3 in
cancer immunotherapy: GSK-3 inhibitors as a new frontier in cancer
treatment. Cells. 9:14272020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nagini S, Sophia J and Mishra R: Glycogen
synthase kinases: Moonlighting proteins with theranostic potential
in cancer. Semin Cancer Biol. 56:25–36. 2019. View Article : Google Scholar
|
16
|
Fu Y, Hu D, Qiu J, Xie X, Ye F and Lu WG:
Overexpression of glycogen synthase Kinase-3 in ovarian carcinoma
cells with acquired paclitaxel resistance. Int J Gynecol Cancer.
21:439–444. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kawazoe H, Bilim VN, Ugolkov AV, Yuuki K,
Naito S, Nagaoka A, Kato T and Tomita Y: GSK-3 Inhibition in vitro
and in vivo enhances antitumor effect of sorafenib in renal cell
carcinoma (RCC). Biochem Biophys Res Commun. 423:490–495. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kazi A, Xiang S, Yang H, Delitto D,
Trevino J, Jiang RHY, Ayaz M, Lawrence HR, Kennedy P and Sebti SM:
GSK3 Suppression Upregulates β-catenin and c-Myc to abrogate
KRas-dependent tumors. Nat Commun. 9:51542018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mancinelli R, Carpino G, Petrungaro S,
Mammola CL, Tomaipitinca L, Filippini A, Facchiano A, Ziparo E and
Giampietri C: Multifaceted roles of GSK-3 in cancer and
Autophagy-related diseases. Oxid Med Cell Longev. 2017:46294952017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
McCubrey JA, Steelman LS, Bertrand FE,
Davis NM, Sokolosky M, Abrams SL, Montalto G, D'Assoro AB, Libra M,
Nicoletti F, et al: GSK-3 as potential target for therapeutic
irvention in cancer. Oncotarget. 5:2881–2911. 2014. View Article : Google Scholar
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Lathia J, Liu H and Matei D: The clinical
impact of cancer stem cells. Oncologist. 25:123–131. 2020.
View Article : Google Scholar
|
23
|
Foltz DR, Santiago MC, Berechid BE and Nye
JS: Glycogen synthase kinase-3beta modulates notch signaling and
stability. Curr Biol. 12:1006–1011. 2002. View Article : Google Scholar
|
24
|
Guha S, Cullen JP, Morrow D, Colombo A,
Lally C, Walls D, Redmond EM and Cahill PA: Glycogen synthase
kinase 3 beta positively regulates Notch signaling in vascular
smooth muscle cells: Role in cell proliferation and survival. Basic
Res Cardiol. 106:773–785. 2011. View Article : Google Scholar
|
25
|
Zheng L and Conner SD: Glycogen synthase
kinase 3β inhibition enhances Notch1 recycling. Mol Biol Cell.
29:389–395. 2018. View Article : Google Scholar
|
26
|
Saini MK and Sanyal SN: PTEN regulates
apoptotic cell death through PI3-K/Akt/GSK3β signaling pathway in
DMH induced early colon carcinogenesis in rat. Exp Mol Pathol.
93:135–146. 2012. View Article : Google Scholar
|
27
|
Mai W, Kong L, Yu H, Bao J, Song C and Qu
G: Glycogen synthase kinase 3β promotes osteosarcoma invasion and
migration via regulating PTEN and phosphorylation of focal adhesion
kinase. Biosci Rep. 41:BSR201935142021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Strang JE, Astridge DD, Nguyen VT and
Reigan P: Small molecule modulators of AMP-activated protein kinase
(AMPK) activity and their potential in cancer therapy. J Med Chem.
68:2238–2254. 2025. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jiang H, Zhao X, Zang J, Wang R, Gao J,
Chen J and Yu T: Establishment of a prognostic risk model for
osteosarcoma and mechanistic investigation. Front Pharmacol.
15:13996252024. View Article : Google Scholar
|
30
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang
S, Wang J, Zhang Y, Zhu D and Li L: Notch signaling pathway in
cancer: From mechanistic insights to targeted therapies. Signal
Transduct Target Ther. 9:1282024. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang
Y, Sun Y, Wu Z, Hu M, Wu Q, et al: ALDH1: A potential therapeutic
target for cancer stem cells in solid tumors. Front Oncol.
12:10262782022. View Article : Google Scholar
|
32
|
Anderson ME: Update on survival in
osteosarcoma. Orthop Clin North Am. 47:283–292. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tsuru A, Setoguchi T, Matsunoshita Y,
Nagao-Kitamoto H, Nagano S, Yokouchi M, Maeda S, Ishidou Y,
Yamamoto T and Komiya S: Hairy/enhancer-of-split related with YRPW
motif protein 1 promotes osteosarcoma metastasis via matrix
metallopeptidase 9 expression. Br J Cancer. 112:1232–1240. 2015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Kopan R and Turner DL: The Notch pathway:
Democracy and aristocracy in the selection of cell fate. Curr Opin
Neurobiol. 6:594–601. 1996. View Article : Google Scholar
|
35
|
Han X, Ju JH and Shin I: Glycogen synthase
kinase 3-β phosphorylates novel S/T-P-S/T domains in Notch1
intracellular domain and induces its nuclear localization. Biochem
Biophys Res Commun. 423:282–288. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Giovannini C, Baglioni M, Toaldo MB,
Ventrucci C, D'Adamo S, Cipone M, Chieco P, Gramantieri L and
Bolondi L: Notch3 inhibition enhances sorafenib cytotoxic efficacy
by promoting GSK3b phosphorylation and p21 down-regulation in
hepatocellular carcinoma. Oncotarget. 4:1618–1631. 2013. View Article : Google Scholar
|
37
|
Espinosa L, Inglés-Esteve J, Aguilera C
and Bigas A: Phosphorylation by glycogen synthase kinase-3 beta
down-regulates Notch activity, a link for Notch and Wnt pathways. J
Biol Chem. 278:32227–32235. 2003. View Article : Google Scholar : PubMed/NCBI
|