
Emerging role of circular RNAs in gastric cancer: From basic biology to clinical applications (Review)
- Authors:
- Linkun Wang
- Peng Zhou
- Huiheng Qu
- Zhihui Yang
- Yuyang Li
- Nan Wang
- Jiazeng Xia
-
Affiliations: Department of Gastroenterological Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China, Department of General Surgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214000, P.R. China, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston‑Salem, NC 27157, USA - Published online on: July 8, 2025 https://doi.org/10.3892/mmr.2025.13617
- Article Number: 252
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chang JS, Kuo SH, Chu PY, Shan YS, Tsai CR, Tsai HJ and Chen LT: The epidemiology of gastric cancers in the era of Helicobacter pylori eradication: A nationwide cancer registry-based study in Taiwan. Cancer Epidemiol Biomarkers Prev. 28:1694–1703. 2019. View Article : Google Scholar : PubMed/NCBI | |
Waddell T, Verheij M, Allum W, Cunningham D, Cervantes A and Arnold D; European Society for Medical Oncology (ESMO); European Society of Surgical Oncology (ESSO); European Society of Radiotherapy, Oncology (ESTRO), : Gastric cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 24 (Suppl 6):vi57–vi63. 2013. View Article : Google Scholar : PubMed/NCBI | |
Japanese Gastric Cancer Association, . Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer. 20:1–19. 2017. View Article : Google Scholar | |
Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai BC, Ho J and Unverzagt S: Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 8:CD0040642017.PubMed/NCBI | |
Park SC and Chun HJ: Chemotherapy for advanced gastric cancer: Review and update of current practices. Gut Liver. 7:385–393. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shirao K, Boku N, Yamada Y, Yamaguchi K, Doi T, Goto M, Nasu J, Denda T, Hamamoto Y, Takashima A, et al: Randomized phase III study of 5-fluorouracil continuous infusion vs sequential methotrexate and 5-fluorouracil therapy in far advanced gastric cancer with peritoneal metastasis (JCOG0106). Jpn J Clin Oncol. 43:972–980. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guimbaud R, Louvet C, Ries P, Ychou M, Maillard E, André T, Gornet JM, Aparicio T, Nguyen S, Azzedine A, et al: Prospective, randomized, multicenter, phase III study of fluorouracil, leucovorin, and irinotecan versus epirubicin, cisplatin, and capecitabine in advanced gastric adenocarcinoma: A French intergroup (Fédération Francophone de Cancérologie Digestive, Fédération Nationale des Centres de Lutte Contre le Cancer, and Groupe Coopérateur Multidisciplinaire en Oncologie) study. J Clin Oncol. 32:3520–3526. 2014. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Boni C, Tabernero J, Massuti B, Middleton G, Dane F, Reichardt P, Pimentel FL, Cohn A, Follana P, et al: Docetaxel plus oxaliplatin with or without fluorouracil or capecitabine in metastatic or locally recurrent gastric cancer: A randomized phase II study. Ann Oncol. 26:149–156. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Zhang X, Liu W, Liu T, Hu B, Li W, Fan Q, Xu J, Xu N, Bai Y, et al: A multicenter, randomized trial comparing efficacy and safety of paclitaxel/capecitabine and cisplatin/capecitabine in advanced gastric cancer. Gastric Cancer. 21:782–791. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ryu MH, Baba E, Lee KH, Park YI, Boku N, Hyodo I, Nam BH, Esaki T, Yoo C, Ryoo BY, et al: Comparison of two different S-1 plus cisplatin dosing schedules as first-line chemotherapy for metastatic and/or recurrent gastric cancer: A multicenter, randomized phase III trial (SOS). Ann Oncol. 26:2097–2101. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Higuchi K, Nishikawa K, Gotoh M, Fuse N, Sugimoto N, Nishina T, Amagai K, Chin K, Niwa Y, et al: Phase III study comparing oxaliplatin plus S-1 with cisplatin plus S-1 in chemotherapy-naïve patients with advanced gastric cancer. Ann Oncol. 26:141–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ajani JA, Abramov M, Bondarenko I, Shparyk Y, Gorbunova V, Hontsa A, Otchenash N, Alsina M, Lazarev S, Feliu J, et al: A phase III trial comparing oral S-1/cisplatin and intravenous 5-fluorouracil/cisplatin in patients with untreated diffuse gastric cancer. Ann Oncol. 28:2142–2148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu HM, Tsai HJ, Ku HY, Lo SS, Shan YS, Chang HC, Chao Y, Chen JS, Chen SC, Chiang CJ, et al: Survival outcomes of management in metastatic gastric adenocarcinoma patients. Sci Rep. 11:231422021. View Article : Google Scholar : PubMed/NCBI | |
Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, et al: Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 390:2461–2471. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Doi T, Dvorkin M, Mansoor W, Arkenau HT, Prokharau A, Alsina M, Ghidini M, Faustino C, Gorbunova V, et al: Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 19:1437–1448. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Jakobsen T, Hager H and Kjems J: The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 19:188–206. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, et al: Transcriptome-wide investigation of circular RNAs in rice. RNA. 21:2076–2087. 2015. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 58:870–885. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Wang J, Zheng Y, Zhang J, Chen S and Zhao F: Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun. 7:120602016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L and Chen LL: The biogenesis of nascent circular RNAs. Cell Rep. 15:611–624. 2016. View Article : Google Scholar : PubMed/NCBI | |
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 73:1019–1030. 1993. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang JL, Lei YN, Liu XQ, Xue W, Zhang Y, Nan F, Gao X, Zhang J, Wei J, et al: Linking circular intronic RNA degradation and function in transcription by RNase H1. Sci China Life Sci. 64:1795–1809. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Agarwal V, Guo H and Bartel D: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI | |
Thomson DW and Dinger ME: Endogenous microRNA sponges: Evidence and controversy. Nat Rev Genet. 17:272–283. 2016. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.PubMed/NCBI | |
Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, et al: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 7:124292016. View Article : Google Scholar : PubMed/NCBI | |
Kozak M: Inability of circular mRNA to attach to eukaryotic ribosomes. Nature. 280:82–85. 1979. View Article : Google Scholar : PubMed/NCBI | |
Chen CY and Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268:415–417. 1995. View Article : Google Scholar : PubMed/NCBI | |
Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y and Abe H: Rolling circle translation of circular RNA in living human cells. Sci Rep. 5:164352015. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Li K, Lai W, Li X, Wang H, Yang J, Chu S, Wang H, Kang C and Qiu Y: Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta. 480:17–25. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, et al: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 357:eaam85262017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yang D and Wei Y: Overexpressed CDR1as functions as an oncogene to promote the tumor progression via miR-7 in non-small-cell lung cancer. Onco Targets Ther. 11:3979–3987. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Ji M, He G, Yang L, Niu Z, Jian M, Wei Y, Ren L and Xu J: Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. Onco Targets Ther. 10:2045–2056. 2017. View Article : Google Scholar : PubMed/NCBI | |
Su C, Han Y, Zhang H, Li Y, Yi L, Wang X, Zhou S, Yu D, Song X, Xiao N, et al: CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-κB signalling. J Cell Mol Med. 22:3097–3107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin H, Ma Y and Goel A: Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 23:3918–3928. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H and Kong D: Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 119:440–446. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Liu FB, Huang M, Xie K, Xie QS, Liu CH, Shen MJ and Huang Q: Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary Pancreatic Dis Int. 18:580–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Tong X, Zhou Z, Wang S, Lei Z, Zhang T, Liu Z, Zeng Y, Li C, Zhao J, et al: Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol Cancer. 17:1402018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 20:1582021. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Zheng Z, Zhou M, Wang Y, Chen J, Cen J, Cao T, Yang T, Xu Y, Shu G, et al: EGCG-LYS fibrils-mediated CircMAP2K2 silencing decreases the proliferation and metastasis ability of gastric cancer cells in vitro and in vivo. Adv Sci (Weinh). 10:e23040752023. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Wang Z, Xie M, Quan Y, Zhu W, Yang F, Zhao C, Fan Y, Fang N, Jiang H, et al: Silencing of circRACGAP1 sensitizes gastric cancer cells to apatinib via modulating autophagy by targeting miR-3657 and ATG7. Cell Death Dis. 11:1692020. View Article : Google Scholar : PubMed/NCBI | |
Jie M, Wu Y, Gao M, Li X, Liu C, Ouyang Q, Tang Q, Shan C, Lv Y, Zhang K, et al: CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer. 19:562020. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, Li Z, Wei J, Liu M and Li G: Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer. 18:452019. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Ye B, Yang L, Zhu X, Huang G, Zhu P, Du Y, Wu J, Qin X, Chen R, et al: Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression. Nat Immunol. 18:499–508. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang JY, Du Y, Gong LP, Shao YT, Pan LJ, Feng ZY, Pan YH, Huang JT, Wen JY, Sun LP, et al: Corrigendum to ‘ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3 [Cancer Letters 535 (2022) 215646]’. Cancer Lett. 545:2158242022. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Chen H, Li L, Yang F, Wu C and Tao K: CircGSK3B promotes RORA expression and suppresses gastric cancer progression through the prevention of EZH2 trans-inhibition. J Exp Clin Cancer Res. 40:3302021. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Kim IS, Kim H, Lee JS, Kim K, Yim HY, Jeong J, Kim JH, Kim JY, Lee H, et al: RORalpha attenuates Wnt/beta-catenin signaling by PKCalpha-dependent phosphorylation in colon cancer. Mol Cell. 37:183–195. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y, Li H, Chen Y, Wang X, Huang K, et al: Correction: Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer. 22:1552023. View Article : Google Scholar : PubMed/NCBI | |
Kotta-Loizou I, Giaginis C and Theocharis S: Clinical significance of HuR expression in human malignancy. Med Oncol. 31:1612014. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M Jr, Tuschl T, Ohler U and Keene JD: Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell. 43:327–339. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li J, Bian X, Wu C, Hua J, Chang S, Yu T, Li H, Li Y, Hu S, et al: CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc Natl Acad Sci USA. 118:e20128811182021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, et al: Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Denzler R, Agarwal V, Stefano J, Bartel DP and Stoffel M: Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 54:766–776. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen XY, Yang YL, Yu Y, Chen ZY, Fan HN, Zhang J and Zhu JS: CircUGGT2 downregulation by METTL14-dependent m6A modification suppresses gastric cancer progression and cisplatin resistance through interaction with miR-186-3p/MAP3K9 axis. Pharmacol Res. 204:1072062024. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Lv J, Xuan Z, Li B, Li Z, He Z, Li F, Xu J, Wang S, Xia Y, et al: Circular CPM promotes chemoresistance of gastric cancer via activating PRKAA2-mediated autophagy. Clin Transl Med. 12:e7082022. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Li J, Lu B, Zhang X, Yang L, Qi Y, Jiang S, Wu Q, Wang Y, Cheng T, et al: CircBIRC6 facilitates the malignant progression via miR-488/GRIN2D-mediated CAV1-autophagy signal axis in gastric cancer. Pharmacol Res. 202:1071272024. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Xu Y, Qin X, Tao M, Gu X, Shen L, Chen Y, Zheng M, Qin S, Wu G and Ju S: RUNX1, FUS, and ELAVL1-induced circPTPN22 promote gastric cancer cell proliferation, migration, and invasion through miR-6788-5p/PAK1 axis-mediated autophagy. Cell Mol Biol Lett. 29:952024. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang X, Cao J, Xu P, Chen Z, Wang S, Li B, Zhang L, Xie L, Fang L and Xu Z: Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis. Cell Death Dis. 12:9102021. View Article : Google Scholar : PubMed/NCBI | |
Sang H, Zhang W, Peng L, Wei S, Zhu X, Huang K, Yang J, Chen M, Dang Y and Zhang G: Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis. 13:562022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cao J, Yang Q, Zhu L, Zhao W, Wang X, Yao J, Zhou Y and Shao S: CircRNA_15430 reduced by Helicobacter pylori infection and suppressed gastric cancer progression via miR-382-5p/ZCCHC14 axis. Biol Direct. 18:512023. View Article : Google Scholar : PubMed/NCBI | |
Chen QY, Xu KX, Huang XB, Fan DH, Chen YJ, Li YF, Huang Q, Liu ZY, Zheng HL, Huang ZN, et al: Circ-0075305 hinders gastric cancer stem cells by indirectly disrupting TCF4-β-catenin complex and downregulation of SOX9. Commun Biol. 7:5452024. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Chen Z, Wang J, Wang J, Chen X, Liang L, Huang M, Zhang Z and Zuo X: circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling. Cell Death Dis. 10:5762019. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Lv J, Jiang T, Li B, Li Y, He Z, Xuan Z, Sun G, Wang S, Li Z, et al: CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated β-catenin stabilization. J Exp Clin Cancer Res. 40:1032021. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Zhang X, Xu P, Wang H, Wang S, Zhang L, Li Z, Xie L, Sun G, Xia Y, et al: Circular RNA circLMO7 acts as a microRNA-30a-3p sponge to promote gastric cancer progression via the WNT2/β-catenin pathway. J Exp Clin Cancer Res. 40:62021. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Dai X, Liu J, Cheng A, Qin C and Wang Z: Circular RNA circREPS2 acts as a sponge of miR-558 to suppress gastric cancer progression by regulating RUNX3/β-catenin signaling. Mol Ther Nucleic Acids. 21:577–591. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Qu H, Shi K, Chen X, Zhuang Z, Wang N, Zhang Q, Liu Z, Wang L, Deng K, et al: ATF4-mediated circTDRD3 promotes gastric cancer cell proliferation and metastasis by regulating the miR-891b/ITGA2 axis and AKT signaling pathway. Gastric Cancer. 26:565–579. 2023. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Sang H, Wei S, Li Y, Jin D, Zhu X, Li X, Dang Y and Zhang G: circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol Cancer. 19:1562020. View Article : Google Scholar : PubMed/NCBI | |
Fei Y, Cao D, Li Y, Wang Z, Dong R, Zhu M, Gao P, Wang X, Cai J and Zuo X: Circ_0008315 promotes tumorigenesis and cisplatin resistance and acts as a nanotherapeutic target in gastric cancer. J Nanobiotechnol. 22:5192024. View Article : Google Scholar | |
Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, Xu Z, Zeng A, Zhang X, Zhang X, et al: Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 18:712019. View Article : Google Scholar : PubMed/NCBI | |
Deng G, Mou T, He J, Chen D, Lv D, Liu H, Yu J, Wang S and Li G: Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res. 39:12020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Feng Z, Xu Y, Jiang S, Zhang Q, Zhang Z, Wang K, Li X, Xu L, Yuan M, et al: Novel roles of LSECtin in gastric cancer cell adhesion, migration, invasion, and lymphatic metastasis. Cell Death Dis. 13:5932022. View Article : Google Scholar : PubMed/NCBI | |
Miao Z, Li J, Wang Y, Shi M, Gu X, Zhang X, Wei F, Tang X, Zheng L and Xing Y: Hsa_circ_0136666 stimulates gastric cancer progression and tumor immune escape by regulating the miR-375/PRKDC Axis and PD-L1 phosphorylation. Mol Cancer. 22:2052023. View Article : Google Scholar : PubMed/NCBI | |
Song H, Xu Y, Xu T, Fan R, Jiang T, Cao M, Shi L and Song J: CircPIP5K1A activates KRT80 and PI3K/AKT pathway to promote gastric cancer development through sponging miR-671-5p. Biomed Pharmacother. 126:1099412020. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Wang X, Yang F, Zang Y, Liu J, Wang X, Xu X, Li W, Jia J and Liu Z: Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. Mol Cancer. 19:1572020. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y and Xu T: Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 19:1122020. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Jiang T, Li Y, Gu C, Lv J, Lu C, Xu P, Fang L, Chen Z, Liu H, et al: circVAPA-rich small extracellular vesicles derived from gastric cancer promote neural invasion by inhibiting SLIT2 expression in neuronal cells. Cancer Lett. 592:2169262024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang X, Liu W, Lei T, Qiao T, Feng W and Song W: CircGLIS3 promotes gastric cancer progression by regulating the miR-1343-3p/PGK1 pathway and inhibiting vimentin phosphorylation. J Transl Med. 22:2512024. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Xu X, Wu X, Zhang L, Meng L, Chen Z, Han W, Yao J and Xu A: CircTMC5 promotes gastric cancer progression and metastasis by targeting miR-361-3p/RABL6. Gastric Cancer. 25:64–82. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fan HN, Chen ZY, Chen XY, Chen M, Yi YC, Zhu JS and Zhang J: METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 21:512022. View Article : Google Scholar : PubMed/NCBI | |
Du W, Li D, Guo X, Li P, Li X, Tong S, Tong J, Kuang L and Liang D: Circ-PRMT5 promotes gastric cancer progression by sponging miR-145 and miR-1304 to upregulate MYC. Artif Cells Nanomed Biotechnol. 47:4120–4130. 2019. View Article : Google Scholar : PubMed/NCBI | |
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong Z, Liu Z, Liang M, Pan J, Lin M, Lin H, Luo Y, Zhou X and Yao W: Identification of circRNA-miRNA-mRNA networks contributes to explore underlying pathogenesis and therapy strategy of gastric cancer. J Transl Med. 19:2262021. View Article : Google Scholar : PubMed/NCBI | |
Panda AC, Dudekula DB, Abdelmohsen K and Gorospe M: Analysis of circular RNAs using the web tool circinteractome. Methods Mol Biol. 1724:43–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Wang Q, Shen J, Yang BB and Ding X: Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol. 16:899–905. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sticht C, De La Torre C, Parveen A and Gretz N: miRWalk: An online resource for prediction of microRNA binding sites. PLoS One. 13:e02062392018. View Article : Google Scholar : PubMed/NCBI | |
Lavenniah A, Luu TDA, Li YP, Lim TB, Jiang J, Ackers-Johnson M and Foo RSY: Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol Ther. 28:1506–1517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, et al: Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids. 13:312–321. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Zhang N, Chai J, Wang T, Ma C, Han L and Yang M: CircPDIA4 induces gastric cancer progression by promoting ERK1/2 activation and enhancing biogenesis of oncogenic circRNAs. Cancer Res. 83:538–552. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Fang Y, Gu Y, Shen H, Xu Y, Xu T, Shi R, Xu D, Zhang J, Leng K, et al: Fat mass and obesity-associated protein (FTO) mediated m6A modification of circFAM192A promoted gastric cancer proliferation by suppressing SLC7A5 decay. Mol Biomed. 5:112024. View Article : Google Scholar : PubMed/NCBI | |
Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, Fu M, Shi H, Cai H, Qian H, et al: Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1. Mol Cancer. 21:1412022. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Yang F, Huang B, Pan X, Li W, Yu T, Wang X, Ran L, Qian K, Li H, et al: CircARID1A binds to IGF2BP3 in gastric cancer and promotes cancer proliferation by forming a circARID1A-IGF2BP3-SLC7A5 RNA-protein ternary complex. J Exp Clin Cancer Res. 41:2512022. View Article : Google Scholar : PubMed/NCBI | |
Ding P, Wu H, Wu J, Li T, He J, Ju Y, Liu Y, Li F, Deng H, Gu R, et al: N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer. Oncogene. 43:2548–2563. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Ran L, Zhao H, Yin P, Li W, Lin J, Mao H, Cai D, Ma Q, Pan X, et al: Circular RNA circ-TNPO3 suppresses metastasis of GC by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL. Mol Ther Nucleic Acids. 26:649–664. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hwang HJ and Kim YK: Molecular mechanisms of circular RNA translation. Exp Mol Med. 56:1272–1280. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al: Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27:444–447. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boehm V and Gehring NH: Exon junction complexes: Supervising the gene expression assembly line. Trends Genet. 32:724–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang J, Shin MK, Park J, Hwang HJ, Locker N, Ahn J, Kim D, Baek D, Park Y, Lee Y, et al: An interaction between eIF4A3 and eIF3g drives the internal initiation of translation. Nucleic Acids Res. 51:10950–10969. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Peng Y, Chang S, Luo X, Yuan Y, Zhu X, Xu Y, Du K, Chen Y, Deng S, et al: Vimentin binds to a novel tumor suppressor protein, GSPT1-238aa, encoded by circGSPT1 with a selective encoding priority to halt autophagy in gastric carcinoma. Cancer Lett. 545:2158262022. View Article : Google Scholar : PubMed/NCBI | |
Ruivo CF, Adem B, Silva M and Melo SA: The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 77:6480–6488. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Tai YL, Chen KC, Hsieh JT and Shen TL: Exosomes in cancer development and clinical applications. Cancer Sci. 109:2364–2374. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wei G, Zhu X, Chen X, Ma X, Hu P, Liu W, Yang W, Ruan T, Zhang W, et al: Exosome-delivered circSTAU2 inhibits the progression of gastric cancer by targeting the miR-589/CAPZA1 axis. Int J Nanomedicine. 18:127–142. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Bo X, Yi X, Xiao X, Zheng Q, Ma L and Li B: Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway. Cell Death Dis. 11:7232020. View Article : Google Scholar : PubMed/NCBI | |
Deng C, Huo M, Chu H, Zhuang X, Deng G, Li W, Wei H, Zeng L, He Y, Liu H, et al: Exosome circATP8A1 induces macrophage M2 polarization by regulating the miR-1-3p/STAT6 axis to promote gastric cancer progression. Mol Cancer. 23:492024. View Article : Google Scholar : PubMed/NCBI | |
Schneider J and Schulze G: Comparison of tumor M2-pyruvate kinase (tumor M2-PK), carcinoembryonic antigen (CEA), carbohydrate antigens CA 19-9 and CA 72-4 in the diagnosis of gastrointestinal cancer. Anticancer Res. 23:5089–5093. 2003.PubMed/NCBI | |
Carpelan Holmström M, Louhimo J, Stenman UH, Alfthan H and Haglund C: CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers. Anticancer Res. 22:2311–2316. 2002.PubMed/NCBI | |
Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W, Yu R, Xiao B and Guo J: Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl). 96:85–96. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roy S, Kanda M, Nomura S, Zhu Z, Toiyama Y, Taketomi A, Goldenring J, Baba H, Kodera Y and Goel A: Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol Cancer. 21:422022. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Li J, Lu R, Li T, Yang Y, Xiao B and Guo J: Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med. 6:1173–1180. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li J, Yu J, Liu H, Shen Z, Ye G, Mou T, Qi X and Li G: Circular RNAs signature predicts the early recurrence of stage III gastric cancer after radical surgery. Oncotarget. 8:22936–22943. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao K, Li S, Ding J, Wang Z, Wang D, Cao X, Zhang Y and Dong Z: Expression and clinical value of circRNAs in serum extracellular vesicles for gastric cancer. Front Oncol. 12:9628312022. View Article : Google Scholar : PubMed/NCBI | |
Helleday T, Petermann E, Lundin C, Hodgson B and Sharma RA: DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 8:193–204. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xue M, Li G, Fang X, Wang L, Jin Y and Zhou Q: hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway. Cancer Cell Int. 19:252019. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Nie Y, Wang H and Lin Y: MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene. 576:828–833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Wang Y, Zhou Y, Wen J, Wang S and Shen L: Aquaporin 3 facilitates chemoresistance in gastric cancer cells to cisplatin via autophagy. Cell Death Discov. 2:160872016. View Article : Google Scholar : PubMed/NCBI | |
Sun G, Li Z, He Z, Wang W, Wang S, Zhang X, Cao J, Xu P, Wang H, Huang X, et al: Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression. J Exp Clin Cancer Res. 39:2462020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Qin S, Xu J, Xiong J, Wu C, Bai Y, Liu W, Tong J, Liu Y, Xu R, et al: Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. J Clin Oncol. 34:1448–1454. 2016. View Article : Google Scholar : PubMed/NCBI | |
Masuda K, Shoji H, Nagashima K, Yamamoto S, Ishikawa M, Imazeki H, Aoki M, Miyamoto T, Hirano H, Honma Y, et al: Correlation between immune-related adverse events and prognosis in patients with gastric cancer treated with nivolumab. BMC Cancer. 19:9742019. View Article : Google Scholar : PubMed/NCBI | |
Aoki M, Shoji H, Nagashima K, Imazeki H, Miyamoto T, Hirano H, Honma Y, Iwasa S, Okita N, Takashima A, et al: Hyperprogressive disease during nivolumab or irinotecan treatment in patients with advanced gastric cancer. ESMO Open. 4:e0004882019. View Article : Google Scholar : PubMed/NCBI | |
Sunakawa Y, Inoue E, Matoba R, Kawakami H, Sato Y, Nakajima TE, Muro K, Ichikawa W and Fujii M: DELIVER (JACCRO GC-08) trial: Discover novel host-related immune-biomarkers for nivolumab in advanced gastric cancer. Future Oncol. 15:2441–2447. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Kang YK, Catenacci DV, Muro K, Fuchs CS, Geva R, Hara H, Golan T, Garrido M, Jalal SI, et al: Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study. Gastric Cancer. 22:828–837. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Van Cutsem E, Fuchs CS, Ohtsu A, Tabernero J, Ilson DH, Hyung WJ, Strong VE, Goetze TO, Yoshikawa T, et al: KEYNOTE-585: Phase III study of perioperative chemotherapy with or without pembrolizumab for gastric cancer. Future Oncol. 15:943–952. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, Ms MJ, Shah S, Hanks D, Wang J, et al: Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med. 143:330–337. 2019. View Article : Google Scholar : PubMed/NCBI | |
Roviello G, D'Angelo A, Generali D, Pittacolo M, Ganzinelli M, Iezzi G, de Manzini N and Sobhani N: Avelumab in gastric cancer. Immunotherapy. 11:759–768. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen DL, Sheng H, Zhang DS, Jin Y, Zhao BT, Chen N, Song K and Xu RH: The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p. Mol Cancer. 20:1662021. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Liu W, Zhang M, Li Y, Tang H, Wang Y, Song C, Song B and Tan B: Circ_0001947 encapsulated by small extracellular vesicles promotes gastric cancer progression and anti-PD-1 resistance by modulating CD8+ T cell exhaustion. J Nanobiotechnology. 22:5632024. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Li H, Shi D, Liu Z, Wei Y, Wang W, Wu D, Li B and Guo Q: Depletion of C12orf48 inhibits gastric cancer growth and metastasis via up-regulating Poly r(C)-binding protein (PCBP) 1. BMC Cancer. 22:1232022. View Article : Google Scholar : PubMed/NCBI | |
Guo J and Jia R: Splicing factor poly(rC)-binding protein 1 is a novel and distinctive tumor suppressor. J Cell Physiol. 234:33–41. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Luo K, Jiang L, Zhang XD, Lv YH and Li RF: PCBP1 regulates the transcription and alternative splicing of metastasis-related genes and pathways in hepatocellular carcinoma. Sci Rep. 11:233562021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Dou Z, Chen X, Zhao D, Che T, Su W, Qu T, Zhang T, Xu C, Lei H, et al: Overexpression of splicing factor poly(rC)-binding protein 1 elicits cycle arrest, apoptosis induction, and p73 splicing in human cervical carcinoma cells. J Cancer Res Clin Oncol. 148:3475–3484. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Dong J, Huang J, Ye W, Zheng Z, Huang K, Pan Y, Cen J, Liang Y, Shu G, et al: Chitosan-gelatin-EGCG nanoparticle-mediated lncRNA TMEM44-AS1 silencing to activate the P53 signaling pathway for the synergistic reversal of 5-FU resistance in gastric cancer. Adv Sci (Weinh). 9:e21050772022. View Article : Google Scholar : PubMed/NCBI | |
Abeyrathne ED, Lee HY and Ahn DU: Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents-a review. Poult Sci. 92:3292–3299. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG and Searson PC: State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. J Control Release. 187:133–144. 2014. View Article : Google Scholar : PubMed/NCBI | |
Devulapally R, Foygel K, Sekar TV, Willmann JK and Paulmurugan R: Gemcitabine and antisense-microRNA co-encapsulated PLGA-PEG polymer nanoparticles for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 8:33412–33422. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Gao Y, Zi L, Zhe R and Yang J: Dual Cas12a and multiplex crRNA CRISPR strategy ultrasensitive detection novel circRNA biomarker for the diagnosis of ovarian cancer. BMC Cancer. 25:6952025. View Article : Google Scholar : PubMed/NCBI | |
He AT, Liu J, Li F and Yang BB: Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct Target Ther. 6:1852021. View Article : Google Scholar : PubMed/NCBI | |
Qi L, Pan Y, Tang M and Chen X: Circulating cell-free circRNA panel predicted tumorigenesis and development of colorectal cancer. J Clin Lab Anal. 36:e244312022. View Article : Google Scholar : PubMed/NCBI | |
Xian J, Su W, Liu L, Rao B, Lin M, Feng Y, Qiu F, Chen J, Zhou Q, Zhao Z, et al: Identification of three circular RNA cargoes in serum exosomes as diagnostic biomarkers of non-small-cell lung cancer in the Chinese population. J Mol Diagn. 22:1096–1108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Digby B, Finn S and Ó Broin P: Computational approaches and challenges in the analysis of circRNA data. BMC genomics. 25:5272024. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Cai G, Wang Y, Zhuang Q, Cai Z, Li Y, Gao S, Li F, Zhang C, Zhao B and Liu X: Circular RNA-based neoantigen vaccine for hepatocellular carcinoma immunotherapy. MedComm (2020). 5:e6672024. View Article : Google Scholar : PubMed/NCBI | |
Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, Wu Z, Tang H, Zhang X, Tian F, et al: Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 185:1728–1744.e16. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Peng K, Yang K, Ma W, Qi S, Yu X, He J, Lin X and Yu G: Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics. 12:6422–6436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Manoharan T, Liu B, Cheng CZM, En Siew B, Cheong WK, Lee KY, Tan IJ, Lieske B, Tan KK and Chia G: Circular RNA as a source of neoantigens for cancer vaccines. J Immunother Cancer. 12:e0084022024. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Zhao H, Zhou K, Hua X and Zhang X: Scarless circular mRNA-based CAR-T cell therapy elicits superior anti-tumor efficacy. bioRxiv. 2024.2008. 2005.606578. 2024. | |
Kulcheski FR, Christoff AP and Margis R: Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 238:42–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA, Alshehri FS, Algarni MA, Almugaiteeb T, Uddin MN and Alzhrani RM: PLGA-based nanomedicine: History of advancement and development in clinical applications of multiple diseases. Pharmaceutics. 14:27282022. View Article : Google Scholar : PubMed/NCBI | |
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A and Préat V: PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 161:505–522. 2012. View Article : Google Scholar : PubMed/NCBI |